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Abstract

Rigorous system design requires the use of a single powerful component framework allowing
the representation of the designed system at different levels of detail, from application software
to its implementation. The use of a single framework allows to maintain the overall coherency
and correctness by comparing different architectural solutions and their properties.

The contribution of the paper is twofold. First, it presents the BIP (Behavior, Interaction,
Priority) component framework which encompasses an expressive notion of composition for
heterogeneous components by combining interactions and priorities. This allows description at
different levels of abstraction from application software to mixed hardware/software systems.
Second, it introduces a rigorous design flow that uses BIP as a unifying semantic model to
derive from an application software, a model of the target architecture and a mapping, a correct
implementation. Correctness of implementation is ensured by application of source-to-source
transformations in BIP which preserve correctness of essential design properties. The design
is fully automated and supported by a toolset including a compiler, the D-Finder verification
tool and model transformers. We illustrate the use of BIP as a modeling formalism as well as
crucial aspects of the design flow for ensuring correctness, through an autonomous robot case
study.

1 Introduction

System design is the process leading to a mixed hardware/software system meeting given speci-
fications. It involves the development of application software taking into account features of an
execution platform. The latter is defined by its architecture involving a set of processors equipped
with hardware-dependent software such as operating systems as well as primitives for coordination
of the computation and interaction with the external environment.

System design radically differs from pure software design in that it must take into account not only
functional but also extra-functional specifications regarding the use of resources of the execution
platform such as time, memory and energy. Meeting extra-functional specifications is essential for
the design of embedded systems. It requires evaluation of the impact of design choices on the overall
behavior of the system. It also implies a deep understanding of the interaction between application
software and the underlying execution platform. We currently lack approaches for modeling mixed
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hardware/software systems. There are no rigorous techniques for deriving global models of a given
system from models of its application software and its execution platform.

We call rigorous a design flow which allows guaranteeing essential system properties. Most of the
existing rigorous design flows privilege a unique programming model together with an associated
compilation chain adapted for a given execution model. For example, synchronous system design
relies on synchronous programming models and usually targets hardware or sequential implemen-
tations on single processors [1]. Alternatively, real-time programming based on scheduling theory
for periodic tasks, targets dedicated real-time multitasking platforms [2].

A rigorous design flow should be characterized by the following:

• It should be model-based, that is all the software and system descriptions used along the design
flow should be based on a single semantic model. This is essential for maintaining the overall
coherency of the flow by guaranteeing that a description at step n meets essential properties
of a description at step n + 1.

• It should be component-based, that is, it provides primitives for building composite compo-
nents as the composition of simpler components. Existing theoretical frameworks for compo-
sition are based on a single operator e.g., product of automata, function call. Poor expres-
siveness of these frameworks may lead to complicated designs: achieving a given coordination
between components often requires additional components to manage their interaction.

• It should rely on tractable theory for guaranteeing correctness by construction to avoid as
much as possible monolithic a posteriori verification.

BIP (Behavior, Interaction, Priority) is a component framework intended to rigorous system de-
sign. It allows the construction of composite hierarchically structured components from atomic
components characterized by their behavior and their interface. Components are composed by lay-
ered application of interactions and of priorities. Interactions express synchronization constraints
between actions of the composed components while priorities are used to filter amongst possible
interactions and to steer system evolution so as to meet performance requirements e.g. to express
scheduling policies. Interactions are described in BIP as the combination of two types of protocols:
rendez-vous to express strong symmetric synchronization and broadcast to express triggered asym-
metric synchronization. The combination of interactions and priorities confers BIP expressiveness
not matched by any other existing formalism [3]. It defines a clean and abstract concept of architec-
ture separate from behavior. Architecture in BIP is a first class concept with well-defined semantics
that can be analyzed and transformed. BIP relies on rigorous operational semantics that has been
implemented by three Execution Engines for centralized, distributed and real-time execution. It is
used as a unifying semantic model in a rigorous system design flow. Rigorousness is ensured by two
kinds of tools: 1) D-Finder a verification tool for checking safety properties and deadlock-freedom
in particular; 2) source-to-source transformers that allow progressive refinement of the application
to get a correct implementation.

BIP drastically differs from existing component frameworks for software engineering. These often
use multithreaded programming and point-to-point interaction mechanisms such as function call for
coordination between components while in BIP the execution of atomic components is inherently
concurrent and their coordination is expressed in terms of high level mechanisms such as protocols
and scheduling policies. BIP can be considered as an ADL (Architecture Description Language) or
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as a coordination language as it focuses on the organization of computation between components.
As other existing ADL such as ACME [4] and Darwin [5], BIP uses the concept of connector to
express coordination between components. Nonetheless, connectors in BIP are stateless. There
is a clear distinction between architecture which involves connectors and priorities and behavior.
Another significant difference is that BIP is intended to system modeling as it directly encompasses
timing and resource management aspects. It differs from other system modeling formalisms which
either seek generality at the detriment of rigorousness, such as SySML [6] and AADL [7] or have a
limited scope as they are based on specific models of computation such as Ptolemy [8].

The paper is organized as follows. Section 2 presents the BIP component framework including the
language and the associated toolset. Section 3 highlights the BIP rigorous system design flow and
presents the main steps for deriving correct implementations from a given application software and
a target platform. Section 4 presents experimental results from the DALA autonomous robot case
study. Section 5 concludes and discusses futures work directions.

2 The BIP Component Framework

The BIP framework allows building complex systems by coordinating the behavior of a set of atomic
components. Coordination in BIP uses connectors, to specify possible interaction patterns between
components, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata or Petri nets that are extended with arbitrary data and
ports. Ports are action names, and may be associated with data. They are used for interaction with
other components. States denote control locations at which the components await for interaction.
A transition is an execution step, labeled by a port, from a control location to another. It has
associated a guard and an action, that are respectively a boolean condition and a function defined
on local data. In BIP complex data and their transformations are written in C/C++.

A transition can be executed if its guard evaluates to true and some interaction involving its port
is enabled. The execution is an atomic sequence of two microsteps: (i) execution of the interaction
involving the port, which is a synchronization between several components, with possible exchange
of data, followed by (ii) execution of the action associated with the transition.

Example 1 Figure 1 shows two atomic components, Service-Controller and Activity of the DALA
robot controller presented in section 4. Activity wraps the long-time computation of some specific
applicative function. Service-Controller provides execution control (i.e., triggering, canceling, error
control, etc) over the associated Activity component. For sake of simplicity, the figure presents only
the skeleton control behavior (i.e., ports and transitions) whereas the data and associated code is
omitted. For example, Activity is initialized (start transition) and then it executes its associated
functions (exec, internal exec transitions). The execution may finish normally (finish transition),
may fail (fail transition) or may be interrupted (inter transition).

Composite components are defined by assembling constituent components (atomic or composite)
using connectors. Connectors relate ports of interacting components. They represent sets of in-
teractions, that is, non-empty sets of ports that have to be jointly executed. Within a connector,
an interaction can take place in two situations: either all involved ports are ready to participate
(strong synchronization), or some subset of ports triggers the interaction without waiting for other
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ports (broadcast). The set of valid interactions within connectors are formally defined using alge-
braic expressions on ports using a binary fusion operator and a unary typing operator [9]. Typing
associates with connector-ends (ports or connectors) synchronization types: trigger (active port,
initiates broadcast) or synchron (passive port). Moreover, with every interaction of a connector
are associated a guard and a data transfer function. An interaction may be executed only when
its guard is true. Its execution consists in computing the data transfer function and notifying the
components involved in the interaction.

Finally, priorities are used to arbiter between simultaneously enabled interactions within a BIP
component. These are rules, each consisting of an ordered pair of interactions associated with a
condition. When the condition holds and both interactions of the corresponding pair are enabled,
only the one with higher-priority can be executed.

Example 2 Figure 1 presents the Service composite component obtained by the composition of Ac-
tivity and Service-Controller through six connectors. They enforce strong synchronizations of several
actions and allow the Service-Controller to initiate and follow the computation performed within the
Activity. Priorities are used to privilege the execution of fail interaction, that is error handling, over
finish and exec interactions, which correspond to normal behavior. The example also illustrates the
principle of encapsulation used in BIP: the Service component is further composed with the Service-
Proxy component by using the ports available on its interface, which are explicitely re-directed either
to ports of subcomponents or to inner connectors. The trigger request connector between the Servi-
ceProxy and the Service illustrates a broadcast initiated by the trigger port, that is, trigger actions
are either executed alone, or synchronized with request actions, whenever enabled.
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Figure 1: BIP Components: a service of the DALA Robot

The combined use of connectors and priorites confers BIP an unpaired expressive power for de-
scribing component coordination. This has been confirmed in practice by a number of succesful
experiments on direct modeling or componentizing existing software in BIP [10].

4

sifakis
Cross-Out

sifakis
Inserted Text
These

sifakis
Cross-Out

sifakis
Cross-Out

sifakis
Cross-Out

sifakis
Cross-Out

sifakis
Replacement Text
choose

sifakis
Cross-Out

sifakis
Replacement Text
-



The BIP framework is supported by a concrete modeling language. The BIP language leverages
on C++ style variables and data type declarations, expressions and statements, and provides addi-
tional structural syntactic constructs for defining component behavior, describing connectors and
priorities. Moreover, it provides constructs for dealing with parametric and hierarchical descriptions
as well as for expressing timing constraints associated with behavior.

3 The BIP Design Flow

We present a rigorous system design flow where BIP is used as a unifying semantic model to ensure
consistency between the different design steps.
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Platform

System
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Figure 2: BIP Design Flow

The design flow involves four distinct steps as depicted in Figure 2. They consist in translating the
application software into a BIP model and deriving progressively an implementation by applica-
tion of source-to-source transformations. These transformations are correct-by-construction as the
obtained BIP models are observationally equivalent. In particular, they preserve safety properties
of the application software. Furthermore, the D-Finder verification tool is used to check essential
safety properties of the application software. We describe below D-Finder and main transformations
of the design flow.

The BIP design flow is entirely supported by the BIP language and an extensible toolset (figure 3).
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This includes translators from various programming models, verification tools, source-to-source
transformers and C/C++ code generators for BIP models.

Translating Application Software into BIP

The first step in the design flow requires the generation of a BIP model for the application software.
We have developed a general method for generating BIP models from languages with well-defined
operational semantics. It involves the following three steps for a given application software written
in a language L:

1. Translation of atomic components of the source language into BIP components. The transla-
tion focuses on the definition of adequate interfaces. It encapsulates and reuses data structures
and functions of the application software,

2. Translation of coordination mechanisms between components of the application software into
connectors and priorities in the target BIP model,

3. Generation of a BIP component modeling the operational semantics of L. This component
plays the role of an engine coordinating the execution of the application software components.

We have developed BIP model generators for several programming models used by embedded system
developpers (Source2source transformers in figure 3). The generated models preserve the structure
and their size is linear with respect to the size of the initial programs. They are easy to understand
by developers in source languages.

Compositional Verification by using D-Finder

A compositional verification method for BIP based on computation of invariants is presented in
[11]. The method consists in computing increasingly stronger invariants for composite components
as conjunctions of local invariants for atomic components and interaction invariants characterizing
the composition glue. Local component invariants are generated by static analysis of atomic com-
ponents. Interaction invariants are generated from abstractions of the composite component to be
verified.

The method has been recently improved to take advantage of the incrementality of the design pro-
cess. Incremental system design proceeds by adding new interactions to existing sets of components.
Each time an interaction is added, it is possible to verify whether the resulting system violates a
given property and discover design errors as soon as they appear. The incremental verification
technique [12] uses sufficient conditions ensuring the preservation of invariants when new interac-
tions are added along the component construction process. If these conditions are not satisfied, new
invariants are generated by reusing invariants of the interacting components. Reusing invariants
reduces considerably the verification effort.

Compositional verification techniques have been implemented in the D-Finder tool [13] for checking
deadlock-freedom of systems described in BIP. Experimental results on classical benchmarks show
that D-Finder can be exponentially faster than existing monolithic verification tools, like NuSMV.
D-Finder has been also successful for the verification of complex software applications, as reported
in section 4.
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Figure 3: BIP Toolset

Generating Implementations

The BIP toolset offers several compilation chains, targetting different execution platforms. The
implementation of BIP on single-core platforms is realized by using Engines, that is, dedicated
middleware for execution of the C++ code auto-generated from BIP descriptions. BIP provides
currently two Engines, respectively for real-time single-thread and multi-thread execution. For
multi-thread execution, each atomic component is assigned to a thread, the Engine being a thread
itself. Communication takes place only between atomic components and the Engine, and never
directly between different atomic components.

To generate distributed implementations from BIP models it is necessary to transform them into
S/R-BIP models [14]. These are a subclass of models where multi-party interaction is replaced by
protocols using S/R (Send/Receive) primitives. From S/R-BIP models and a mapping of atomic
components into processing elements of a platform it is possible to generate efficient C/C++ or
MPI-code.

The method in [14] uses the following sequence of correct-by-construction transformations, that
preserve observational equivalence:

1. Given a user-defined partition of its interactions, a BIP system model is transformed into a
S/R-BIP system model such that (i) atomicity of transitions in the original model is broken
by separating interaction and computation, and (ii) multi-party interactions of the source
model are replaced by protocols using send/receive primitives. Moreover, the target S/R-BIP
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model is structured in three layers:

(a) The component layer consists of the atomic components in the original model where each
port involved in strong interactions is replaced by a pair of corresponding Send/Receive
ports.

(b) The interaction protocol layer consists of a set of components, each managing a class
of interactions of the partition. This protocol detects enabledness of interactions and
executes them after resolving conflicts either locally or assisted by the third layer.

(c) The conflict resolution protocol layer resolves conflicts requested by the interaction pro-
tocol layer. This protocol resolves a committee coordination problem [15] using one dis-
tributed algorithm amongst (i) fully centralized, (ii) token-ring, and (iii) dining philoso-
phers [16, 15].

2. We generate from the obtained 3-layer S/R-BIP model and a mapping of its atomic com-
ponents on processors, either a MPI program, or a set of plain C/C++ programs that use
TCP/IP communication. The generation consists in statically composing atomic components
running on the same processor to obtain a single observationally equivalent component, and
consequently reduced coordination overhead at runtime.

4 Case Study: DALA Robot Controller

We applied the rigorous design flow to develop in BIP a new version of the functional layer of the
DALA robot controller from an existing version developed by using the GeNoM framework [17]. A
preliminary result on this work presented in [10] summarizes our latest developements, including
the complete modeling of the functional layer, its functional verification as well as the synthesis of
a software controller which is correct-by-construction.

The design of the functional layer of the robot in BIP involved the following steps:

1. Hierarchical decomposition into components. The overall architecture can be represented
as a tree. Its root is the functional layer and the leaves correspond to atomic components.
The grammar below shows how the designed system can be obtained as the incremental
composition of components:

Functional Layer ::= ( Module )+

Module ::= ( Service )+ . ( Execution-Task )+ . ( Poster )+

Service ::= ( Service-Controller ) . ( Activity )
Execution-Task ::= ( Timer ) . ( Scheduler-Activity ) . ( Execution-Controller)

2. Description of the behavior of each atomic component. We provided in section 2 an abstraction
for the Service-Controller and Activity components. In addition, the functional layer includes
Poster components used to store and communicate data associated with different modules.
The Timer components trigger periodic, time-dependent computations. The Scheduler-Activity
and Execution-Controller components provide execution control at module level i.e., scheduling
for the different running services within every module.
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3. Description of composite components as the composition of atomic components by using only
interactions and priorities. This is possible because BIP is expressive enough for describing
any kind of coordination by using only architectural constraints.

The entire functional layer contains 8 distinct modules. Their functionalities are (1) collecting data
from the laser sensors (LaserRF), (2) generating an obstacle map (Aspect), (3) navigating using
the near diagram approach (NDD), (4) managing the low level robot wheel controller (RFLEX),
(5) emulating the communication with an orbiter (Antenna), (6) providing power and energy for
the robot (Battery), (7) heating the robot in a low temperature environment (Heating) and (8)
controlling the movement of two cameras (Platine).

Details about the characteristics of the software componentized in BIP are available in table 1. For
example, the NDD module interconnects 27 atomic components (totalizing 152 control locations,
16 booleans and 11 integer variables) using 117 connectors. The whole functional layer uses 248
atomic components and 1068 connectors.

The BIP model of the functional layer has been formally verified for deadlock-freedom and other
safety properties (e.g., data freshness) using D-Finder. We have been capable of checking safety
and deadlock-freedom properties for all the modules. We have successively detected (and corrected)
two deadlocks within Antenna and NDD, respectively. We also succeded to verify deadlock-freedom
for composition of three modules (LaserRF, Aspect and NDD), and data freshness property between
two modules (Aspect and NDD).

Table 1 provides results for checking deadlock-freedom of individual modules.

module components control locations interactions states time (minutes)
SICK 43 213 202 220 × 329 × 34 1:22
Aspect 29 160 117 217 × 323 0:39
NDD 27 152 117 222 × 314 × 5 8:16
RFLEX 56 308 227 234 × 335 × 1045 9:39
Antenna 20 97 73 212 × 39 × 13 0:14
Battery 30 176 138 222 × 317 × 5 0:26
Heating 26 149 116 217 × 314 × 145 0:17
Platine 37 174 151 219 × 322 × 35 0:59

Table 1: Deadlock-freedom checking results for DALA modules

The BIP model has been also used to synthesize the execution controller that encodes and enforces
safety properties, thereby facilitating the development of safe and dependable robotic architectures.
In the initial version of this software a centralized hand-written controller (R2C) was used to ensure
the proper execution of the services and to enforce the safety constraints on module interactions.
In the BIP model, the proper execution order and the safety properties are already enforced by
connectors and priorities. As an example, consider the requirement which states that the robot can
navigate using the GoTo service of the NDD module only if the module POM has already executed
successfully its Run service (which updates poster Pos). Such a requirement is enforced by adding a
connector between port trigger of the Goto service and port status of the Run service, and guarded
by the status value.

Finally, we have run experiments with the code generated automatically from the BIP model on
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the DALA rover, and demonstrated via fault injections that the BIP engine successfully stops the
robot from reaching undesired/unsafe states.

5 Discussion and Future Work

The paper presents the BIP component framework and an associated system design flow. BIP
is unique for both its expressiveness and its rigorous semantics. In contrast to other formalisms,
mathematical foundation on a minimal set of concepts and structuring principles does not hamper
its effective use for modeling complex real-life systems.

BIP can model in a natural and direct manner various types of synchronization. Using less ex-
pressive frameworks e.g. based on a single composition operator, often leads to intractable models.
For instance, BIP directly encompasses multiparty interaction between components. Modeling
multiparty interaction in frameworks supporting only point-to-point interaction e.g. function call,
requires the use of protocols. This leads to overly complex models with complicated coordination
structure. We have compared descriptions of the DALA functional level application software writ-
ten in the GeNoM object-oriented formalism based on C++ and corresponding models written in
BIP after componentization. In contrast to object-oriented software, BIP models are easy to under-
stand and analyse as the composition of integrated features. Furthermore, explicit use of automata
in behavior ensures robustness of modules. They enforce the right order of execution of functions
independently of their context of use.

Clear separation between architecture and behavior in BIP allows compositional and incremental
analysis. This is advantageously exploited by D-Finder which separately analyses behavior of atomic
components and extracts interaction invariants characterizing architectural constraints.

BIP supports a rigorous system design flow. A key idea is the application of correctness-preserving
source-to-source transformations to progressively refine the application software model by taking
into account hardware architecture constraints as well as mechanisms used for the coordination
between processors in a distributed implementation. Verification is used to check essential properties
as early as possible in the design flow. To avoid complexity limitations, the verification process
is incremental and compositional. When the validity of a property is established for a model, the
property holds for all the models obtained by transformation. The complexity of the transformations
is linear with the size of the transformed models.

Using BIP as a unifying modeling framework allows to maintain the overall coherency of the de-
sign flow by comparing different architectural solutions and their properties. This is a significant
difference with approaches using many different semantically unrelated formalisms e.g. for program-
ming, hardware description, performance evaluation and where code generation and deployment is
decoupled from verification and performance evaluation.
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