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ABSTRACT
In this paper, we introduce a novel model-based approach for
constructing correct distributed implementation of
component-based models constrained by priorities. We ar-
gue that model-based methods are especially of interest in
the context of distributed embedded system due to their
inherent complexity. Our three-phase method’s input is a
model specified in terms of a set of behavioural components
that interact through a set of high-level synchronization
primitives (e.g., rendezvous and broadcasts) and priority
rules for scheduling purposes. Our technique, first, trans-
forms the input model into a model that has no priorities.
Then, it transforms the deprioritized model into another
model that resolves distributed conflicts by incorporating a
solution to the committee coordination problem. Finally,
it generates distributed code using asynchronous point-to-
point send/receive primitives. All transformations preserve
the properties of their input model by ensuring observational
equivalence. The transformations are implemented and our
experiments validate their effectiveness.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems[Distributed applications]
; D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming, Parallel programming
; D.2.13 [Software Engineering]: Reusable Software—
Reuse models; D.4.7 [Operating Systems]: Organization
and Design—Real-time and embedded systems; F.3.1 [Logics
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1. INTRODUCTION

Correct design and implementation of computing systems
has been an ongoing research topic in the past three decades.
This problem is significantly more challenging in the context
of distributed systems due to a number of factors such as
non-determinism, non-atomic execution of processes, race
conditions, and occurrence of faults. Correctness of dis-
tributed implementations is of significant importance in the
context of embedded applications, as such applications are
often employed in safety-critical systems. Model-based de-
velopment of embedded distributed applications aims at in-
creasing their integrity by using explicit models employed in
clearly defined transformation steps leading to correct-by-
construction artifacts. This approach is beneficial, as one
can ensure functional correctness of the system by dealing
with a high-level formally specified model that abstracts im-
plementation details and then derives a correct implemen-
tation through a series of transformations that terminates
when an actual executable code is obtained.

In this paper, we focus on the BIP framework [5] as our
formal modelling language. BIP (Behaviour, Interaction,
Priority) is based on a semantic model encompassing com-
position of heterogeneous components. The behaviour of
components is described as an automaton or Petri net ex-
tended by data and functions given in C++. BIP uses a
diverse set of composition operators for obtaining compos-
ite components from a set of components. The operators are
parametrized by a set of interactions between the composed
components. Finally, priorities are used to specify different



scheduling mechanisms1. Transforming a BIP model into a
distributed implementation involves addressing three funda-
mental issues:

1. Concurrency: Components and interactions should
be able to run concurrently while respecting the se-
quential semantics of the high-level model.

2. Conflict resolution: Interactions that share a
common component can potentially conflict with each
other.

3. Enforcing priorities: When two interactions can
execute simultaneously, the one with higher priority
must be executed.

These issues introduce challenging problems in a
distributed setting. The conflict resolution issue can be ad-
dressed by incorporating solutions to the committee coordi-
nation problem [9] for implementing multiparty interactions.
For example, Bagrodia [2] proposes different solutions with
different degrees of parallelism. The most distributed solu-
tion is based on the drinking philosophers problem [8], and
has inspired the approaches by Pérez et al. [14] and Parrow
et al. [13]. In the context of BIP, a transformation address-
ing all the three challenges through employing centralized
scheduler is proposed in [4]. Moreover, in [6, 7], we pro-
pose transformations that address the concurrency issue by
breaking the atomicity of interactions and conflict resolu-
tion by embedding a solution to the committee coordination
problem in a distributed fashion. On the contrary, designing
transformations that enforce priorities between interactions
in a distributed setting remains unaddressed in spite of the
vital role specifying priorities plays in designing systems.

1.1 Motivation

Priorities are widely used in system design, as a way of
scheduling events. Below, we present examples of how ap-
plying priorities can guide a system to satisfy certain prop-
erties:

• Ensuring safety. Safety properties are normally of
the form “nothing bad happens during the system ex-
ecution”. In the context of concurrent and distributed
computing, such bad things are often due to existence
of a set of processes competing over a resource. Prior-
ities can be used to resolve such race conditions. For
instance, one way to prevent two processes to enter a
critical section simultaneously is to give explicit pri-
ority to one process. Dynamic priorities can then be
used to ensure non-starvation.

• Improving performance. In distributed sys-
tems, it is often the case that certain resources have
higher demands. For example, in group mutual exclu-
sion [10], as Mittal and Mohan argue [12], in many
commonly considered systems, group access requests

1Although our focus is on BIP, all results in this paper can
be applied to any model that is specified in terms of a set
of components synchronized by broadcast and rendezvous
interactions.
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Figure 1: Steps for generating a distributed imple-
mentation from a high-level BIP model.

are non-uniform. Hence, in order to improve the per-
formance, it is reasonable to devise algorithms that
give priority to groups that require resources with higher
demand. A concrete example of group mutual exclu-
sion is the well-known readers/writers problem. In
most cases, we give priority to readers to improve the
performance.

• Reducing non-determinism. Non-determinism
in distributed and concurrent computing is one of the
sources of obtaining a diverse set of behaviours. In
many scenarios and in particular, in embedded appli-
cations, it is desirable to guide the system to behave
in a certain predictable fashion.

The main challenge in ensuring priorities in a distributed
setting is their correct implementation. This is due to the
fact that components need to obtain a reliable knowledge
about enabledness of interactions, so that only the inter-
action with highest priority is executed. In [3], the authors
propose a model checking approach that determines whether
actions of a given Petri net can be executed without violat-
ing priority rules. However, the downside of this approach
is (1) it has scaling issues, as it uses model checking, and
(2) in most cases the local knowledge of processes is shown
to be insufficient to decide whether or not an action can be
executed. Other approaches include applying customized al-
gorithms to implement priority rules for specific problems in
distributed computing (e.g., [12]).

These examples demonstrate the demand for developing
methods that automatically construct a correct distributed
implementation by starting from a high-level model along
with a set of priority rules. This way, all implementation
issues are dealt with by transformation algorithms and de-
signers only need to make minimal effort to develop models.

1.2 Contributions

Our contributions in this paper are as follows:

• We propose a transformation that, given a high-level
BIP model with priorities, generates a BIP model with-
out priorities, that behaves equivalently. This corre-
sponds to the first step in Figure 1.

• We show the correctness of this transformation by prov-
ing that the initial and transformed models are obser-
vationally equivalent.



• We apply the transformation introduced in [7] to derive
a distributed model, where multiparty interactions are
implemented in terms of asynchronous point-to-point
send/receive primitives. This corresponds to the sec-
ond step in Figure 1. From this distributed model, we
generate distributed code, as explained in [6,7], which
completes the design flow from the initial BIP model
with priorities to a correct distributed implementation.

• Finally, we validate the effectiveness of our approach
by modelling a jukebox application in BIP and con-
ducting experiments on the generated distributed code.
The jukebox application incorporates priorities to man-
age demands on reading discs and our experiments
show that the overhead of our transformations has
minimal effect on the benefit of using priorities.

Organization. The rest of the paper is organized as
follows. In Section 2, we present the basic semantics model
of BIP. Then, in Section 3, we describe our transformation
for deriving a model that has no priorities. Our approach for
deriving a distributed model and code is presented in Section
4. We discuss our case study and experimental results in
Section 5. Finally, we conclude in Section 6.

2. BASIC SEMANTIC MODELS OF BIP

In this section, we present operational global state seman-
tics of BIP [5]. BIP is a component framework for con-
structing systems by superposing three layers of modelling:
Behaviour, Interaction, and Priority.

Atomic Components. We define atomic components as
transition systems extended with a set of ports and a set of
variables. Each transition is guarded by a predicate on the
variables, triggers an update function, and is labelled by a
port. The ports are used for communication among different
components and each port is associated with a subset of
variables of the component.

Definition 1 (Atomic Component). An atomic com-
ponent B is a labelled transition system represented by a
tuple (Q,X,P, T ) where:

• Q is a set of control states.

• X is a set of variables.

• P is a set of communication ports. Each port is a pair
(p,Xp) where p is a label and Xp ⊆ X is the set of
variables bound to p. By abuse of notation, we denote
a port (p,Xp) by p.

• T is a set of transitions of the form τ = (q, p, g, f, q′)
where q, q′ ∈ Q are control states, p ∈ P is a port, g is
the guard of τ and f is the update function of τ . g is
a predicate defined over the variables in X and f is a
function that computes new values for X according to
the previous ones.

We denote X the set of valuations on X, and Q ×X the
set of local states. Let (q, v) and (q′, v′) be two states in
Q × X, p be a port in P , and v′′p be a valuation in Xp of

Xp. We write (q, v)
p(v′′

p )
−→ (q′, v′), iff τ = (q, p, g, f, q′) ∈ T ,

g(v) is true, and v′ = f(v[Xp ← v′′p ]), (i.e., v
′ is obtained by

applying f after updating variables Xp associated to p by
the values v′′p ). When the communication port is irrelevant,

we simply write (q, v) → (q′, v′). Similarly, (q, v)
p
→ means

that there exists a transition τ = (q, p, g, f, q′) such that g(v)
is true; i.e., p is enabled in state (q, v).

Figure 2(a) shows an atomic component B, where Q =
{s}, X = {n}, P = {(p, {n})}, and T = {(s, p, g, f, s)}.
Here g is always true and f is the identity function.

Interactions. For a model built from a set of n atomic
components {Bi = (Qi, Xi, Pi, Ti)}

n
i=1, we assume that their

respective sets of ports and variables are pairwise disjoint;
i.e., for any two i 6= j in {1..n}, we require that Pi ∩ Pj = ∅
and Xi ∩ Xj = ∅. Thus, we define the set P =

⋃n

i=1 Pi of
all ports in the model as well as the set X =

⋃n

i=1 Xi of all
variables. An interaction a is a triple (Pa, Ga, Fa), where
Pa ⊆ P is a set of ports, Ga is a guard, and Fa is an up-
date function, both defined on the variables associated by
the ports in Pa (i.e.,

⋃

p∈Pa
Xp). By Pa = {pi}i∈I , we mean

that for all i ∈ I, pi ∈ Pi, where I ⊆ {1..n}. We denote by
F i
a the projection of Fa on Xpi .

Priorities. Given a set γ of interactions, a priority be-
tween two interactions specifies which one is preferred over
the other. We define such priorities through a partial order
π ⊆ γ × γ. We write aπb if (a, b) ∈ π, which means that a

has less priority than b.

Definition 2 (Composite Component). A compos-
ite component (or simply component) is defined by a set of
components, composed by a set of interactions γ and a prior-

ity partial order π ⊆ γ×γ. We denote B
def
= πγ(B1, . . . , Bn)

the component obtained by composing components B1, · · · , Bn

using the interactions γ and the priorities π.

Note that if the system does not contain any priority, we
may omit π.

Definition 3 (Composite Component Semantics).
The behaviour of a composite component without priority
γ(B1, · · · , Bn), where Bi = (Qi, Xi, Pi, Ti) and →i is the
transition relation between states of Bi, is a transition sys-
tem (Q, γ,X,→γ), where Q = Πn

i=1Qi, X =
⋃n

i=1 Xi and
→γ is the least set of transitions satisfying the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ
Ga(v1, . . . , vn) ∀i 6∈ I. (qi, vi) = (q′i, v

′
i)

∀i ∈ I. (qi, vi)
pi(v

′′

pi
)

−→ i (q
′
i, v

′
i), v

′′
pi

= F
i
a(v1, . . . , vn)

((q1, v1), . . . , (qn, vn))
a
→γ ((q′1, v

′
1), . . . , (q

′
n, v

′
n))

We denote (q, v) the state of γ(B1, · · · , Bn) that correspond
to the states (q1, v1), · · · , (qn, vn) of the components B1, · · · , Bn.
We define the behaviour of the composite component B =
πγ(B1, . . . , Bn) as the transition system (Q, γ,X,→π) where
→π is the least set of transitions satisfying the rule:

(q, v)
a
→γ (q′, v′) ∀a′ ∈ γ. aπa

′ =⇒ (q, v) 6
a′

→γ

(q, v)
a
→π (q′, v′)
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ni, obtained by gluing 4 atomic components using
3 interactions.

Figure 2: Atomic and composite components in BIP

Intuitively, the first inference rule specifies that a compos-
ite component B = γ(B1, . . . , Bn) can execute an interac-
tion a ∈ γ, iff (1) for each port pi ∈ Pa, the corresponding
atomic component Bi can execute a transition labelled by
pi, and (2) the guard Ga of the interaction evaluates to true
in the current state. Execution of the interaction modifies
components’ variables by first applying update function Fa

to associated variables and then function fi inside each com-
ponent. The states of components that do not participate in
the interaction stay unchanged. The second inference rule
simply filters out transitions which are not maximal with re-
spect to priorities. A transition is executed only if no other
one with higher priority is enabled.
Figure 2(b) illustrates a composite component γ(B1, · · · ,

B4), where each Bi is identical to component B in Fig-
ure 2(a). The set γ of interactions is {a, b, c}, where a =
({p1, p2}, n1 > n2, sw(n1, n2)) and function sw swaps the
values of its arguments. Interactions b and c are defined in a
similar fashion. Interaction a is enabled when ports p1 and
p2 are enabled and the value of n1 (in B1) is greater than
the value of n2 (in B2). Thus, the composite component B
sorts variables n1 · · ·n4, such that n1 contains the smallest
and n4 contains largest values.
It may be desirable to always execute interaction a when

possible. This can be done by adding the two priority rules
bπa and cπa. We denote the obtained component by πγ(B1,

. . . , B4). We will use this example to illustrate the trans-
formations presented in this paper.
We now introduce the notion of conflicting interactions.

Intuitively, two interactions a1 and a2 are weakly conflicting
iff they share a common component.

Definition 4 (Weak Conflict). Two interactions a1

and a2 are weakly conflicting (denoted a1⊕a2) iff there exist
two ports p and q in some component B such that p ∈ Pa1

and q ∈ Pa2 .

This kind of conflict is called weak because it is weaker
than the definition of conflict in [7], that we call here strong
conflict. Two interactions are strongly conflicting iff they

share a common port or there is a couple of ports with one
member in each interaction such that these two ports label
two conflicting transitions of the same component. Clearly,
strong conflict implies weak conflict but the converse is not
true.

3. DEPRIORITIZING A BIP MODEL

In this section, we describe our approach to transform a
BIP model B into an equivalent model without priorities,
denoted B̃. Intuitively, our transformation proceeds as fol-
lows:

1. First, it replaces atomic components in B by func-
tionally equivalent send/receive atomic components,
where atomicity of transitions and interactions is bro-
ken. This first transformation, already used in [4, 6, 7]
separates the synchronization from computation on
component transitions and enables the concurrent ex-
ecution of atomic components.

2. Secondly, it inserts manager components for handling
interactions. These managers detect enabledness of
interactions and schedule them for execution according
to priority rules. Managers interact with each other
through multi-party interactions in order to maintain
a consistent view on the state of the system.

3.1 Breaking Atomicity

The transformation of atomic components splits each tran-
sition into two consecutive steps: (i) an offer that publishes
the current state of the component, and (ii) a notification
that triggers the update function. The intuition behind this
transformation is that the offer transition corresponds to
sending information about component’s intention to inter-
act with the other components. The notification transition
receives the response from the scheduler, once some interac-
tion has been completed. Local update functions can then
be executed concurrently and independently by components
upon notification reception.

The offer transition publishes its enabled ports through a
special port named o. Enabled ports are encoded through a
list of Boolean variables. After the computation of the local
function, this list is updated to the ports that are enabled at
the next control state. Notification transitions are triggered
by corresponding ports from the original atomic component.

Definition 5 (Transformed atomic components).
Let B = (Q,X,P, T ) be an atomic component. The corre-
sponding transformed atomic component is
B⊥ = (Q⊥, X⊥, P⊥, T⊥), such that:

• Q⊥ = Q ∪ {⊥s |s ∈ Q}.

• X⊥ = X ∪ {xp}p∈P , where each xp is a Boolean vari-
able indicating whether port p is enabled.

• P⊥ = P ∪ {o}, where o is the offer port. All variables
in X⊥ are associated to o (i.e., Xo = X⊥).
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Figure 3: Transformed version of one atomic com-
ponent from Figure 2(b)

• For each transition τ = (q, p, g, f, q′) ∈ T , we include
the following two transitions in T⊥:

1. offer τ q
o = (⊥q, o, go, fo, q) where go is true, fo is

the identity function, and

2. notification τ q
p = (q, p, gp, fp,⊥q′) where gp is true

and fp applies fτ on X and for each port r ∈ P ,
it sets xr to true if τ ′ = (q′, r, g′, f ′, q′′) ∈ T for
some q′′ and g′ is true. Otherwise, xr is set to
false.

In Definition 5, states {⊥s |s ∈ Q} from where the compo-
nent sends offers, are called busy or unstable states. States
Q, from where the component is waiting to receive a notifi-
cation, are called stable states.
Figure 3 shows the transformed version of the atomic com-

ponent shown in Figure 2(a). Initially, the component is in
busy state ⊥s and the value of xp is true; i.e., the compo-
nent is willing to interact on port p. Then, it sends an offer
through port o containing the current values of xp and n

and reaches stable state s. The reception of a notification
corresponds to the p-labelled transition that brings back the
component to the initial busy state.

3.2 Interaction Managers

The set of managers are introduced to execute interactions
according to the global semantics of the original BIP model
described in Section 2. To this end, a manager component
for an interaction a has to (i) detect enabledness of a by
listening to offers sent by atomic components, (ii) trigger
the execution of a, (iii) notifies atomic components as well
as the other conflicting managers, whenever the interaction
is executed.
Let us observe that if two interactions are weakly conflict-

ing, then executing one can change the status of the other.
For instance, let a and b be two interactions, such that a⊕b;
i.e., they share some component B. Obviously, executing a

triggers a transition in component B. This transition can
result in changing the status of interaction b. That is, until
component B completes its local execution and sends a new
offer, the status of enabled ports and values of variables in
B can change.

Definition 6 (Interaction Manager). Let a ∈ γ be
an interaction, where Pa = {pi}i∈I . The interaction man-
ager Ma is an atomic component Ma = (Q,X,P, T ) defined
as follows:

Table 1: Ports of a manager component

port variables description

oai {xa
pi
} ∪Xa

pi

receives offers from atomic compo-
nent Bi

ι ∅
change status to enabled or disabled
(internal port)

starta ∅ triggers interaction execution

na {Xa
pi
}

notifies atomic components upon
execution

disa ∅
signals disabled status to other man-
agers

⊕a {bai }
gets notified about execution of
weakly conflicting interactions by
other managers

⊕disa {bai }
similar to port ⊕a, but for interac-
tions with higher priority

• The set of control states is Q = {undef , en, dis, exc}.
Intuitively, in state undef (undefined), the manager
does not have enough information to decide whether
or not interaction a is enabled. This is normally be-
cause some offers have not been received yet. In states
en (enabled) and dis (disabled), the manager knows
that a is enabled or disabled, respectively. In state exc
(executing), the interaction a is being executed.

• The set of variables is X = {bai }i∈I∪
{

{xa
pi
}∪Xa

pi

}

pi∈a
.

For every component Bi, the manager holds a Boolean
variable bai which is true iff component Bi is in a stable
state, that is, waiting for a notification. For every port
pi ∈ a, the manager holds respectively, a Boolean xa

pi

which indicates the status of the port (i.e., enabled or
disabled) and variables Xa

pi
that is, data associated to

the port pi.

• The set of ports P and their associated variables is
presented in Table 1.

• The set of transitions T and their intuitive meaning is
presented in Table 2.

undefdisdisa

exc

en

na⊕a oi
ba
i

:= true

⌈(ba
1 ∧ xa

p1
)∧

(ba
2 ∧ xa

p2
)∧

(na
1 > na

2 )⌋

ι

⊕a

⌈(ba
1 ∧ ba

2 )∧
(¬xa

p1
∨¬xa

p2
∨na

1 ≤ na
2 )⌋

ι

⊕a

⊕disa

starta

ba
1 := false

ba
2 := false

sw(na
1 , na

2 )

xa
p1 na

1

oa
1

xa
p2

na
2oa

2 na

ba
1

ba
2

⊕a ⊕disa disa starta

Figure 4: The manager component for interaction a

between components B1 and B2 in Figure 2(b).



Table 2: Transitions of a manager component

Transition Guard / Function Description

undef
oai−→ undef - / bai := true receive offer from Bi

undef
ι
−→ en

Ga ∧
∀i ∈ I. (bai ∧ xa

pi
) / -

change state to enabled

undef
ι
−→ dis

(∀i ∈ I.bai )∧ (¬Ga∨∃i ∈ I.¬xa
pi
)

/ -
change state to disabled

en
starta→ exc

- / {bai } := false;
{Xa

pi
}:=Fa({X

a
pi
})

execute interaction, apply update function.

exc
na→ undef - / - notifies atomic components on execution

dis
disa→ dis - / - signals disabled state

dis
⊕a→ undef

undef
⊕a→ undef

en
⊕a→ undef

- / -
gets notified about execution of a weakly conflicting
interaction

dis
⊕disa→ undef - / -

gets notified about execution of a higher priority weakly
conflicting interaction

Figure 4 represents the manager for interaction a in Figure
2(b). It contains the variables ba1 and ba2 since interaction a

involves components B1 and B2. The manager contains two
offer ports oa1 and oa2 . Port o

a
i , i ∈ {1, 2}, is associated with

variables (1) xa
pi
, which indicates the status of port pi in Bi,

and (2) na
i , that are local copies of variables ni associated

to ports pi in Figure 2(b). All these variables are refreshed
upon receiving an offer through ports oai . The transition
from undef to en guarded by (ba1 ∧ x

a
p1)∧ (b

a
2 ∧ x

a
p2)∧ (n

a
1 >

na
2) switches from undefined to enabled state. The two first

conjuncts ensures that (1) B1 and B2 are in stable state, and
(2) p1 and p2 are enabled. The latter conjunct corresponds
to the guard of interaction a in Figure 2(b). Likewise, the
transition from undef to dis allows reaching the state where
the interaction a is disabled. The update function associated
to τstart sets b

a
1 and ba2 to false and then swaps the variables

na
1 and na

2 . Both na
1 and na

2 are associated to the notification
port na, so their new values are sent back to the component.

3.3 Connecting Managers

The transformed atomic components and interaction man-
agers are interconnected using three types of interactions:
(i) offer interactions where components send their enabled
ports to corresponding managers, (ii) notification interac-
tions where managers notify components after execution of
an interaction, and (iii) schedule interactions where priority
rules are handled.
We now formally define the deprioritized model, by spec-

ifying how we connect the components defined so far. Let
γ(i) denote the set of all interactions in γ that involve the
component Bi.

Definition 7 (Deprioritized model). Given a model

B = πγ(B1, · · · , Bn), with γ = {a1 · · · am}, we define its de-
prioritized version as B̃ = γ̃(B⊥

1 , · · · , B⊥
n , Ma1 , · · · ,Mam),

where B⊥
i is obtained from Bi as explained in definition 5,

Maj
is obtained from aj as explained in definition 6, and γ̃

contains the following interactions:

• Offer interactions. For each i ∈ {1 · · ·n}, γ̃ con-
tains the interaction offi, where
Poffi = {oi} ∪

⋃

a∈γ(i){o
a
i }. For each interaction a ∈

γ(i), the update function Foffi sets the values of vari-
ables {xa

pi
}∪Xa

pi
to the values of {xp}∪Xp associated

to oi, where p is the of port Bi involved in a. Offer in-
teractions have no guard and they only copy data from
the sender component to the manager.

• Notifications interactions. For each interaction
a ∈ γ, where a = {pi}i∈I , γ̃ contains the interaction
nota, such that Pnota = na ∪{pi}i∈I . This interaction
notifies each component which port has been selected.
The update function Fnota copy back data to each com-
ponent Bi involved in a. That is, the values of Xpi (in
Bi) are set to the values of Xa

pi
(from Ma).

• Schedule interactions. For each interaction a ∈ γ,
γ̃ contains the interaction ã:

Pã = {starta}

∪ {⊕c|c⊕ a, c 6> a}

∪ {disc|c⊕ a, aπc}

∪ {⊕disc|c⊕ a, aπc}

This interaction has no guard. For each interaction c

weakly conflicting with a, the update function Fã sets
variable bci of manager Mc to false through the port
⊕c if {a, c} ⊆ γ(i). In other terms, the starta inter-
action informs the manager Mc that the components
causing the weak conflict with a have moved and are
not in their stable state anymore. This information
maintains coherence between the bci variable in each
manager Mc and the actual state of component Bi.
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Figure 5: Deprioritized version of model from Fig-
ure 2(b).

Figure 5 presents the deprioritized model from Figure
2(b). Please note that the port names have been shortened
for space reasons (e.g. sa and da stand for starta and disa
respectively. For offer and notification interactions, we in-
terpret a triangle port as a send port (i.e., for sending offers)
and bullet port as a receive port (i.e., for receiving offers).
Note that offers and notifications only copy variables be-
tween components and managers.
If we assume priorities bπa and cπa for the model in Figure

2(b), we obtain the following schedule interactions: a has no
higher priority interaction and is weakly conflicting with b,
thus Pã = {starta,⊕b}. Executing ã will set the variable bb2
to false in Mb, since B2 will become busy. b has less priority
than a and is weakly conflicting with both a and c, thus
Pb̃ = {startb,⊕disa,⊕c}. c has less priority than a and is
weakly conflicting with b, thus Pc̃ = {startc, disa,⊕b}.

3.4 Correctness

We now show that the above transformation preserves the
semantics of the original BIP model. By preserving the orig-
inal semantics, we mean ensuring observational equivalence
between the original model and the transformed model. This
is proved in Theorem 1.
Let B = πγ(B1, · · · , Bn) be a BIP model and B̃ = γ̃(B⊥

1 ,

· · · , B⊥
n ,Ma1 , · · · ,Mam) be its unprioritized version. We

denote q = (q1, · · · , qn) a state of B and q̃ = (q̃1, · · · , q̃n,
s1, · · · , sm) a state of B̃. We show that B̃ is observationally
equivalent to B.
The observable actions of B are the interactions γ. The

observable actions of B̃ are only the schedule interactions,
that is {ã|a ∈ γ}. The remaining interactions in B̃, namely
offers offi and notifications nota, are unobservable and are

denoted β. We denote q̃
β
→ q̃′ if a β action brings the system

from state q̃ to state q̃′.

Proposition 1.
β
→ is terminating.

Proof. Each β action involve at least a component. Each
component can take part in at most 2 β actions, 1 notifica-
tion and 1 offer, then no other β action is possible until an
ã action is executed. Thus at most 2n consecutive β-steps
are possible.

Proposition 2. From any reachable state q̃ of B̃,
β
→ is

confluent.

Proof. In any reachable state, if a manager reaches the
state exc then the corresponding notification is enabled,
since schedule interactions and boolean variables bi ensure
that each component may receive only one notification after
each offer. Similarly, if any component reaches an unstable
state, then the corresponding offer is enabled.

Offer interactions are independent since they do not share
any port nor change a common variable. Thus, the order of
their execution does not change the final state.

Notification interactions (that correspond to interactions
of the original model, augmented by a notification port) en-
abled from a reachable state are not conflicting since sched-
ule interactions handle weak conflicts. Thus, notification
interactions are independent and their order of execution

does not change the final state. We can conclude that
β
→ is

confluent.

From proposition 1 and 2, for each reachable state q̃ of

B̃, there is a unique state denoted [q̃] such that q̃
β∗

→ [q̃] and

[q̃]
β

6→.
We recall the definition of observational equivalence of

two transition systems A = (QA, P ∪ {β},→A) and B =
(QB , P ∪ {β},→B). It is based on the usual definition of
weak bisimilarity [11], where β-transitions are considered
unobservable. The same definition is trivially extended for
atomic and composite BIP components.

Definition 8 (Weak Simulation). A weak simulation
over A and B, denoted A ⊂ B, is a relation R ⊆ QA ×QB,
such that we have ∀(q, r) ∈ R, a ∈ P : q

a
→A q′ =⇒ ∃r′ :

(q′, r′) ∈ R ∧ r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R : q
β
→A q′ =⇒

∃r′ : (q′, r′) ∈ R ∧ r
β∗

→B r′

A weak bisimulation over A and B is a relation R such
that R and R−1 are both weak simulations. We say that A
and B are observationally equivalent and we write A ∼ B

if for each state of A there is a weakly bisimilar state of
B and conversely. We consider the correspondence between
observable actions of B and B̃ as follows. To each interaction
a ∈ γ, where γ is the set of interactions of B, we associate
the schedule interaction ã of B̃.

Theorem 1. B ∼ B̃.

Proof. We define the relation R between the states of
B and the states of B̃ as follows: the couple (q̃, q) is in the
relation R if the states of atomic components B⊥

1 , · · · , B⊥
n

in [q̃] are the same as in q. Formally, we have (q̃, q) ∈ R if
[q̃] = (q1, · · · , qn, s1, · · · , sm) and q = (q1, · · · , qn). We show
that R is an observational equivalence by proving the next
three assertions:

(i) If (q̃, q) ∈ R and q̃
β
→ r̃ then (r̃, q) ∈ R.

(ii) If (q̃, q) ∈ R and q̃
ã
→ r̃ then ∃r : q

a
→ r and (r̃, r) ∈ R.

(iii) If (q̃, q) ∈ R and q
a
→ r then ∃r̃ : q̃

β∗ã
−→ r̃ and (r̃, r) ∈ R.

The point (i) comes from the definition of R.
(ii) If the interaction ã is enabled, then manager Ma is in

state en, which implies that at equivalent state q:



• All ports of a are enabled and the guard Ga is true,
since the guard of the τen transition is true

• No higher priority interaction is enabled since ã is en-
abled only when managers corresponding to such in-
teractions are in state dis.

Thus we have q
a
→ r, and the reader can easily check that

(r̃, r) ∈ R.
(iii) From q̃ we can reach [q̃] by using only β transitions.

In state [q̃], since every atomic component has sent an offer,
the state of each manager will be either en or dis, according
to the status of the corresponding interaction at state q in
B. Then since a is enabled at state q, Ma is in state en at
state [q̃]. If there is any interaction b with higher priority
than a, then it is disabled in state q, thus the manager Mb

is in state dis at state [q̃]. Thus ã is enabled at state [q̃]

and we have q̃
β∗ã
−→ r̃. Executing the notification interaction

na and the offer interactions from components involved in a

lead B̃ in a state where atomic components have the same
state as in r. Thus (r̃, r) ∈ R.

4. BUILDING A DISTRIBUTED MODEL:
THE 3-TIER ARCHITECTURE

Once we construct a model with no priorities as prescribed
in Section 3, one can apply the technique presented in [6] to
generate distributed code. We now briefly recap this tech-
nique. The code generation is accomplished in two steps.
First, from a given BIP model, we generate another BIP
model that only incorporates asynchronous message passing
as interactions (denoted SR-BIP). Then, we transform the
SR-BIP model into a set of executables – one per atomic
component – that communicate using asynchronous mes-
sage passing primitives such as MPI or TCP sockets. We
only review the first step.
Distributed execution of interactions may introduce con-

flicts even if we do not consider priorities. Thus, our target
SR-BIP model in a transformation should have the follow-
ing three properties: (1) preserving the behaviour of each
atomic component, (2) preserving the behaviour of interac-
tions, and (3) resolving conflicts in a distributed manner.
Moreover, we require that interactions in the target model
are asynchronous message passing.
We design our target BIP model based on the three tasks

identified above, where we incorporate one tier for each
task. Since several distributed algorithms exist in the litera-
ture for conflict resolution, we design the tier corresponding
to conflict resolution so that it provides appropriate inter-
faces with minimal restrictions. As a running example, we
use the part of the model presented in Figure 5 formed by
γsched(Ma,Mb,Mc) where γsched = {ã, b̃, c̃} to describe the
concepts of our transformation. The distributed version of
γsched(Ma,Mb,Mc) is presented in Figure 6. Our 3-tier ar-
chitecture consists of the following.

Components Tier. Let B̃ = γ̃(B⊥
1 · · ·B

⊥
n ,Ma1 · · ·Mam)

be a deprioritized BIP model. The component tier includes
components:

• M⊥
a1
· · ·M⊥

am
(i.e., manager components obtained by

B
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1 B
⊥

2 B
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3 B
⊥
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Figure 6: Distributed version of the deprioritized
model from Figure 5.

the transformation explained in Subsection 3.1 to break
atomicity), and

• B⊥
1 · · ·B

⊥
n are copied from the deprioritized model,

since they have already been transformed by the de-
prioritization.

Interaction Protocol. This tier consists of a set of com-
ponents each hosting a set of interactions from the depriori-
tized BIP model. Conflicts between interactions included in
the same component are resolved by that component locally.
For instance, interactions ã and b̃ in Figure 5 are grouped
into component IP1 in Figure 6. Thus, the conflict between
ã and b̃ is handled locally in IP1. To the contrary, the con-
flict between b̃ and c̃ has to be resolved using the third tier
of our model. The interaction protocol also evaluates the
guard of each interaction and executes the code associated
with an interaction that is selected locally or by the upper
tier. The interface between this tier and the component tier
provides ports for receiving enabled ports from each com-
ponent and notifying the components on permitted port for
execution (ports nã, nb̃, nc̃).

Conflict Resolution Protocol. This tier accommo-
dates an algorithm that solves the committee coordination
problem [9] to resolve conflicts between interactions hosted
in separate interaction protocol components. For instance,
the external conflict between interactions b̃ and c̃ is resolved
by the central component CRP in Figure 6. We emphasize
that the structure of components in this tier solely depends
upon the augmented committee coordination algorithm. In-
corporating a centralized algorithm results in one compo-
nent CRP as illustrated in Figure 6. Other algorithms, such
as ones that use a circulating token [2] or dining philoso-
phers [1, 9] result in different structures in this tier and are
discussed in detail in [7]. The interface between this tier
and the Interaction Protocol involves ports for receiving re-
quests to reserve an interaction (labelled r) and responding
by either success (labelled ok) or failure (labelled f).
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Figure 7: BIP Model for the jukebox example.

5. CASE STUDY

In this section, we use a jukebox example to illustrate our
deprioritization transformation and conduct experiments to
study the effectiveness of our method (see the models in
Figures 7 and 8). This model represents a system, where a
set of readers (R1, . . . , R4) need to access the data located
on discs (D1, . . . , D4). A reader may need any disc. Access
to the disc is managed by jukebox components (J1, J2) that
can load any disc to make it available for reading. Each pair
(Di, Jk), i ∈ {1 · · · 4} and k ∈ {1, 2}, has two interactions:
(1) a loadi,k interaction for loading the disc in the jukebox
and an unloadi,k interaction for unloading it. Each reader
Rj is connected to a jukebox through a readj interaction.
During the test, we simulate execution of interactions by
waiting a given amount of time. Namely, we wait 100ms for
load/unload and 500ms for read.
Figure 8 presents the behaviour of atomic components and

the data transfer on interactions. To ensure that all discs are
eventually loaded, each jukebox keeps a list of discs to load,
namely to load. Each time a disc is loaded, it is removed
from the list by the load transition in the jukebox compo-
nent. The guard of a load interaction prevents the disc to be
loaded if it is not on the list. When the to load list becomes
empty, it is reinitialized to the set of all discs on the unload
interaction. The variable current contains the identity (i.e.,
1 . . . 4) of the disc currently loaded in the jukebox, and is
updated by the load interaction. In order to ensure that the
reader gets the correct data, a guard on the {read , data}
interaction holds, only if the disc in the jukebox (current)
is the one to be read (to read). Each reader has a sequence
of 2 discs to read. The variable to read contains the id of
the next disc to be read. It is initialized with the first value
(not shown in the figure), and is updated after the first read.
This model has finite runs: the execution terminates when
all readers have read the two discs they needed.
We consider two versions of the model. The first model,

denoted B∅, does not contain priorities. The second model,
denoted Bπ, is the B∅ restricted by two types of priorities:

• Priorities to enforce termination. We give pri-
ority to the read interactions over the unload interac-
tions. Formally, it corresponds to the sets of priorities
{unloadi,1 π readj | i ∈ {1, · · · , 4}, j ∈ {1, 2}} and
{unloadi,2 π readj | i ∈ {1, · · · , 4}, j ∈ {3, 4}}, for
each jukebox. This ensures that any enabled read in-
teraction will be executed before the disc is unloaded.
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Figure 8: Behaviour of jukebox components and in-
teractions.

Since each disc is eventually loaded, each read inter-
action will take place and the execution terminates.
Otherwise, sequences of load/unload interaction could
occur forever. Note that here, assuming fairness en-
sures that the model eventually terminates.

• Priorities to speed up execution. By inspect-
ing the discs requested by the readers, we know that
some discs are more often needed than others. Thus,
we give higher priority to the corresponding load in-
teractions. Here, we give higher priority to Disc 1 in
Jukebox 1 by adding the following set of priorities:
{loadi,1 π load1,1 | i ∈ {2, 3, 4}}.

For both versions B∅ and Bπ, we generate the correspond-
ing deprioritized models B̃∅ and B̃π. In Table 3, we present
the size – the number of atomic components and the number
of interactions – of these different models, in the columns la-
belled “Orig.”. We then apply the transformation provided
in [7] to the models B∅, B̃∅, and B̃π to obtain a distributed
version of each model including a centralized scheduler2.
The number of Send/Receive components and interactions
contained in the distributed version of these models is given
in the columns labelled “S/R” in Table 3. We simulate the
execution of these models on two different platforms. The
first one is centralized, where only one processor is available
to execute all components. The second one is fully decentral-
ized, where each atomic component has its own processor.
We assume that executing a load, unload or read interaction
completely blocks the processor. For each couple (model,
execution platform), we measure the average time of termi-
nating executions. The results are presented in Table 3.

As mentioned earlier, we applied our deprioritization trans-
formation to model B∅ although we can directly obtain a
distributed model. By comparing the execution times of B∅

and B̃∅ on the centralized platform, we observe that our
deprioritization transformation does not introduce a signifi-
cant overhead, even if it increases the number of components
and interactions.

2We cannot transform directly Bπ into such a distributed
model since the transformation presented in [7] does not
take priorities into account.



Table 3: Model size and execution time (s) for dif-
ferent implementations of Figure 7.

Model Size
Execution time

# Atoms # Interactions

Orig. S/R Orig. S/R Cent. Decent.

B∅ 10 11 20 28 15.2 11.0

B̃∅ 30 31 70 148 12.0 5.9

B̃π 30 31 70 154 5.4 2.8

More importantly, the distributed execution of B̃∅ is al-
most twice faster than B∅. This is due to the fact all time
consuming computations in B∅ are on interactions, which
are all executed on the same processor (the one hosting the
scheduler). When switching to B̃∅, these interactions are
executed by the manager components and, hence, run con-
currently on different processors.
Furthermore, the model B̃π runs faster than B∅ on a cen-

tralized platform. In this scenario, priorities enforce a better
scheduling – we first load the discs that are often used and
we do not perform an unload if a reader has something left
to read – and thus reduce the total execution time. Again,
switching to decentralized execution gives almost twice bet-
ter results, as (time consuming) interactions are now running
concurrently.

6. CONCLUSION

In this paper, we proposed an automated method to derive
correct distributed implementation from high-level
component-based models encompassing prioritized multiparty
interactions. Our method consists of three steps: (1) one
transformation to deprioritize the initial model, (2) a trans-
formation from [6,7] that generates a distributed model from
the deprioritized model by resolving interaction conflicts,
and (3) a final transformation from the distributed model
into C++ code. All steps preserve observational equiva-
lence between the input and output models. We illustrated
our approach using a non-trivial example and presented en-
couraging experimental results.
There exist several research directions for future work.

First, more rigorous and deeper case studies and experi-
ments are needed to completely understand the overheads
introduced by our transformations. Since deprioritization
is an independent step of our method and is isolated from
conflict resolution (i.e., step two), one can study the over-
head of each step separately. Another direction is to devise
a committee coordination algorithm for conflict resolution
that takes priority issues into account. This allows us to in-
corporate such an algorithm directly in our 3-tier model [7].
This approach can potentially have less overhead than the
one presented in this paper. Finally, one can speed-up dis-
tributed execution of models with priorities by detecting dis-
abled interactions as early as possible. Such detection can
benefit from knowledge-based methods (e.g., [3]).
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