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Abstract. Computing transitive closures of integer relations is the key to finding
precise invariants of integer programs. In this paper, we describe an efficient al-
gorithm for computing the transitive closures of difference bounds, octagonal and
finite monoid affine relations. On the theoretical side, this framework provides a
common solution to the acceleration problem, for all these three classes of re-
lations. In practice, according to our experiments, the new method performs up
to four orders of magnitude better than the previous ones, making it a promising
approach for the verification of integer programs.

1 Introduction

The verification of safety properties of infinite-state systems (such as device drivers,
communication protocols, control software, etc.) requires the computation of the set of
reachable states, starting with an initial state from a given (possibly infinite) set. There
are currently two ways of doing this: (i) compute a finite representation of an over-
approximation of the set of reachable states, by applying a widening operator at each
step, or (ii) attempt to compute precisely the transitive closure of the transition rela-
tion; the set of reachable states is the image of the set of initial states via the transitive
closure. The first approach is guaranteed to terminate, but the abstraction usually intro-
duces imprecision that may blur the verification result. On the other hand, the second
approach, although precise, is not guaranteed to terminate – the problem of verifying
safety properties being, in general, undecidable.

In practice, one usually tries to combine the two approaches and benefit from the
advantages of both. To this end, it is important to know for which classes of transition
relations it is possible to compute the transitive closure precisely and fast – the relations
falling outside these classes being dealt with using suitable abstractions. To the best of
our knowledge, the three main classes of integer relations for which transitive closures
can be computed precisely in finite time are: (1) difference bounds constraints [9, 8],
(2) octagons [12, 6], and (3) finite monoid affine transformations [5, 10]. For these three
classes, the transitive closures can be moreover defined in Presburger arithmetic.

The contributions of this paper are three-fold. First, we study the three non-trivial
classes of relations mentioned in the previous and show that they are ultimately periodic,
i.e. that each relation R in these classes can be mapped into an integer matrix MR

such that the sequence {MRk}∞k=0 is periodic. The proof of the fact that a sequence
of matrices is ultimately periodic relies on a result from tropical semiring theory [13].
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the Czech Science Foundation (projects P103/10/0306 and 102/09/H042), the Czech Ministry
of Education (projects COST OC10009 and MSM 0021630528), and the internal FIT BUT
grant FIT-10-1.



This provides shorter proofs to the fact that the transitive closures for these classes can
be effectivelly computed, and that they are Presburger definable.

Second, from the practical side, the algorithm introduced in this paper computes
the transitive closure of difference bounds and octagonal relations up to four orders
of magnitude faster than our original methods from [8, 6], and also scales much better
in the number of variables. The experimental comparison with the FAST tool [4] for
difference bounds relations shows that large relations (> 50 variables), causing FAST
to run out of memory, can now be handled by our implementation in less than 8 seconds,
on average. We currently do not have a full implementation of the finite monoid affine
transformation class, which is needed in order to compare our method with tools like
FAST [4], LASH [14], or TReX [2], for this class of relations.

Related Work Early attempts to apply Model Checking techniques to the verification
of infinite-state systems consider the problem of accelerating transition relations by
successive under-approximations, without any guarantee of termination. For systems
with integer variables, the acceleration of affine relations has been considered primarily
in the works of Annichini et. al [1], Boigelot [5], and Finkel and Leroux [10]. Finite
monoid affine relations have been first studied by Boigelot [5], who shows that the finite
monoid property is decidable, and that the transitive closure is Presburger definable in
this case. On what concerns non-deterministic transition relations, difference bounds
constraints appear in the context of timed automata verification. The transitive closure
of a difference bounds constraint is shown to be Presburger definable first by Comon
and Jurski [9]. Their proof was subsequently simplified and extended to parametric
difference bounds constraints in [8]. We also showed that octagonal relations can be
accelerated precisely, and that the transitive closure is also Presburger definable [6].
The proofs of ultimate periodicity from this paper are based on some of our previous
results [8, 6]. For difference bounds constraints, the proof from [8] was simplified using
a result from tropical semiring theory [13].

Roadmap The paper is organized as follows: Section 2 gives the definition of ultimately
periodic relations, Section 3 describes the algorithm for computing transitive closures
of ultimately periodic relations, in general, Section 4 describes three instances of the
algorithm, Section 5 presents the experimental results, and Section 6 concludes. Missing
proofs are deferred to [7] due to reasons of space.

2 Preliminaries

We denote by Z, N and N+ the sets of integers, positive (including zero) and strictly
positive integers, respectivelly. The first order additive theory of integers is known as
Presburger Arithmetic. The tropical semiring is defined as T = (Z∞,min,+,∞, 0)
[13], where Z∞ = Z ∪ {∞}, with the extended arithmetic operations x + ∞ = ∞,
min(x,∞) = x, for all x ∈ Z, where min(x, y) denotes the minimum between the
values x and y. For two square matrices A,B ∈ Sm×m, we define (A + B)ij =
Aij + Bij and (A× B)ij = minmk=1(aik + bkj), for all 1 ≤ i, j ≤ m. Let I ∈ T

m×m

be the identity matrix, i.e. Iii = 0 and Iij = ∞, for all 1 ≤ i, j ≤ m, i 6= j.

Definition 1. [13] An infinite sequence {sk}
∞
k=0 ∈ T is called ultimately periodic if:

∃K ∃c > 0 ∃λ0, λ1, . . . , λc−1 ∈ T . s(k+1)c+i = λi + skc+i
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for all k ≥ K and i = 0, 1, . . . , c − 1. The smallest c and λ0, λ1, . . . , λc−1 for which
the above holds are called the period and rates of {sk}

∞
k=0, respectivelly.

Example 1. The sequence σk = {3k+1 | k = 2l, l ≥ 2} ∪ {5k+3 | k = 2l+1, l ≥ 2}
is ultimately periodic, with K = 4, period c = 2 and rates λ0 = 6, λ1 = 10. ⊓⊔

A sequence of matrices {Ak}
∞
k=0 ∈ T

m×m is said to be ultimately periodic if, for all
1 ≤ i, j ≤ m, the sequence {(Ak)ij}

∞
k=0 is ultimately periodic. A matrix A ∈ T

m×m

is called ultimately periodic if the sequence {Ak}∞k=1 is ultimately periodic, where

A0 = I and Ak = A×Ak−1, for any k > 0. It is known that, every matrix is ultimately
periodic in the tropical semiring [13].

We have the following characterization of ultimately periodic sequences of matri-
ces:

Lemma 1. A sequence of matrices {Ak}
∞
k=1 ∈ T

m×m is ultimately periodic if and
only if:

∃K ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
m×m . A(k+1)c+i = Λi +Akc+i

for all k ≥ K and i = 0, 1, . . . , c− 1.

If A ∈ T
m×m is a square matrix and n ∈ T, we define the matrix (n·A)ij = n·Aij ,

for all 1 ≤ i, j ≤ m. If k is a parameter (typically interpreted over T), then T[k] denotes
the set of all terms where k may occur, built from the constants and operators of T. For
instance, if A,B ∈ T

m×m, then k · A + B ∈ T[k]m×m denotes the matrix of terms
(k ·A+B)ij = k ·Aij +Bij , for all 1 ≤ i, j ≤ m.

2.1 Ultimately Periodic Relations

Let x = {x1, x2, . . . , xN} be a set of variables, N > 0, and let x′ = {x′
1, x

′
2, . . . , x

′
N}.

A relation is an arithmetic formula R(x,x′) with free variables x∪x′. We say that two
relations R and R′ are equivalent, denoted R ⇔ R′ if under all valuations of x and
x′, R is true if and only if R′ is true. A relation is called consistent if and only if there
exist valuations of x and x′ under which it holds. We denote a consistent relation R by
writing R < false, and an inconsistent relation by writing R ⇔ false.

The composition of two relations is defined as R ◦R′ ≡ ∃y . R(x,y) ∧R′(y,x′).
Let I be the identity relation

∧

x∈x
x′ = x. We define R0 ≡ I and Rn ≡ Rn−1 ◦ R,

for any n > 0. With these notations, R∗ ≡
∨∞

i=0 R
i denotes the transitive closure of

R. A relation R is called ω-consistent if Rn is consistent for all n > 0. For the rest of
this section, let R be a class of relations3.

Definition 2. A relation R(x,x′) ∈ R is called ultimately periodic if and only if either:

1. there exists i0 ≥ 0 such that Ri0 is inconsistent, or
2. for all i ≥ 0, Ri is consistent, and there exists two functions:

– σ : R → T
m×m
⊥ mapping each consistent relation in R into a m×m matrix

of T, for some m > 0, and each inconsistent relation into ⊥.
– ρ : T

m×m → R mapping each m×m matrix of T into a relation in R, such
that ρ(σ(R)) ⇔ R, for each consistent relation R ∈ R

3 A class of relations is usually defined by syntactic conditions.

3



such that the infinite sequence of matrices {σ(Ri)}∞i=0 ∈ T
m×m is ultimately pe-

riodic.

Notice that the first condition of the definition implies that σ(Ri) = ⊥, for all i ≥ i0. If
each relation R ∈ R is ultimately periodic, then R is called ultimately periodic as well.
The following lemma gives an alternative characterization of ω-consistent ultimately
periodic relations.

Lemma 2. An ω-consistent relation R is ultimately periodic if and only if there exist
K ≥ 0, b ≥ 0, c > 0 and Λ0, Λ1, . . . , Λc−1 ∈ T

m×m such that the following hold:

1. σ(R(n+1)c+i) = Λi + σ(Rnc+i), for all n ≥ K.
2. Rnc+b+i ⇔ ρ(n · Λi + σ(Rb+i)), for all n ≥ 0.

for all i = 0, 1, . . . , c− 1, where σ and ρ are the functions from Def. 2.

Proof. By Lemma 1, if R is ω-consistent, then it is ultimately periodic if and only if

∃K ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
N×N . σ(R(k+1)c+i) = Λi + σ(Rkc+i)

for all k ≥ K and i = 0, 1, . . . , c− 1. By induction on k ≥ K, one shows first that

Rkc+i ⇔ ρ(Λi
k−K + σ(RKc+i)), ∀k ≥ K

Let b = Kc. By replacing k −K with k, we obtain

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i)), ∀k ≥ 0

⊓⊔
For practical reasons related to the representation of R∗, we are interested in finding

the symbolic expression Rk, where k is a parameter (because R∗ ≡ ∃k . Rk). Notice
that the second point of lemma 2 can be used to compute the expression Rk symbol-
ically (as a formula over x, x′ and k), assuming that we are given a function, call it
π : T[k]m×m → R(k), where R(k) is the class of all parametric relations over x,x′

and k. Intuitivelly, π is the parametric counterpart of the ρ function from Def. 2, map-
ping a matrix of terms over k into a parametric relation R(x,x′, k). Concrete definitions
of π will be given in Section 4.

3 Computing Transitive Closures of Ultimately Periodic Relations

In this section we give a generic algorithm that computes the transitive closure of a given
ultimately periodic relation. The algorithm needs to be instantiated for a specific class
R of ultimately periodic relations by providing the mappings σ, ρ (Def. 2) and π (the
parametric counterpart of ρ) as discussed in the previous. Next, in Section 4, we show
how this algorithm can be used for accelerating three classes of relations: difference
bounds, octagons, and finite monoid affine transformations.

Fig. 1 shows the generic framework for computing transitive closures. The input to
the algorithm is a relation R, and the mappings σ : R → T

m×m, ρ : T
m×m → R,

and π : T[k]m×m → R(k). The algorithm is guaranteed to terminate if R is ultimately
periodic, as it will be explained in the following.
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The main idea of the algorithm is to discover the prefix b and period c of the se-
quence {σ(Ri)}∞i=0 – cf. the second point of lemma 2. If R is ultimately periodic, such
values are guaranteed to exist. The dove-tailing enumeration on lines 1 and 2 is guaran-
teed to yield the smallest value c for which the sequence is shown to be periodic4.

Second, the algorithm attempts to compute the first rate of the sequence (line 6),
by comparing the matrices σ(Rb), σ(Rc+b) and σ(R2c+b). If the difference Λ between
σ(Rc+b) and σ(Rb) equals the difference between σ(R2c+b) and σ(Rc+b), then Λ is a
valid candidate for the first rate of the progression (see lemma 2). Notice that the con-
sistency check on line 4 is needed to ensure that we apply σ to consistent relations –
otherwise, the relation is not ω-consistent, and the algorithm returns directly the transi-

tive closure, i.e. the finite disjunction
∨kc+b−1

i=0 Ri, 0 ≤ k ≤ 2 (line 4).
Once a candidate Λ for the initial rate was found, the test Q1 on line 7 is used to

check that R is ultimately periodic and ω-consistent. Notice that the characterization
of ultimately periodic relations from lemma 2 cannot be applied here, since Rn is not
known in general, for arbitrary n ≥ 0. The condition used here is local, i.e. it needs
only the relation Rb, for a typically small constant b ≥ 0. The next lemma establishes
the correctness of the criterion used by Q1:

Lemma 3. An ω-consistent relation R is ultimately periodic if and only if

∃b ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
m×m . ρ(n·Λi+σ(Rb+i))◦Rc ⇔ ρ((n+1)·Λi+σ(Rb+i))

for all n ≥ 0 and i = 0, 1, . . . , c − 1, where σ and ρ are the functions from Def. 2.
Moreover, Λ0, Λ1, . . . , Λc−1 satisfy the equivalences of Lemma 2.

Proof. “⇒” If R is ω-consistent and ultimately periodic, by Lemma 2, there exist b ≥ 0,
c > 0 and Λ0, Λ1, . . . , Λc−1 ∈ T

m×m such that

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i))

for all k ≥ 0 and i = 0, 1, . . . , c− 1. We have:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

ρ(Λi
k+1 + σ(Rb+i)) ⇔ ρ(Λi

k + σ(Rb+i)) ◦Rc

“⇐” We prove the equivalent condition of Lemma 2 by induction on k ≥ 0. The base
case k = 0 is immediate. The induction step is as follows:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

⇔ ρ(Λi
k + σ(Rb+i)) ◦Rc , by the induction hypothesis

⇔ ρ(Λi
k+1 + σ(Rb+i))

⊓⊔
The universal query Q1 on line 7 is in general handled by procedures that are spe-

cific to the class of relations R we work with. Notice furthermore that Q1 can be han-
dled symbolically by checking the validity of the first order formula: ∀k . π(k · Λ +
σ(Rb)) ◦ Rc ⇔ π((k + 1) · Λ + σ(Rb)), where π is the parametric counterpart of ρ.
Next, in Section 4, we detail two ways in which this test can be performed efficiently
(for difference bounds and octagonal relations), without resorting to external proof en-
gines, such as SMT or Presburger solvers.

4 The nested loop from Fig. 1 will always yield a pair (b, c) such that b ≥ c. To ensure that b is
also minimal, and thus cover up the case b < c, once the smallest period c has been detected
at prefix b = c, we need to also try all prefixes b = c− 1, c− 2, . . . , 0.
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1. foreach b := 0, 1, 2, . . . do
2. foreach c := 1, 2, . . . , b do
3. foreach k := 0, 1, 2 do

4. if Rkc+b ⇔ false then return R∗ ≡
∨kc+b−1

i=0 Ri

5. endfor

6. if exists Λ ∈ T
m×m : σ(Rc+b) = Λ+ σ(Rb) and σ(R2c+b) = Λ+ σ(Rc+b) then

7. if forall n ≥ 0 : ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ ρ((n+ 1) · Λ+ σ(Rb)) < false (Q1) then

8. return R∗ ≡
∨b−1

i=0 Ri ∨ ∃k ≥ 0 .
∨c−1

i=0 π(k · Λ+ σ(Rb)) ◦Ri

9. else if exists n ≥ 0 : ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ false (Q2) then

10. let n0 = min{n | ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ false}
11. if forall n ∈ [0, n0 − 1] : ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ ρ((n+ 1) · Λ+ σ(Rb)) then

12. return R∗ ≡
∨b−1

i=0 Ri ∨
∨n0−1

n=0

∨c−1
i=0 ρ(n · Λ+ σ(Rb)) ◦Ri

13. endif
14. endif
15. endfor
16. endfor

Fig. 1: Transitive Closure Algorithm

If the universal query on line 7 holds, the rate Λ can be used now to express the

transitive closure (line 8) as a finite disjunction over the prefix (
∨b−1

i=0 R
i) followed by

a formula defining an arbitrary number of iterations (∃k .
∨c−1

i=0 π(k · Λ + σ(Rb)) ◦
Ri). Note that the formula on line 8 defines indeed the transitive closure of R, as a
consequence of lemma 2. Moreover, this is a formula of Presburger arithmetic, provided
that the classes of relations R and R(k) are Presburger definable.

Otherwise, if Q1 does not hold, there are two possibilities: either (i) Λ is actually not
the first rate of the sequence {σ(Ri)}∞i=0 for given b ≥ 0 and c > 0, or (ii) the relation
is not ω-consistent. In the first case, we need to reiterate with another prefix-period pair,
which will give us another candidate Λ.

In the second case, Rm becomes inconsistent, for some m > 0 – in this case the
computation of its transitive closure is possible, in principle, by taking the disjunction
of all powers of R up to m. However, in practice this may take a long time, if m is large.
In order to speed up the computation, we check whether:

– ρ(n ·Λ+σ(Rb))◦Rc is inconsistent (line 9); the existential query Q2 (and namely
finding the smallest value for which it holds) is dealt with in Section 4, specifically
for the classes of difference bounds and octagonal relations.

– R is periodic with first rate Λ between 0 and n0 − 1 (line 11), where n0 is the
smallest n satisfying the first point (line 10).

If both conditions above hold, then m = (n0 + 1)c+ b is the smallest value for which
Rm becomes inconsistent, and moreover, R is periodic with rate Λ between 0 and m.
If this is the case, we compute the transitive closure using the period Λ and return (line
12). The following theorem can be proved along the lines of the discussion above:

Theorem 1. If R is an ultimately periodic relation, the algorithm in Fig. 1 eventually
terminates and returns the transitive closure of R.

4 Some Ultimately Periodic Classes of Arithmetic Relations

This section is dedicated to the application of the transitive closure computation al-
gorithm from the previous section (Fig. 1) to three classes of arithmetic relations, for
which the transitive closure is Presburger-definable: difference bounds relations [8],
octagonal relations [6], and finite monoid affine transformations [5].
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In order to apply the transitive closure computation method, one needs to address
two issues. First, the class of relations considered needs to be proved ultimately periodic
(or else, our algorithm is not guaranteed to terminate). The proofs rely mostly on the
fact that any matrix A is ultimately periodic in T [13] (see Section 2 for the definition
of ultimately periodic matrices).

Second, the queries Q1 and Q2 (Fig. 1) need to be answered efficiently, by avoiding
excessive calls to external decision procedures. In theory, all these queries can be ex-
pressed in Presburger arithmetic, for the classes of difference constraints, octagons and
affine transformations, yet in practice we would like to avoid as much as possible us-
ing Presburger solvers, due to reasons of high complexity. For the classes of difference
bounds and octagons, we give direct decision methods for handling these queries. The
class of affine transformations without guards can also be dealt with by simply check-
ing equivalence between Diophantine systems, whereas the general case still needs to
be handled by a Presburger solver.

4.1 Difference Constraints

Let x = {x1, x2, ..., xN} be a set of variables ranging over Z.

Definition 3. A formula φ(x) is a difference bounds constraint if it is equivalent to a
finite conjunction of atomic propositions of the form xi−xj ≤ aij , 1 ≤ i, j ≤ N, i 6= j,
where aij ∈ Z.

For example, x = y + 5 is a difference bounds constraint, as it is equivalent to
x − y ≤ 5 ∧ y − x ≤ −5. Let Rdb denote the class of difference bound relations.
Difference bounds constraints are alternatively represented as matrices or, equivalently,
weighted graphs.

Given a difference bounds constraint φ, a difference bounds matrix (DBM) repre-
senting φ is a matrix Mφ ∈ T

N×N such that (Mφ)ij = aij , if xi − xj ≤ aij is

an atomic proposition in φ, and ∞, otherwise. Dually, if M ∈ T
N×N is a DBM, the

corresponding difference bounds constraint is ∆M ≡
∧

Mij<∞ xi − xj ≤ Mij .

A DBM M is said to be consistent if and only if its corresponding constraint
ϕM is consistent. An elementary path in a DBM M is a sequence of indices 1 ≤
i1, i2, . . . , ik ≤ N , where i1,...,k−1 are pairwise distinct, such that Mijij+1

< ∞, for
all 1 ≤ j < k. An elementary path is called an elementary cycle if moreover i1 = ik.

An elementary cycle is said to be strictly negative if
∑k−1

j=1 Mijij+1
< 0. A DBM M

is inconsistent if and only if it has a strictly negative elementary cycle – a proof can be
found in [12]. The next definition gives a canonical form for consistent DBMs.

Definition 4. A consistent DBM M ∈ T
N×N is said to be closed if and only if Mii = 0

and Mij ≤ Mik +Mkj , for all 1 ≤ i, j, k ≤ N .

Given a consistent DBM M , we denote by M∗ the (unique) closed DBM such
that ϕM ⇔ ϕM∗ . It is well-known that, if M is consistent, then M∗ is unique, and
can be computed from M in time O(N3), by the classical Floyd-Warshall algorithm.
Moreover, if M is a consistent DBM, we have, for all 1 ≤ i, j ≤ N :

M∗
ij = min

{

k−1
∑

l=0

Milil+1
i = i0 . . . ik−1 = j is an elementary path in M

}

(1)
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The closed form of DBMs is needed for the elimination of existentially quantified vari-
ables – if φ is a difference bounds constraint, then ∃x . φ is also a difference bounds
constraint [12]. Consequently, we have that the class of difference bounds relations is
closed under relational composition: R1(x,x

′)◦R2(x,x
′) ≡ ∃y . R1(x,y)∧R2(y,x

′).

Difference Bounds Relations are Ultimately Periodic Given a consistent difference
bounds relation R(x,x′) ∈ Rdb, let σ(R) = MR ∈ T

2N×2N be the characteristic
DBM of R, and for any M ∈ T

2N×2N , let ρ(M) = ∆M ∈ Rdb be the difference
bounds relation corresponding to R. Clearly, ρ(σ(R)) ⇔ R, as required by Def. 2.

With these definitions, the algorithm in Fig. 1 will return the transitive closure of
a difference bounds relation R, provided that the sequence {σ(Ri)}∞i=0 is ultimately
periodic. If R is not ω-consistent then, by Def. 2, it is ultimately periodic. We consider
henceforth that R is ω-consistent, i.e. σ(Ri) = MRi , for all i ≥ 0.

For a difference bounds relation R, we define the directed graph GR, whose set of
vertices is the set x ∪ x′, and in which there is an edge from xi to xj labeled αij if and
only if the atomic proposition xi − xj ≤ αij occurs in R. Clearly, MR is the incidence
matrix of GR.

Next, we define the concatenation of GR with itself as the disjoint union of two
copies of GR, in which the x′ vertices of the second copy overlap with the x vertices
of the first copy. Then Rm corresponds to the graph Gm

R , obtained by concatenating the
graph of R to itself m > 0 times. Since Rdb is closed under relational composition,
then Rm ∈ Rdb, and moreover we have:

∧

1≤i,j≤N xi − xj ≤ min{x0
i −→ x0

j} ∧ x′
i − x′

j ≤ min{xm
i −→ xm

j } ∧

xi − x′
j ≤ min{x0

i −→ xm
j } ∧ x′

i − xj ≤ min{xm
i −→ x0

j}

where min{xp
i −→ xq

j} is the minimal weight of all paths between the extremal vertices

xp
i and xq

j in Gm
R , for p, q ∈ {0,m}. In other words, we have the equalities from Fig. 2

(a), for all 1 ≤ i, j ≤ N .

(MRm)i,j = min{x0
i −→ x0

j}

(MRm)i+N,j+N = min{xm
i −→ xm

j }

(MRm)i,j+N = min{x0
i −→ xm

j }

(MRm)i+N,j = min{xm
i −→ x0

j}

(a)

min{x0
i −→ x0

j} = (Mm
R )Ief (xi),Fef (xj)

min{xm
i −→ xm

j } = (Mm
R )Ieb(xi),Feb(xj)

min{x0
i −→ xm

j } = (Mm
R )Iof (xi),Fof (xj)

min{xm
i −→ x0

j} = (Mm
R )Iob(xi),Fob(xj)

(b)

Fig. 2

As proved in [8], the paths between xp
i and xq

j , for arbitrary 1 ≤ i, j ≤ N and p, q ∈

{0,m}, can be seen as words (over a finite alphabet of subgraphs of Gm
R ) recognized by

a finite weighted automaton of size up to 5N . For space reasons, the definition of this
automaton is detailed in [7].

Let MR be the incidence matrix of this automaton. By the construction of MR, for
each variable x ∈ x, there are eight indices, denoted as5 Iof (x), Iob(x), Ief (x), Ieb(x),
Fof (x), Fob(x), Fef (x), Feb(x) ∈ {1, . . . , 5N}, such that all relations from Fig. 2 (b)

5 Paths between x0 and ym (xm and y0) are called odd forward (backward) in [8], whereas
paths between x0 and y0 (xm and ym) are called even forward (backward). Hence the indices
of , ob, ef and eb.
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hold, for all 1 ≤ i, j ≤ N . Intuitivelly, all paths from x0
i to x0

j are recognized by

the automaton with Ief (xi) and Fef (xj) as the initial and final states, respectivelly.
The same holds for the other pairs of indices, from Fig. 2 (b). It is easy to see (as an
immediate consequence of the interpretation of the matrix product in T) that, for any
m > 0, the matrix Mm

R gives the minimal weight among all paths, of length m, between
xp
i and xq

j , for any 1 ≤ i, j ≤ N and p, q ∈ {0,m}. But the sequence {Mm
R }∞m=0 is

ultimately periodic, since every matrix is ultimately periodic in T [13]. By equating
the relations from Fig. 2 (a) with the ones from Fig. 2 (b), we obtain that the sequence
{σ(Rm)}∞m=0 = {MRm}∞m=0 is ultimately periodic as well.

In conclusion, the algorithm from Fig. 1 will terminate on difference bounds re-
lations. Moreover, the result is a formula in Presburger arithmetic. This also simplifies
the proof that transitive closures of difference bounds relations are Presburger definable,
from [8], since the minimal paths of length m within the weighted automaton recog-
nizing the paths of Gm

R correspond in fact to elements of the m-th power of MR (the
incidence matrix of the automaton) in T.

Checking ω-Consistency and Inconsistency of Difference Bounds Relations For
a difference bounds relation R(x,x′) ∈ Rdb and a matrix Λ ∈ T

2N×2N , we give
methods to decide the queries Q1 and Q2 (lines 7 and 9 in Fig. 1) efficiently. To this
end, we consider the class of parametric difference bounds relations. From now on, let
k 6∈ x be a variable interpreted over N+.

Definition 5. A formula φ(x, k) is a parametric difference bounds constraint if it is
equivalent to a finite conjunction of atomic propositions of the form xi−xj ≤ aij · k+
bij , for some 1 ≤ i, j ≤ N , i 6= j, where aij , bij ∈ Z.

The class of parametric difference bounds relations with parameter k is denoted as
Rdb(k). A parametric difference bounds constraint φ(k) can be represented by a matrix
Mφ[k] of linear terms, where (Mφ[k])ij = aij · k + bij if xi − xj ≤ aij · k + bij
occurs in φ, and ∞ otherwise. Dually, a matrix M [k] of linear terms corresponds to the
formula ∆M (k) ≡

∧

M [k]ij 6=∞ xi−xj ≤ M [k]ij . With these considerations, we define

π(M [k]) = ∆M (k). Clearly, we have π(k ·Λ+σ(Rb)) ∈ Rdb(k), for R ∈ Rdb, b ≥ 0
and Λ ∈ T

2N×2N .
Parametric DBMs do not have a closed form, since in general, the minimum of two

linear terms in k (for all valuations of k) cannot be expressed again as a linear term.
According to (1), one can define the closed form of a parametric DBM as a matrix of
terms of the form min{ai·k+bi}

m
i=1, for some ai, bi ∈ Z and m > 0. Then the query Q1

can be written as a conjunction of formulae of the form ∀k > 0 . min{ai ·k+bi}
m
i=1 =

a0 · k + b0. The following lemma gives a way to decide the validity of such formulae:

Lemma 4. Given ℓ, a0, a1, . . . , am, b0, b1, . . . , bm ∈ Z, the following are equivalent:

1. ∀k ≥ ℓ . min{ai · k + bi}
m
i=1 = a0 · k + b0

2.
∨m

i=1(ai = a0 ∧ bi = b0) ∧
∧m

j=1(a0 ≤ aj ∧ a0 · ℓ+ b0 ≤ aj · ℓ+ bj)

In analogy to the non-parametric case, the inconsistency of a parametric difference
bounds constraint φ(k) amounts to the existence of a strictly negative elementary cycle
in Mφ[k], for some valuation k ∈ N+. We are also interested in finding the smallest
value for which such a cycle exists. The following lemma gives this value.
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Lemma 5. Let φ(x, k) be a parametric difference bounds constraint and Mφ[k] be
its associated matrix. For some aij , bij ∈ Z, let {aij · k + bij}

mi

j=1, i = 1, . . . , 2N
be the set of terms denoting weights of elementary cycles going through i. Then φ is
inconsistent for some ℓ ∈ N and k ≥ ℓ if and only if there exists 1 ≤ i ≤ 2N and
1 ≤ j ≤ mi such that either (i) aij < 0 or (ii) aij ≥ 0 ∧ aij · ℓ + bij < 0 holds.

Moreover, the smallest value for which φ becomes inconsistent is min2Ni=1{minmi

j=1 γij},

where γij = max(ℓ, ⌊−
bij
aij

⌋ + 1), if aij < 0, γij = ℓ, if aij ≥ 0 ∧ aij · ℓ + bij < 0,

and γij = ∞, otherwise.

4.2 Octagons

Let x = {x1, x2, ..., xN} be a set of variables ranging over Z.

Definition 6. A formula φ(x) is an octagonal constraint if it is equivalent to a finite
conjunction of terms of the form ±xi ± xj ≤ aij , 2xi ≤ bi, or −2xi ≤ ci, where
aij , bi, ci ∈ Z and 1 ≤ i, j ≤ N, i 6= j.

The class of octagonal relations is denoted by Roct in the following. We represent
octagons as difference bounds constraints over the set of variables y = {y1, y2, . . . , y2N},
with the convention that y2i−1 stands for xi and y2i for −xi, respectively. For example,
the octagonal constraint x1 +x2 = 3 is represented as y1 − y4 ≤ 3∧ y2 − y3 ≤ −3. To
handle the y variables in the following, we define ı̄ = i− 1, if i is even, and ı̄ = i+1 if

i is odd. Obviously, we have ¯̄ı = i, for all i ∈ Z, i ≥ 0. We denote by φ the difference
bounds formula φ[y1/x1, y2/ − x1, . . . , y2n−1/xn, y2n/ − xn] over y. The following

equivalence relates φ and φ :

φ(x) ⇔ (∃y2, y4, . . . , y2N . φ ∧

N
∧

i=1

y2i−1 + y2i = 0)[x1/y1, . . . , xn/y2N−1] (2)

An octagonal constraint φ is equivalently represented by the DBM Mφ ∈ T
2N×2N ,

corresponding to φ. We say that a DBM M ∈ T
2N×2N is coherent iff Mij = Mj̄ı̄ for

all 1 ≤ i, j ≤ 2N . This property is needed since any atomic proposition xi − xj ≤ a,
in φ can be represented as both y2i−1 − y2j−1 ≤ a and y2j − y2i ≤ a, 1 ≤ i, j ≤ N .

Dually, a coherent DBM M ∈ T
2N×2N corresponds to the octagonal constraint ΩM :

∧

1≤i,j≤N

(xi − xj ≤ M2i−1,2j−1 ∧ xi + xj ≤ M2i−1,2j ∧ −xi − xj ≤ M2i,2j−1) (3)

A coherent DBM M is said to be octagonal-consistent if and only if ΩM is consistent.

Definition 7. An octagonal-consistent coherent DBM M ∈ T
2N×2N is said to be

tightly closed if and only if the following hold:

1. Mii = 0, ∀1 ≤ i ≤ 2N 3. Mij ≤ Mik +Mkj , ∀1 ≤ i, j, k ≤ 2N

2. Miı̄ is even, ∀1 ≤ i ≤ 2N 4. Mij ≤ ⌊Miı̄

2 ⌋+ ⌊
Mj̄j

2 ⌋, ∀1 ≤ i, j ≤ 2N

The following theorem from [3] provides an effective way of testing consistency
and computing the tight closure of a coherent DBM. Moreover, it shows that the tight
closure of a given DBM is unique and can also be computed in time O(N3).
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Theorem 2. [3] Let M ∈ T
2N×2N be a coherent DBM. Then M is octagonal-consistent

if and only if M is consistent and ⌊Miı̄

2 ⌋ + ⌊
Mj̄j

2 ⌋ ≥ 0, for all 1 ≤ i, j ≤ 2N, i 6= j.

Moreover, the tight closure of M is the DBM M t ∈ T
2N×2N defined as M t

ij =

min
{

M∗
ij ,

⌊

M∗

iı̄

2

⌋

+
⌊

M∗

j̄j

2

⌋}

, for all 1 ≤ i, j ≤ 2N , where M∗ ∈ T
2N×2N is the

closure of M .

The tight closure of an octagonal constraint is needed for existential quantifier elim-
ination, and ultimately, for proving that the class of octagonal relations is closed under
composition [6].

Octagonal Relations are Ultimately Periodic Given a consistent octagonal relation
R(x,x′) let σ(R) = MR. Dually, for any coherent DBM M ∈ T

4N×4N , let ρ(M) =
ΩM . Clearly, ρ(σ(R)) ⇔ R, as required by Def. 2.

In order to prove that the class Roct of octagonal relations is ultimately periodic,
we need to prove that the sequence {σ(Rm)}∞m=0 is ultimately periodic, for an arbitrary
relation R ∈ Roct. It is sufficient to consider only the case where R is ω-consistent,
hence σ(Rm) = MRm , for all m ≥ 0. We rely in the following on the main result of
[6], which establishes a relation between MRm (the octagonal DBM corresponding to
the m-th iteration of R) and MR

m (the DBM corresponding to the m-th iteration of

R ∈ Rdb), for m > 0:

(MRm)ij = min
{

(MR
m)ij ,

⌊

(MRm )iı̄
2

⌋

+
⌊

(MRm )j̄j
2

⌋}

, for all 1 ≤ i, j ≤ 4N (∗)

This relation is in fact a generalization of the tight closure expression from theorem 2,
from m = 1 to any m > 0.

In Section 4.1 it was shown that difference bounds relations are ultimately periodic.
In particular, this means that the sequence {MR

m}∞m=0, corresponding to the iteration

of the difference bounds relation R, is ultimately periodic. To prove that the sequence
{MRm}∞m=0 is also ultimately periodic, it is sufficient to show that: the minimum and
the sum of two ultimately periodic sequences are ultimately periodic, and also that the
integer half of an ultimately periodic sequence is also ultimately periodic.

Lemma 6. Let {sm}∞m=0 and {tm}∞m=0 be two ultimately periodic sequences. Then

the sequences {min(sm, tm)}∞m=0, {sm + tm}∞m=0 and
{⌊

sm
2

⌋}∞

m=0
are ultimately

periodic as well.

Together with the above relation (∗), lemma 6 proves that Roct is ultimately periodic.

Checking ω-Consistency and Inconsistency of Octagonal Relations This section
describes an efficient method of deciding the queries Q1 and Q2 (lines 7 and 9 in Fig. 1)
for the class of octagonal relations. In order to deal with these queries symbolically,we
need to consider first the class Roct(k) of octagonal relations with parameter k. In the
rest of this section, let k 6∈ x be a variable ranging over N+.

Definition 8. Then a formula φ(x, z) is a parametric octagonal constraint if it is equiv-
alent to a finite conjunction of terms of the form ±xi±xj ≤ aij ·k+bij , 2xi ≤ ci ·k+di,
or −2xi ≤ c′i · k + d′i, where aij , bij , ci, di, c

′
i, d

′
i ∈ Z and 1 ≤ i, j ≤ N, i 6= j.
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A parametric octagon φ(x, k) is represented by a matrix Mφ[k]T[k]
2N×2N of linear

terms over k, and viceversa, a matrix M [k] ∈ T[k]2N×2N corresponds to a parametric
octagon ΩM (k). We define π(M [k]) = ΩM (k). As in the case of difference bounds
constraints, one notices that π(k · Λ + σ(Rb)) ∈ Roct(k), for R ∈ Roct, b ≥ 0 and
Λ ∈ T

4N×4N .
The composition of parametric octagonal relations (from e.g. Q1) requires the com-

putation of the tight closure in the presence of parameters. According to theorem 2,
the parametric tight closure can be expressed as a matrix of elements of the form
min{ti(k)}

m
i=1, where ti(k) are either: (i) linear terms, i.e. ti(k) = ai · k + bi, or

(ii) sums of halved linear terms, i.e. ti(k) = ⌊ai·k+bi
2 ⌋+ ⌊ ci·k+di

2 ⌋.

The main idea is to split a halved linear term of the form ⌊a·k+b
2 ⌋, k > 0 into two

linear terms a · k + ⌊ b
2⌋ and a · k + ⌊ b−a

2 ⌋, corresponding to the cases of k > 0 being
even or odd, respectivelly. This is justified by the following equivalence:

{⌊a·k+b
2 ⌋ | k > 0} = {a · k + ⌊ b

2⌋ | k > 0} ∪ {a · k + ⌊ b−a
2 ⌋ | k > 0}

Hence, an expression of the form min{ti(k)}
m
i=1 yields two expressions min{tei (k)}

m
i=1,

for even k, and min{toi (k)}
m
i=1, for odd k, where tei and toi , 1 ≤ i ≤ m, are effec-

tively computable linear terms. With these considerations, Q1 (for octagonal relations)
is equivalent to a conjunction of equalities of the form ∀k > 0 . min{t•i (k)}

m
i=1 =

t•0(k), • ∈ {e, o}. Now we can apply lemma 4 to the right-hand sides of the equiva-
lences above, to give efficient equivalent conditions for deciding Q1.

The query Q2 is, according to theorem 2, equivalent to finding either (i) a strictly
negative cycle in a parametric octagonal DBM M [k], or (ii) a pair of indices 1 ≤ i, j ≤

4N, i 6= j such that ⌊M [k]iı̄
2 ⌋+ ⌊

M [k]j̄j
2 ⌋ < 0. Considering that the set of terms corre-

sponding to the two cases above is T = {ai ·k+ bi}
m
i=1 ∪ {⌊ ci·k+di

2 ⌋+ ⌊ ei·k+fi
2 ⌋}pi=1,

we split each term t ∈ T into two matching linear terms, and obtain, equivalently:

Te,o = {αe
i · k + βe

i }
m+p
i=1 ∪ {αo

i · k + βo
i }

m+p
i=1

Now we can apply lemma 5, and compute the minimal value for which a term t ∈ Te,o

becomes negative, i.e. n0 = minm+p
i=1 min(2γe

i , 2γ
o
i −1), where γ•

i = max(1, ⌊−
β•

i

α•

i

⌋+

1), if α•
i < 0, 1 if α•

i ≥ 0 ∧ α•
i + β•

i < 0, and ∞, otherwise, for • ∈ {e, o}.

4.3 Finite Monoid Affine Transformations

The class of affine transformations is one of the most general classes of determinis-
tic transition relations involving integer variables. If x = 〈x1, . . . , xN 〉 is a vector of
variables ranging over Z, an affine transformation is a relation of the form:

T ≡ x′ = A⊗ x+ b ∧ φ(x) (4)

where A ∈ Z
N×N , b ∈ Z

N , φ is a Presburger formula, and ⊗ stands for the standard
matrix multiplication in Z.

The affine transformation is said to have the finite monoid property [5, 10] if the

monoid 〈MA,⊗〉, where MA = {A⊗i
| i ≥ 0} is finite. In this case, we also say that

A is finite monoid. Here A⊗0
= IN and A⊗i

= A ⊗ A⊗i−1
, for i > 0. Intuitivelly,

the finite monoid property is equivalent to the fact that A has finitely many powers (for
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the standard integer multiplication) that repeat periodically. It is easy to see that A is

finite monoid if and only if there exists p ≥ 0 and l > 0 such that A⊗p
= A⊗p+l

, i.e.

MA = {A⊗0
, . . . , A⊗p

, . . . , A⊗p+l−1
}.

If A is finite monoid, it can be shown that T ∗ can be defined in Presburger arith-
metic [5, 10]. We achieve the same result below, by showing that finite monoid affine
transformations are ultimately periodic relations. As a byproduct, the transitive closure
of such relations can also be computed by the algorithm in Fig. 1.

An affine tranformation T (4) can be equivalently written in the homogeneous form:

T ≡ x′
h = Ah ⊗ xh ∧ φh(xh) where Ah ≡

(

A b

0 . . . 0 1

)

where xh = 〈x1, . . . xN , xN+1〉 with xN+1 6∈ x being a fresh variable and φh(xh) ≡
φ(x) ∧ xN+1 = 1. In general, the k-th iteration of an affine transformation can be
expressed as:

T k ≡ x′
h = Ah

⊗k
⊗ xh ∧ ∀0 ≤ ℓ < k . φh(Ah

⊗ℓ
⊗ xh) (5)

Notice that, if x
(0)
h denotes the initial values of xh, the values of xh at the ℓ-th itera-

tion are x
(ℓ)
h = Ah

⊗ℓ
⊗ x

(0)
h . Moreover, we need to ensure that all guards up to (and

including) the (k − 1)-th step are satisfied, i.e. φh(Ah
⊗ℓ

⊗ xh), for all 0 ≤ ℓ < k.

For the rest of the section we fix A and b, as in (4). The encoding of a consistent

affine transformation T is defined as σ(T ) = Ah ∈ T
(N+1)×(N+1). Dually, for some

M ∈ T[k](N+1)×(N+1), we define:

π(M) : ∃xN+1, x
′
N+1 . x

′
h = M ⊗ xh ∧ ∀0 ≤ ℓ < k . φh(M [ℓ/k]⊗ xh)

where M [ℓ/k] denotes the matrix M in which each occurrence of k is replaced by ℓ. In
contrast with the previous cases (Section 4.1 and Section 4.2), only M is not sufficient
here to recover the relation π(M) – φ needs to be remembered as well6.

With these definitions, we have σ(T k) = A⊗
h

k
, for all k > 0 – as an immediate con-

sequence of (5). The next lemma proves that the class of finite monoid affine relations
is ultimately periodic.

Lemma 7. Given a finite monoid matrix A ∈ Z
N×N and a vector b ∈ Z

N , the se-

quence {A⊗
h

k
}∞k=0 is ultimately periodic.

The queries Q1 and Q2 (lines 7 and 9 in Fig. 1) in the case of finite monoid affine
transformations, are expressible in Presburger arithmetic. These problems could be sim-
plified in the case of affine transformations without guards, i.e T ≡ x′ = Ax + b.
The transformation is, in this case, ω-consistent. Consequently, Q1 reduces to an equiv-
alence between two homogeneous systems x′

h = A1h⊗xh and x′
h = A2h⊗xh. This

is true if and only if A1h = A2h. The query Q2 becomes trivially false in this case.

6 This incurs a slight modification of the algorithm presented in Fig. 1.
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5 Experimental Results

We have implemented the transitive closure algorithm from Fig. 1 within the FLATA
toolset [11], a framework we develop for the analysis of counter systems. We compared
the performance of this algorithm with our older transitive closure computation methods
for difference bounds [8] and octagonal relations [6]. We currently lack experimental
data for finite monoid relations (namely, a comparison with existing tools such as FAST
[4], LASH [14] or TReX [2] on this class), as our implementation of finite monoid affine
transformation class is still underway.

Table 1 shows the results of the comparison between the older algorithms described
in [8, 6] (denoted as old) and the algorithm in Fig. 1 for difference bounds relations
d1,...,6 and octagonal relations o1,...,6. The tests have been performed on both compact
(minimum number of constraints) and canonical (i.e. closed, for difference bounds and
tightly closed, for octagons) relations. The speedup column gives the ratio between the
old and new execution times. The experiments were performed on a 2.53GHz machine
with 2.9GB of memory.

Relation new
compact canonical

old speedup old speedup

d0 (x− x′ = −1) ∧ (x = y′) 0.18 0.7 3.89 38.77 215.39
d1 (x− x′ = −1) ∧ (x′ = y′) 0.18 18.18 101.0 38.77 215.39
d2 (x− x′ = −1) ∧ (x = y′) ∧ (x− z′ ≤ 5) ∧ (z = z′) 1.2 26.5 22.1 33431.2 27859.3
d3 (x− x′ = −1) ∧ (x = y′) ∧ (x− z ≤ 5) ∧ (z = z′) 0.6 32.7 54.5 33505.5 55841.7
d4 (x− x′ = −1) ∧ (x = y) ∧ (x− z ≤ 5) ∧ (z = z′) 0.5 702.3 1404.6 48913.8 97827.6

d5 (a = c) ∧ (b = a′) ∧ (b = b′) ∧ (c = c′) 1.8 5556.6 3087.0 > 106 ∞

d6

(a− b′ ≤ −1) ∧ (a− e′ ≤ −2) ∧ (b− a′ ≤ −2)

5.6 > 106 ∞ > 106 ∞

∧(b− c′ ≤ −1) ∧ (c− b′ ≤ −2) ∧ (c− d′ ≤ −1)
∧(d− c′ ≤ −2) ∧ (d− e′ ≤ −1 ∧ e− a′ ≤ −1)
∧(e− d′ ≤ −2) ∧ (a′ − b ≤ 4) ∧ (a′ − c ≤ 3)
∧(b′−c ≤ 4 ∧ b′−d ≤ 3) ∧ (c′−d ≤ 4) ∧ (c′−e ≤ 3)
∧(d′−a ≤ 3 ∧ d′−e ≤ 4) ∧ (e′−a ≤ 4) ∧ (e′−b ≤ 3)

o1 (x+ x′ = 1) 0.21 0.91 4.33 0.91 4.33
o2 (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.29 0.85 2.93 0.84 2.9
o3 (x ≤ x′) ∧ (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.32 0.93 2.91 0.94 2.94
o4 (x+ y ≤ 5) ∧ (−x+ x′ ≤ −2) ∧ (−y + y′ ≤ −3) 0.21 3.67 17.48 13.52 64.38

o5 (x+ y ≤ 1) ∧ (−x ≤ 0) ∧ (−y ≤ 0) 1.2 20050.9 16709.1 > 106 ∞

o6

(x ≥ 0) ∧ (y ≥ 0) ∧ (x′ ≥ 0) ∧ (y′ ≥ 0)
2.5 > 106 ∞ > 106 ∞∧(x+ y ≤ 1) ∧ (x′ + y′ ≤ 1) ∧ (x− 1 ≤ x′)

∧(x′ ≤ x+ 1) ∧ (y − 1 ≤ y′) ∧ (y′ ≤ y + 1)

Table 1: Comparison with older algorithms on difference bounds and octagons. Times
are in milliseconds.

As shown in Table 1, the maximum observed speedup is almost 105 for difference
bounds (d4 in canonical form) and of the order of four for octagons. For the relations
d5 (canonical form), d6 and o6 the computation using older methods took longer than
106 msec. It is also worth noticing that the highest execution time with the new method
was of 2.5 msec.

Table 2 compares FLATA with FAST [4] on counter systems with one self loop la-
beled with a randomly generated deterministic difference bound relation. We generated
50 such relations for each size N = 10, 15, 20, 25, 50, 100. Notice that FAST usually
runs out of memory for more than 25 variables, whereas FLATA can handle 100 vari-
ables in reasonable time (less than 8 seconds on average).
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vars
FLATA FAST

done av. ET done av. ET EM EB

10 50 1.5 0 49 0.6 0 0 1
15 50 1.6 0 31 10.5 17 0 2
20 50 1.6 0 4 3.4 9 8 29
25 50 1.6 0 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50
100 49 7.7 1 0 - 0 0 50

vars
FLATA FAST

done av. ET done av. ET EM EB

10 50 1.5 0 22 6.9 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 1.7 7 0 - 0 0 50
50 50 2.3 0 0 - 0 0 50
100 42 5.5 8 0 - 0 0 50

(a) – matrix density 3% (b) – matrix density 10%

Table 2: Comparison with FAST (MONA plugin) on deterministic difference bounds.
Times are in seconds. ET – timeout 30 s, EB – BDD too large, EM – out of memory

6 Conclusion

We presented a new, scalable algorithm for computing the transitive closure of ul-
timately periodic relations. We show that this algorithm is applicable to difference
bounds, octagonal and finite monoid affine relations, as all three classes are shown to be
ultimately periodic. Experimental results show great improvement in the time needed
to compute transitive closures of difference bounds and octagonal relations.
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6. M. Bozga, C. Gı̂rlea, and R. Iosif. Iterating octagons. In TACAS ’09, pages 337–351.
Springer, 2009.
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