
HAL Id: hal-00722402
https://hal.science/hal-00722402

Submitted on 1 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous System Level Modeling and Analysis of Mixed
HW/SW Systems

Paraskevas Bourgos, Ananda Basu, Saddek Bensalem, Marius Bozga, Joseph
Sifakis, Kai Huang

To cite this version:
Paraskevas Bourgos, Ananda Basu, Saddek Bensalem, Marius Bozga, Joseph Sifakis, et al.. Rigorous
System Level Modeling and Analysis of Mixed HW/SW Systems. 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, MEMOCODE 2011, Jul 2011, Cambridge,
United Kingdom. pp.11-20, �10.1109/MEMCOD.2011.5970506�. �hal-00722402�

https://hal.science/hal-00722402
https://hal.archives-ouvertes.fr

Rigorous System Level Modeling and Analysis of

Mixed HW/SW Systems

P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis

UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104

Grenoble, F-38041, France

{bourgos, basu, bozga, bensalem, sifakis}@imag.fr

K. Huang

Institute of VLSI Design

Zhejiang University, China

huangk@vlsi.zju.edu.cn

Abstract—A grand challenge in complex embedded systems
design is developing methods and tools for modeling and
analyzing the behavior of an application software running
on multicore or distributed platforms. We propose a rigorous
method and a tool chain that allows to obtain a faithful model
representing the behavior of a mixed hardware/software system
from a model of its application software and a model of
its underlying hardware architecture. The system model can
be simulated and analyzed for validation of both functional
and extra-functional properties. The tool chain uses DOL
(Distributed Operation Layer [1]) as the frontend for specifying
the application software and hardware architecture, and BIP
(Behavior Interaction Priority [2]) as the modeling and analysis
framework. It is illustrated through the construction of system
models of MJPEG and MPEG2 decoder applications running
on MPARM, a multicore architecture.

I. INTRODUCTION

Performance of embedded applications strongly depends

on features of the underlying hardware platform. In contrast

to performance of application software running on a single

core, getting the maximum throughput out of multicore

processors demands application software to be designed

taking parallelism into account from scratch. This is needed

to catch up with the fast growth of computing capacity due to

the foreseeable exponential increase of physical parallelism.

But programming, testing and verifying parallel software

with currently existing tools is notoriously hard, even for

experts. There are no rigorous techniques for deriving global

model of a given system from models of its application

software and its execution platform.

Application software must be programmed for perfor-

mance, in a platform independent way, exhibiting all poten-

tial parallelism. Its implementation must deal with mapping

the specified application-level parallelism onto platform-

level (threads, cores, processors) on an as-needed/as-

available basis. Actually, this mapping would need to be

adapted dynamically as applications must scale up or down

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-2013]
under grant agreement no 248776 (PRO3D) and from ARTEMIS JU grant
agreement ARTEMIS-2009-1-100230 (SMECY)

according to the available resources of the execution plat-

form. Moreover, efficiency and correctness are not the only

concerns. Programmer productivity, that is, the program-

mer’s ability to design correct software that gathers the max-

imum performance out of an arbitrary multicore platform

with ease should not be neglected [3].

Achieving these goals requires a design flow based on

a single semantic model. The design flow must be able

to generate rigorous models of mixed hardware/software

systems, suitable for analysis, design space exploration and

automatic code generation. The main contribution of this

paper is deriving a rigorous system model combining the

application software and the architecture, which can be the

basis for multiple objectives, such as functional verification,

performance evaluation and code generation for target archi-

tectures.

We propose a system construction method that is both

rigorous and allows a fine analysis of system dynamics.

It is rigorous because it is based on formal models, have

precise semantics and thus can be analyzed by using formal

techniques. A system model is derived by progressively

integrating constraints induced on an application software

model by the underlying hardware architecture model. Both

models are described in BIP [2], which is a formal com-

ponent based modeling framework. In contrast to ad hoc

modeling approaches, the system model is obtained from

a BIP model of the application software and a description

of the hardware architecture, by application of source-to-

source transformations that are correct-by-construction [4].

The final generated model is a mixed software-hardware

model which provides the capability using a single model

to simulate and apply formal verification techniques on it

using the BIP framework.

Metro II [5] is a platform-based design framework and

provides a simulation backend based on SystemC. Octo-

pus [6] allows design space exploration by stochastic simula-

tion of task graphs. Both have connections to formal verifica-

tion tools based on model checking. Most of the frameworks

for mixed HW/SW systems are based on SystemC [7] as

a language for modeling at various levels of abstractions.

Various tools and associated design methodologies emerged

e.g., SystemCoDesigner [8], Spade [9], Sesame [10] to cite

only a few. All these focus and facilitate the construction of

executable simulation models which, while being claimed

cycle-accurate, do not rely on a formal foundation. For

instance, such models cannot be used to check formally

the correctness of the constructed system. There have been

attempts on providing formal semantics to System-C models

using tools like LusSy [11], however, they remain difficult

to use mainly because of the limited expressiveness of the

target formalism compared with a general purpose language.

One of the main needs for rigorous system model is

performance evaluation. Simulation based methods use ad-

hoc executable system models such as [12] or models

in SystemC [7], [13]. The latter provide cycle-accurate

results, but are not adequate for thorough exploration of

hardware architecture dynamics and its effects on software

execution. Furthermore, long simulation time is a major

drawback. Trace-based co-simulation is used in Spade [9],

Sesame [10]. There exist much faster techniques that work

on abstract system models e.g., Real Time Calculus [14] and

SymTA/S [15]. They use formal analytical models represent-

ing a system as a network of nodes exchanging streams.

The dynamics of the execution platform is characterized

by execution times. Nonetheless, these techniques allow

only estimation of pessimistic worst-case measures (delays,

buffer sizes, etc) and moreover, they require an abstract

model of the application software. Building these abstract

models represents a significant modeling effort and, if done

through a manual process, the results are not guaranteed

to be accurate. Similar drawbacks exists for performance

analysis techniques based on Timed-Automata [16], [17].

These can be used for modeling and solving scheduling

problems. An approach combining simulation and analytic

models is presented in [18], where simulation results can be

propagated to analytic models and vice versa through well

defined interfaces.

The paper is structured as follows. Section II presents

the method and the main steps in the design flow, with a

brief overview of the BIP framework and associated toolbox.

The generation of the system model follows in section III.

Section IV describes the performance estimation technique

applied on the system model. Finally, experimental results

are provided in section V. In section VI we conclude and

discuss future work directions.

II. DESIGN FLOW

The flow of our method is illustrated in Figure 1. The

method takes three inputs: (i) the application software, (ii)

the hardware architecture and (iii) the mapping. We consider

application software defined using the Kahn process network

model [19]. They consists of a set of deterministic processes

communicating through FIFO channels by executing atomic

read/write operations. The behavior of each process is a

sequential program. We consider hardware architectures

described as interconnections of computational and commu-

nication devices such as processors, buses and memories.

Finally, we consider mappings that associate application

software elements to hardware architecture, that is, processes

to processors and FIFO channels to memories.

In this paper, we will focus on the generation of the

system model. We will also describe one of its utilities,

i.e., performance evaluation. The first stage of the method

is the construction of the system model in BIP. The system

model represents the application mapped on the hardware

architecture. The system model is obtained by the three

following steps:

1) the construction of a BIP model by automatic transla-

tion from the application software,

2) the construction of a BIP model by automatic transla-

tion from the hardware architecture,

3) the construction of the system model by source-to-

source transformation of the previous two models and

their composition according to the mapping.

The second stage of the method is performance evaluation

realized on the system model. We provide a simulation-based

technique allowing the accurate estimation of real-time char-

acteristics (response times, delays, latencies, throughputs,

etc.) and particular indicators about the use of resources (bus

conflicts, memory conflicts, etc.).

The performance evaluation method combines native

(BIP) simulation of the system model with online code

profiling on the target hardware architecture. That is, the

(simulated) processing time required by the application

code is computed during simulation, on demand, using the

application object code for the target architecture and the

processor weight table. The later provides the raw execution

times for elementary (assembler) instructions.

The method is completely automated and has been im-

plemented in a tool. The tool uses as inputs Distributed

Operation Layer (DOL) [1] specifications, that is, the appli-

cation software, the hardware architecture and the mapping

are described using the concrete formalisms available in

the DOL framework. The method is realized using the BIP

framework [2], [20], [21] and the associated toolbox1. The

BIP language is a notation which allows complex systems

to be built by coordinating the behavior of a set of atomic

components. The behavior is described as automata or Petri

nets extended with data and functions described in C/C++.

Transitions are labelled with ports (action names), guards

(enabling conditions on the state of a component) as well

as functions (computations on local data). The description

of coordination between components is layered. It consists

of interactions and priorities that characterizes the overall

architecture of a component. Their combination confers

BIP strong expressiveness that cannot be matched by other

languages [20]. BIP has clean operational semantics that

1http://www-verimag.imag.fr/Download.html

S
y
st

em
 M

o
d
el

 G
en

er
at

io
n

In
p
u
t

P
er

fo
rm

an
ce

 E
st

im
at

io
n

Model (BIP)

Application Software

System Model (BIP)

Instrumented

Instrumentation

(API, Observer Injection)

Model (BIP)

HW Architecture

Transformation
HdS Component

Library

HW
Component

Library

Translation

Mapping Architecture

Cross Compilation

Coverage Instrumentation

Coverage

Code

Weight

Table

Object Code

ASM

Native BIP

Simulation

Performance
Results

Translation

Application SW

System

Model (BIP)

Figure 1. System Model Construction and Performance Evaluation

describe the behavior of a composite component as the

composition of the behaviors of its atomic components. This

allows a direct relation between the underlying semantic

model (transition systems) and its implementation.

III. DERIVING SYSTEM MODEL

The construction of the system model in BIP from the

input DOL specification [1] is done in three steps, as

described in the following subsections.

A. Construction of Application Software Model in BIP

An application software in DOL [1] is a process

network that consists of three basic entities: SW-

Process, SW-Channel, and SW-Connection, organized

as described by the following abstract grammar:
Appl-Software ::= SW-Process+ . SW-Channel+ . SW-Conn+

SW-Process ::= SW-InPort∗ . SW-OutPort∗ . SW-Behavior

SW-Channel ::= SW-RecvPort . SW-SendPort . SW-Channel-Behav

SW-Conn ::= SW-Read-Conn | SW-Write-Conn

SW-Write-Conn ::= SW-OutPort . SW-RecvPort

SW-Read-Conn ::= SW-SendPort . SW-InPort

SW-Behavior ::= a-C-program

SW-Channel-Behav ::= FIFO-Param+

Each software process P has input ports P.InPorti, output

ports P.OutPortj and behavior P.Behavior. Each channel

C has a single input port C.RecvPort and a single output

port C.SendPort. A write connection between output port

j of a process P and a channel C is a pair (P.OutPortj ,

C.RecvPort). A read connection between input port i of

process P and a channel C is a pair (C.SendPort, P.InPorti).

We assume that ports of channels are uniquely associated

with ports of processes and vice versa.

Process behavior is described using C programs with a

particular structure (see figure 3 for a concrete example). In

general, the behavior of a process P is defined by an initial

call of the P init() function followed by an endless loop

calling the P fire() function. Communication is realized by

using two particular primitives, namely write and read for

respectively sending and receiving data to software channels.

A read operation reads data from an input port, and a write

operation writes data to an output port. The code may also

call another special primitive, namely detach, in order to

terminate the execution of the process.

C1 C2Generator Square Consumer

(generator.c) (square.c) (consumer.c)

Figure 2. An application software

Example 1: An example process network is shown in

figure 2. It has three SW-processes (generator, square and

consumer), connected through two SW-channels (C1 and

C2). The generator produces an integer and sends it to

square, which squares it and send it to the consumer which

prints the result. The description of square process is shown

in figure 3. It defines the data structure for the process state,

the function square init() to initialize the process state and

the function square fire() to define the cyclic behavior of

the process. The square process uses integer variables index

and len. The function square fire defines a floating variable

i, which holds the value read from the port IN. On every

call of square fire, it reads a value for i, squares it, writes

it to the port OUT and increments the counter index. The

process terminates when index reaches len.

#define IN 1

#define OUT 2

typedef struct _local_states {

int index;

int len;

} Square_State;

void square_init(Process *p) {

p->local->index = 0;

p->local->len = LENGTH;

}

int square_fire(Process *p) {

float i;

if (p->local->index < p->local->len) {

read((void*)IN, &i, sizeof(float), p);

i = i*i;

write((void*)OUT, &i, sizeof(float), p);

p->local->index++;

}

else {

detach(p);

return -1;

}

return 0;

}

Figure 3. C code fragment of the square process

The construction of the application software model in

BIP is structural: every process and every channel are

independently translated to atomic components in BIP and

then connected according to their connections in the process

network.

1) Translation of Software Processes into BIP:

The translation converts every software process to an

atomic component in BIP. Each port is defined as a port

in the atomic component. Data structures defined in the

C functions are used as data in the atomic component.

Control locations correspond to invocation of read/write

primitives for which synchronization is required. Transitions

are labeled by the port name associated with the primitives.

Computation statements are added as actions of the transi-

tions.

The translation requires the extraction of a control-flow

graph from the C code. It starts by parsing the process code

into an intermediate, annotated abstract syntax tree (AST).

The translation to BIP is then completed in two steps. In the

first step, the interaction points in the AST are identified,

that is, each call to a read/write primitive is registered as an

interaction point. The second step involves the construction

of an explicit control flow graph and its representation as

a finite state automaton extended with data in BIP. For

every interaction point, a control location is created. An

outgoing transition is added from this location, labeled by

the port used in the read/write call. The transition models the

primitive call and requires synchronization with a software

channel.

Statements other than read/write calls are added as actions

to the existing transitions. Let us notice that any functions

that contain read/write calls (either directly or through

nested calls) are inlined in the BIP automaton. Consequently,

our translation is restricted to programs without communi-

cation calls occurring within recursive functions. Additional

restrictions are, namely: no use of global variable; and no

goto statement.

OUT

address
size

address
size

IN

L1 L4L5

size=sizeof(float);

address=&i;

i=i*i;

size=sizeof(float);

address=&i;

[index<len]

[!index<len]

index=0; len=LENGTH;

OUT

index++;

L3L2
IN

var: index, len, i, address, size

τ
τ

τ

Figure 4. The model of the square process as an atomic BIP component

Example 2: Figure 4 shows the translation of the square

process into an atomic component in BIP. The generated

BIP component has ports IN, OUT, control locations L1,

. . . L5 and variables index, len and i. Additional variables

size and address are associated as parameters of the ports.

Transitions are labeled by IN, OUT and τ , denoting an

internal transition. At L2, it awaits synchronization through

IN corresponding to the read primitive call. At L4 it awaits

synchronization through OUT corresponding the write prim-

itive call. At L1, internal transitions with guard model the

conditional (if) statement. Exit of the process on a detach is

modeled by the deadlocked location L5.

2) Translation of Software Channels into BIP:

Every software channel is translated into a predefined

BIP atomic component, as shown in figure 5. It has ports

recvPort and sendPort, and a single control location L1. It

contains an array of data buff parametrized by size N . The

variable x associated with recvPort gets the received value

which is inserted into buff. The variable y associated with

sendPort contains the value to be read next. The FIFO policy

is implemented by using two indices i and j, for respectively

insertion/deletion into/from the (circular) buffer buff.

recvPort sendPort

x y

L1

y=buff[j]; count−−; j=(j+1)%Nbuff[i]=x; count++; i=(i+1)%N

y=buff[j];

i=0; j=0; count=0;

[count<N]

recvPort

[count>0]

sendPort

var: x, y, i, j, count, buff[N]

Figure 5. SW-channel (FIFO) in BIP

3) Translation of Connections into BIP:

Every connection in the application software is trans-

lated into a BIP connector which strongly synchronizes

the corresponding ports. Connectors provide the transfer

of data implementing the read and write operations. A

connector implementing write transfers data from a process

to a channel, whereas the one implementing read transfers

data from a channel to a process.

IN sendPort IN

OUT

generator

recvPort

sendPort

C1

OUT

square C2

recvPort

consumer

Figure 6. Application software model in BIP

Example 3: The figure 6 provides the complete BIP model

obtained from the application example given in figure 2.

It consists of the BIP component generator sending data

to square and consumer by using channels C1 and C2

respectively.

B. Construction of Hardware Architecture Model in BIP

A hardware architecture consists of computational re-

sources interconnected according to communication paths.

Resources are used for computation (processors, memories)

or for communication (buses). Communication paths define

the connections between computational resources. More

formally, we consider the family of hardware architectures

that can be represented in DOL [1] and are abstracted by

the following grammar:
HW-Arch ::= HW-Resource+ . HW-Comm-Path+

HW-Resource ::= HW-Processor | HW-Memory | HW-Bus

HW-Comm-Path ::= HW-Read-Path . HW-Write-Path

HW-Read-Path ::= HW-Memory . HW-Bus+ . HW-Processor

HW-Write-Path ::= HW-Processor . HW-Bus+ . HW-Memory

Example 4: An example of a multi-core hardware archi-

tecture is shown in figure 7. It contains two identical tiles

SB

LB2

ARM2Tile1 Tile2ARM1

LB1

LM2LM1

SM

Figure 7. A multi-core hardware architecture with two ARM tiles

and a shared memory (SM) connected via a shared bus

(SB). Each tile i = 1, 2, contains an ARM processor (ARMi)

connected to the local memory (LMi) via a local bus (LBi).

The local memory of each tile is also connected to the shared

bus. We consider the following three communication paths,

ordered (write, read) as follows:
WP1 = ARM1.LB1.LM1 RP1 = LM1.LB1.ARM1

WP2 = ARM1.LB1.SB.SM RP2 = SM.SB.LB2.ARM2

WP3 = ARM2.LB2.LM2 RP3 = LM2.LB2.ARM2

The BIP model constructed from the hardware archi-

tecture represents explicitly, in an operational manner, the

interconnect between the different resources as defined

by the communication paths. This model is organized as

a collection of bus, processor and memory components.

Nonetheless, let us notice that, the processor and memory

components are just empty, placeholder components. We

introduce them in the BIP model of the hardware architecture

only for the sake of clarity. They will be filled during the

next step, that is, the construction of the system model.

Every bus component is concretely defined as a scheduled

collection of communication path fragments. That is, for

every read/write path going on a bus, we consider the path

fragment defined by three atomic components, respectively:

• the MasterInterface (MI) component, which controls

the access of the communication path on the bus and

initiates the read/write operation. Depending on its

position on the path, the master component receives

data either from some software processes executing

inside the processor or from the previous path segment.

• the VirtualLink (VL) component, which models effec-

tively the transfer of data over the bus, from the master

once it gets access to the bus, towards the slave.

• the SlaveInterface (SI) component, which acts like a

buffer and is needed to connect further either to the

next path fragment or to some FIFO buffers on the

memory, depending on the position of the bus on the

path.

All the paths segments going over the same bus must

share its transport capabilities according to some predefined

bus policy. The scheduling can be of one of fixed-priority,

round-robin or TDMA. We model it explicitly by using a

HW-Bus-Scheduler component, which interacts with all the

master interface components and ensures exclusive access

for transmission of data, according to the policy selected.

The HW-Bus-Scheduler acts as an arbiter to resolve the bus

access conflicts.

All these components are predefined and belong to the

BIP hardware library. They have identical interfaces for the

transport of data, respectively ports RR/WR (Read/Write-

Request), RA/WA (Read/Write-Acknowledge) to connect with

upper components, and RB/WB (Read/Write-Begin), RE/WE

(Read/Write-End) to connect with lower components on the

path. In addition, the MI components use ports ACQ (Ac-

quire) and REL (Release) to interact with the bus scheduler.

Finally, let us also notice that all these components are

timed BIP components [2]. The VirtualLink components

model the latency of the buffer. The Master/SlaveInterface

components observe the time progress and can be used for

observation purposes, as explained later in section IV.

Example 5: The BIP model of the local bus LB1 of

example 4 is shown in figure 8. It implements the two write

paths WP1, WP2 and the read path RP1.

RARR RARRRARR

HW−Bus−
Scheduler

RB RE RB RE

RARR

RB RE

RARR

RB RE

RARR

RB RE

RARR

RARR

RB RE

RARR

RB RE

RB RE

RB RE

ACQ

REL

ACQ ACQ

REL REL
RELACQ

WP1 RP1 WP2

MI

VL

SI SI

VL

MI MI

VL

SI

Figure 8. The BIP Model of the LB1 bus

Every connection is realized using BIP connectors which

strongly synchronize the corresponding ports. The behavior

of the connector implements the transfer of data, its address

and size between the successive components, corresponding

to the write and read operations.

Example 6: Figure 13 shows the BIP hardware model of

the 2-Tile ARM architecture of example 4. Communication

paths between the processors and the memories are imple-

mented using the previously defined set of bus components.

C. Construction of the System Model in BIP

Given the BIP models of respectively the application

software and hardware architecture, the construction of the

BIP system model is completed in two steps:

1) transformation of components in the BIP application

model, namely decomposing the SW-Channels into

data buffers and read/write FIFO access routines, and

consequently breaking the atomicity of the read/write

operations in SW-Processes.

2) allocation of the transformed processes and FIFO

routines on hardware processors and respectively data

buffers on hardware memories according to the map-

ping, and eventually filling up the processor and

memory placeholder components.

Formally, the BIP system model conforms to the following

abstract grammar:

System-Model ::= HW-Processor+ . HW-Memory+ . HW-Bus+

HW-Processor ::= SW-Process(t)+ . HdS+ . HW-Cpu-Scheduler .

SW-Conn+

HdS ::= FIFO-Read | FIFO-Write

SW-Conn ::= SW-Process-HdS | SW-Process-HW-Cpu-Scheduler

| HdS-HW-Cpu-Scheduler

HW-Memory ::= FIFO-Buffer+

1) Transformation of the BIP Application Model:

In order to deploy the application software on the architec-

ture, we need a low level implementation model for the SW-

Channels where the control and the data are dissociated and

moreover, the read/write operations are no longer atomic.

Splitting software channels: Every SW-Channel in the

application software is replaced by a composition of FIFO-

Write, FIFO-Read and a FIFO-Buffer atomic components

(figure 9). The two former components represent the control

part of the software channel, that is, the hardware dependent

software routines implementing the read/write operations.

The latter component simply represents the buffer of data.

FIFO−Buffer

FIFO−Write FIFO−Read

WE

SIGSEM

UPDSEM

UPDSEM

SIGSEM

RB

RR RA

REWE

WB RB

ACQ

WB
REL

ACQ

WR WA

RE

REL

Figure 9. Low-level implementation BIP model for software channels

All the three components FIFO-Read, FIFO-Write, FIFO-

Buffer are predefined BIP components and belong to the

BIP hardware dependent software library. The FIFO-Read

component, illustrated in figure 10, implements the read

operation on channels. It has the ports RR (Read-Request),

RA (Read-Acknowledge) for its interaction with a software

process read operation, and ports RB (Read-Begin), RE

(Read-End) for its interaction with the buffer. The FIFO-

Write component implements the write action in a similar

manner.

L1

L2

L4 L5

L3

L6
L7

RR

RR

sem: used

[used<sizeToRead]

[used>=sizeToRead]

[used>=sizeToRead]

used+=sizeWritten;

var: sizeToRead, memAddress

dataRead, sizeWritten

RA

RB RE

RA

RE

RB

ACQ

REL

SIGSEM

UPDSEM

SIGSEM

ACQ

REL

used−=sizeToRead;

UPDSEM

Figure 10. FIFO-Read component

Let us notice that the two routines, FIFO-Write and FIFO-

Read, require extra synchronization with each other in order

to maintain a coherent value for the used space within the

buffer. This is realized by using strong synchronization be-

tween two control ports, SIGSEM and UPDSEM. Moreover,

they also use the ports REL and ACQ for interaction with the

processor scheduler. These ports are used to release (resp.

acquire) the processor whenever the read/write operation is

suspended (resp. resumed) due to lack (resp. presence) of

available data (or available space) in the buffer.

The FIFO-Buffer represents a passive component model-

ing the data storage. It has ports WB, WE and RB, RE for

writing and reading respectively. The ports for writing (resp.

reading) synchronizes with the FIFO-Write (resp. FIFO-

Read) component.

We can prove that the proposed model is a correct

implementation of the SW-Channel. That is, the composition

is a refined model of the SW-Channel which fully preserves

the input/output behavior of the software channel.
Transformation of software processes: The splitting of

SW-Channels as described before requires the transformation

of the software processes as well.

The first transformation consists in breaking atomicity of

write and read operations. Every transition involving an

input/output port X is split into two transitions, labeled by

fresh ports, respectively XB (i.e., X-begin) and XE (i.e., X-

end). This is obtained by adding new control locations for

each read/write operations in the behavior of the process.

The second transformation, completely orthogonal to the

first one, consists in adding interactions with the processor

scheduler. This transformation is needed since several pro-

cesses, together with their associated FIFO access routines,

are potentially mapped on the same hardware processor and

must use it in mutual exclusion. The ports ACQ and REL

are added for interaction with the processor scheduler. The

port ACQ is used for acquiring and REL is for releasing the

processor. A process acquires the processor at the start of

its behavior. It releases the processor on its termination.

L2

L0

address
size

L4

L3

size=sizeof(float);

address=&i;

i=i*i;

INE

address
size

INB

L4’

L2’

L1

size=sizeof(float);

address=&i;

[index<len]

index++;

index=0; len=LENGTH;

ACQ

var: index, len, i, address, size

[!index<len]

REL ACQ

REL

L5’

L5

OUTB OUTE

OUTE OUTB

INB INE

ττ

τ

τ

Figure 11. The transformed BIP model for the square process

Example 7: The transformed behavior of the square pro-

cess from figure 4 is provided in figure 11.

Let us mention that, the transformed model is a correct

implementation of the initial model constructed from the

application software. That is, it can be formally proven that

the input/output behavior of every process is fully preserved

by the transformation above.
2) Allocation according to mapping:

Given an Application-Software and a Hardware-

Architecture, a mapping Map associates software processes

to hardware processors and software channels to memories,

formally:
Mapping ::= Mapping-Item+

Mapping-Item ::= SW-Process 7→ HW-Processor

| SW-Channel 7→ HW-Memory

A mapping must be consistent. That is, for every write-

connection from process P to channel C in the application

software, if the mapping associates P on processor H and C

on memory M, there must exist a write-path of the form H

Bus1 . . . Busn M in the hardware architecture. Similarly, for

every read-connection from channel C to process P , there

must exist a read-path of the form M Bus′
1

. . . Bus′m H.

Example 8: For our example, we consider the following

consistent mapping:

generator 7→ ARM1 C1 7→ LM1

square 7→ ARM1 C2 7→ SM

consumer 7→ ARM2

The construction of the system model is completed as

follows. For every hardware processor, we consider the com-

position of all transformed software processes mapped on

it, together with all the FIFO routines required to access the

FIFO buffers. These components are connected as defined

by the transformed software model. Additionally, the com-

position includes a HW-CPU-Scheduler component which

ensures mutual exclusion for execution on the processor.

Example 9: The structure of the ARM1 processor is

shown in figure 12. It contains the generator and square

processes together with their associated FIFO routines re-

spectively, the FIFO-Write for writing on C1, the FIFO-

Read for reading from C1 and the FIFO-Write for writing

on C2.

OUTB OUTE INB INE OUTB OUTE

RR RAWR WA REL

UPDSEM

WB WE

SIGSEM

RB RE

REL

SIGSEM UPDSEM

WR WA

SIGSEM UPDSEM

WB WE

generator square
ACQ

REL

ACQ

REL

ACQ

REL

ACQACQ

HW−CPU−Scheduler

FIFO−ReadFIFO−Write

REL

ACQ

FIFO−Write

Figure 12. The BIP Model of the HW Processor ARM1

Moreover, for every memory component, we consider the

union of all the FIFO buffers mapped onto it according to

the mapping. Let us remark that no scheduling is done here:

all the operations requiring access to memory are controlled

by the processor and the bus, the memories being simple

passive components, with no behavior.

Finally, the direct connections between the FIFO rou-

tines and the FIFO buffers which exist in the trans-

formed software model are replaced by connections over

the associated hardware communication paths. For exam-

ple, the request/acknowledge connectors between a FIFO

routine and the FIFO buffer (FB) are replaced by (i) re-

quest/acknowledge connectors from the FIFO routine to the

master interface of the first bus of the associated hardware

path and (ii) request/acknowledge connectors from the slave

interface of the last bus of the path to the FIFO buffer.

We assume a high cache hit rate for the local variables

of the processes mapped on a processor, and hence we do

not model explicitly the allocation of process data in the

memory. The memory is used only to model inter process

data communications through the software FIFOs.

The system model can be seen as a refined implemen-

tation of the transformed BIP model of the application

software according to hardware constraints. In fact, direct

communication between components within the application

software model have been replaced by multi-hop commu-

nication using hardware communication paths, along dif-

ferent buses. Moreover, mutual exclusion constraints are

enforced between components running on the same hard-

ware processors. These transformations do not impact the

input/output behavior of the application. This can be proved

by establishing a trace equivalence between the input and the

transformed model. Nevertheless, the transformations reveal

all the non-functional constraints the hardware architecture

put on the execution due to contention for bus and memory

access, bus access and transfer latencies, contention for pro-

cessor, etc. These constraints are mandatory for an accurate

performance evaluation of the application mapped on the

hardware architecture.

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

VL
RP2

VL
WP2

VL
RP2

VL
WP3

WP3

SI

WP3

MI

RP3

SI

VL
RP3

RP3

MI

application component

hardware component

software component

hardware dependent

WP2

SI

WP2

MI

VL
WP2

LM1 FB1

RP1

SI

VL
RP1

WP1

SI

WP1

MI

VL
WP1

ARM1

HW−CPU
Scheduler

ARM2

RP2

MI

LB2 RP2

SI

WP2 RP2

MI MI

SB WP2 RP2

SI SI

SM FB2

FR2

FR1

HW−CPU
Scheduler

FW2FW1

generator square consumer

LM2

RP1

MI

LB1

Tile_1 Tile_2

Scheduler Scheduler

Scheduler

HW−Bus− HW−Bus−

HW−Bus−

Figure 13. The BIP system model of generator-square-consumer applica-
tion software mapped into 2-tile ARM hardware architecture

Example 10: Figure 13 shows the complete system model

obtained for the mapping of the software application given in

figure 6 to the hardware architecture of example 4 according

to the mapping from example 8.

IV. PERFORMANCE ESTIMATION ON SYSTEM MODEL

We provide an infrastructure for performance estimation

of the system model based on native BIP simulation. The

process is dynamic and based on fine granular analysis of

code generated for the target platform, using weight table

profiling, as shown in figure 1.

A. Instrumenting the System Model

The system model is instrumented with the profiling

API, embedded in the behavior of the SW-Processes. Every

block of code, except the read/write calls, is instrumented

by inserting profiling function calls at its start and at its

end. These calls invoke the profiler which provides accurate

execution times.

The instrumented BIP system model is used as such by

the BIP tool-chain for compilation and execution using BIP

native simulator. On execution, the profiler is invoked ,

which dynamically estimates the computation time of the

current block of code of the SW-Processes. The estimated

execution time is recorded by dedicated observers for delay

measurements.

The observers added in the system model are timed

BIP components and monitor both the computation and the

communication delays. The communication latencies of the

buses and memories are also recorded by separate sets of

observers, considering the conflicts arising in the use of the

buses and the memories.

B. Weight Table Profiling

We use standard tools for cross-compilation and coverage

profiling of the source code for SW-Processes, generated

from the system model using the BIP tool-chain. The

source code is cross-compiled to generate the object code

(assembly) for the target processor. The source code is

also instrumented for coverage analysis. The profiler is

parameterized by a weight-table, which characterizes the

time of executing each elementary instruction on the target

HW-Processor. The object code, instrumented sources and

weight-table are used by the profiler dynamically during

the simulation to estimate the execution time of transitions

within processes.

V. EXPERIMENTS

The method described in section III has been implemented

in a tool 2. It consists of two parts, the frontend that

transforms the input specification into a system model,

and the backend for performance estimation on the system

model. The frontend uses an open source C parser called

codegen 3 to parse C files that describe the behavior

of the DOL processes into an intermediate model. This,

2http://www-verimag.imag.fr/BIP-System-Designer.html
3http://think.ow2.org

along with the description of the hardware architecture and

mapping information (XML description) is transformed into

the system model. The backend uses gcov as a profiling tool

for code coverage, and arm-rtems-g++ cross compiler for

assembly code generation for ARM processors. The weight-

table conforms to the ARM7 data sheet 4.

We experimented the method on two applications:

MJPEG [22] and MPEG-2 [1], [22] described in sub-

sections V-A and V-B respectively. We used the multi-

processor ARM (MPARM 5) with five tiles as the target

architecture (a two tile MPARM is illustrated in figure 7).

For the hardware model in BIP, we assumed all the local

memories as SRAM with an access time of 2 cycles. The

shared memory is a DRAM with an access time of 6

cycles. All CPU frequencies are assumed to be 200MHz.

Communication paths are defined between all five processors

using shared and local memories.

A. MJPEG Decoder

The MJPEG decoder application software reads a se-

quence of MJPEG frames and displays the decompressed

video frames. The process network of the application is

illustrated in figure 14. It contains five processes SplitStream

(SS), SplitFrame (SF), IqzigzagIDCT (IDCT), MergeFrame

(MF) and MergeStream (MS), and nine communication sw

channels C1, . . . , C9.

ARM1 ARM2 ARM3 ARM4 ARM5

Shared

IqzigzagIDCTSplitFrame MergeStreamMergeFrameSplitStream

C6

C1

C2

C3

C4

C5

C7 C8

C9

Figure 14. MJPEG Decoder application and a mapping

ARM1 ARM2 ARM3 ARM4 ARM5

1 all

2 SS, SF , IQ MF , MS

3 SS, SF IQ, MF , MS

4 SS, SF IQ MF , MS

5 SS, MS SF IQ MF

6 SS SF IQ MF MS

7 SS, SF IQ MF , MS

8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4

1 all

2 C6, C7 C1, C2, C3, C4, C5 C8, C9

3 C3, C4, C5, C6 C1, C2 C7, C8, C9

4 C3, C4, C5, C6, C7 C1, C2 C8, C9

5 all

6 all

7 C6, C7 C1, C2, C3, C4, C5 C8, C9

8 C1, C2 C3, C4, C5, C6 C7 C8, C9

Table I
MAPPING DESCRIPTION OF THE PROCESSES AND THE SW CHANNELS

4http://www.datasheetarchive.com/ARM7-datasheet.html
5http://www-micrel.deis.unibo.it/sitonew/research/mparm.html

We experimented with eight different mappings to analyze

their effect on the total computation and communication

time for decoding a frame. The process and the sw channel

mappings are illustrated on table I.

For the mappings described above, a system model con-

tains about 50 BIP atomic components and 220 BIP connec-

tors, and consists of approximately 6K lines of BIP code,

generating around 19.5K lines of C code for simulation.

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 0 1 2 3 4 5 6 7 8 9C
o
m
p
u
t
a
t
i
o
n

D
e
l
a
y

(
m
e
g
a
c
y
c
l
e
s
)

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

C
o
m
m
u
n
i
c
a
t
i
o
n

D
e
l
a
y

(
m
e
g
a
c
y
c
l
e
s
)

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8

B
u
s

c
o
n
f
l
i
c
t

(
m
e
g
a
c
y
c
l
e
s
)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 3 4 5 6 7 8

M
e
m
o
r
y

c
o
n
f
l
i
c
t

(
c
y
c
l
e
s
)

Figure 15. Mjpeg Performance Analysis Results

The total computation and communication delays for

decoding a frame for different mappings are shown in

figure 15. Mapping (1) produces the worst computation

time as all processes are mapped to a single processor.

Mapping (2) uses two processors, still the performance does

not improve much. But (3) gives much better performance

as the computation load is balanced. The other mappings

can not produce better performance as the load can not

be further distributed, even if more processors are used.

The communication overhead is reduced if we map more

channels to the local memories of the processors. The bus

and memory access conflicts are shown in figure 15. As

more channels are mapped to the local memory, the shared

bus contention is reduced. However, this might increase the

local memory contention, as shown for (8).

B. MPEG2 Decoder

The MPEG2 decoder application decodes a set of moving

pictures and associated audio information. We used an

application case study where there are seven processes Dis-

patchGops (DG), DispatchMb (DM), DispatchBlocks (DB),

TransformBlock (TB), CollectBlocks (CB), CollectMb (CM)

and CollectGops (CG) and six software channels C1, . . . ,

C6. The process and the sw channel mappings are illustrated

on table II.

For the MPEG-2 case study the BIP System Model con-

tains about 90 BIP atomic components, 340 BIP connectors

and 30K lines of BIP code generating approximately 100K

ARM2 ARM3

Shared LM2 Shared LM3LM1

ARM1

C1 C2 C3 C4 C5 C6

Dispatch Dispatch CollectTransform CollectDispatch

Gops Mb Blocks Block Blocks Mb Gops

Collect

Figure 16. MPEG-2 Decoder application and a mapping

ARM1 ARM2 ARM3 ARM4 ARM5

1 all

2 DG, DM , DB, TBCB, CM , CG

3 DG, DM DB, TB CB, CM , CG

4 DG DM , DB TB CB, CM , CG

5 DG DM , DB TB CB, CM CG

6 DG, DM DB TB CB CM , CG

7 DG DM , DB TB CB, CM CG

Shared LM1 LM2 LM3 LM4 LM5

1 all

2 C4 C1, C2, C3 C5, C6

3 C2, C4 C1 C3 C5, C6

4 C1, C3, C4 C2 C5, C6

5 C1, C3, C4, C6 C2 C5

6 C2, C3, C4, C5 C1 C5

7 C1 C2, C3 C4 C5, C6

Table II
MAPPING DESCRIPTION OF THE PROCESSES AND THE SW CHANNELS

lines of C code. The total computation and communication

delays for decoding 5 frames for different mappings are

shown in figure 17. The MPEG-2 process network is charac-

terized as computationally intensive. The more we distribute

the computational load to different CPUs, the smaller is the

computational delay. Since the SW-channels are few, there

is small difference in the communication delays between

the different mappings, except for mapping (1) where all

processes and SW-channels are mapped on a single tile.

However, as we distribute the processes into more tiles, the

communication delay increases and more bus conflicts occur.

The best throughput is achieved in Mapping (7) due to the

usage of five CPUs and their local memories.

 6

 7

 8

 9

 10

 11

1 2 3 4 5 6 7C
o
m
p
u
t
a
t
i
o
n

D
e
l
a
y

(
m
e
g
a
c
y
c
l
e
s
)

 160

 180

 200

 220

 240

 260

 280

 300

1 2 3 4 5 6 7

C
o
m
m
u
n
i
c
a
t
i
o
n

D
e
l
a
y

(
k
i
l
o
c
y
c
l
e
s
)

Figure 17. Mpeg-2 Performance Analysis Results

VI. CONCLUSION

The presented method allows generation of a correct-by-

construction model of a mixed hardware/software system

from application software, a description of the hardware

architecture and a mapping. The method is completely

automated and supported by BIP tools. The system model

is obtained by refining the application software model and

composing it with the hardware architecture model. The

composition is defined by the mapping. BIP instruments the

incremental construction of the models. Its expressiveness

allows the integration of architecture constraints into the

application model without suffering complexity explosion.

The method clearly separates software and hardware

design issues. It is also parameterized by design choices

related to resource management such as scheduling policies,

memory size and execution times. This allows mastering the

complexity and appreciation of the impact of each parameter

on system behavior.

When the generated system model is adequately instru-

mented with execution times, it can be used for perfor-

mance analysis and design space exploration. Experimental

results show the feasibility of the system model for fine

granular analysis of the effects of architecture and mapping

constraints on the system behavior. The method is tractable

and allows design space exploration to determine optimal

solutions.

Future work includes extension to other programming

models for the application software and richer hardware

architecture models that includes DMA (Direct Memory

Access) Controller, Bus Bridge and Network on Chip

communication. Moreover, we plan to include statistical

model checking on system models consisting of multiple

applications running on complex multicore architectures for

performance analysis, as in [23].

REFERENCES

[1] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping
applications to tiled multiprocessor embedded systems,” in
ACSD. IEEE Computer Society, 2007, pp. 29–40.

[2] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous
Real-time Components in BIP,” in SEFM, 2006, pp. 3–12.

[3] K. Asanovic et al., “The landscape of parallel computing
research: A view from berkeley,” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/EECS-2006-
183, Dec 2006.

[4] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis, “From high-level component-based models to dis-
tributed implementations,” in EMSOFT, 2010.

[5] D. Abhijit et al., “A next-generation design framework for
platform-based design,” in DVCon 2007, February 2007.

[6] B. Twan et al., “Model-driven design-space exploration for
embedded systems: The octopus toolset,” in ISoLA (1), 2010,
pp. 90–105.

[7] T. Grtker, S. Liao, G. Martin, and S. Swan, System Design
with SystemC. Kluwer Academic Publishers, 2002.

[8] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith, “Sys-
temcodesigner: automatic design space exploration and rapid
prototyping from behavioral models,” in DAC, 2008, pp. 580–
585.

[9] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere,
“System level design with SPADE: an M-JPEG case study,”
ICCAD, pp. 31–38, 2001.

[10] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra,
“A framework for system-level modeling and simulation of
embedded systems architectures,” EURASIP J. Embedded
Syst., vol. 2007, pp. 2–2, 2007.

[11] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Lussy: A
toolbox for the analysis of systems-on-a-chip at the transac-
tional level,” in ACSD, 2005, pp. 26–35.

[12] B. Kienhuis, E. F. Deprettere, K. A. Vissers, and P. van der
Wolf, “An approach for quantitative analysis of application-
specific dataflow architectures,” in ASAP, 1997, pp. 338–349.

[13] I. Moussa, T. Grellier, and G. Nguyen, “Exploring sw perfor-
mance using soc transaction-level modeling,” in DATE, 2003,
pp. 20 120–20 125.

[14] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calcu-
lus for scheduling hard real-time systems,” in ISCAS, vol. 4,
no. March. IEEE, 2002, pp. 101–104.

[15] R. Henia et al., “System-level performance analysis - the
SymTA/S approach,” in IEE Proceedings Computers and
Digital Techniques, vol. 152, no. 2, 2005, pp. 148–166.

[16] R. B. Salah, M. Bozga, and O. Maler, “Compositional timing
analysis,” in EMSOFT, 2009, pp. 39–48.

[17] Y. Abdeddaim, E. Asarin, and O. Maler, “Scheduling with
timed automata,” Theoretical Computer Science, vol. 354, pp.
272–300, 2006.

[18] S. Künzli, F. Poletti, L. Benini, and L. Thiele, “Combining
simulation and formal methods for system-level performance
analysis,” in DATE, 2006, pp. 236–241.

[19] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information processing, J. L. Rosenfeld,
Ed. Stockholm, Sweden: North Holland, Amsterdam, Aug
1974, pp. 471–475.

[20] S. Bliudze and J. Sifakis, “A Notion of Glue Expressiveness
for Component-Based Systems,” in CONCUR, ser. LNCS,
vol. 5201, 2008, pp. 508–522.

[21] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H.
Nguyen, and J. Sifakis, “Rigorous component-based design
using the BIP framework,” IEEE Software, Special Edition –
Software Components beyond Programming – from Routines
to Services, June 2011, to appear.

[22] K. Huang, “Coupling MPARM with DOL,” ETH Zurich,
Technical Report, Nov 2009.

[23] A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye,
and A. Legay, “Statistical abstraction and model-checking of
large heterogeneous systems,” in FMOODS/FORTE, 2010,
pp. 32–46.

