
HAL Id: hal-00722324
https://hal.science/hal-00722324v1

Submitted on 1 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking Vector Addition Systems with one
zero-test

Rémi Bonnet, Alain Finkel, Jérôme Leroux, Marc Zeitoun

To cite this version:
Rémi Bonnet, Alain Finkel, Jérôme Leroux, Marc Zeitoun. Model Checking Vector Addition Systems
with one zero-test. Logical Methods in Computer Science, 2012, 8 (2), pp.11. �10.2168/LMCS-
8(2:11)2012�. �hal-00722324�

https://hal.science/hal-00722324v1
https://hal.archives-ouvertes.fr

Logical Methods in Computer Science
Vol. 8 (2:11) 2012, pp. 1–25
www.lmcs-online.org

Submitted Oct. 7, 2011
Published Jun. 19, 2012

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE

ZERO-TEST ∗

RÉMI BONNET a, ALAIN FINKEL b, JÉRÔME LEROUX c, AND MARC ZEITOUN d

a,b,d LSV, ENS Cachan, CNRS & INRIA, France
e-mail address: firstname.lastname@lsv.ens-cachan.fr

c,d LaBRI, Univ. Bordeaux & CNRS, France
e-mail address: firstname.lastname@labri.fr

Abstract. We design a variation of the Karp-Miller algorithm to compute, in a forward
manner, a finite representation of the cover (i.e., the downward closure of the reachability
set) of a vector addition system with one zero-test. This algorithm yields decision proce-
dures for several problems for these systems, open until now, such as place-boundedness or
LTL model-checking. The proof techniques to handle the zero-test are based on two new
notions of cover: the refined and the filtered cover. The refined cover is a hybrid between
the reachability set and the classical cover. It inherits properties of the reachability set:
equality of two refined covers is undecidable, even for usual Vector Addition Systems (with
no zero-test), but the refined cover of a Vector Addition System is a recursive set. The
second notion of cover, called the filtered cover, is the central tool of our algorithms. It
inherits properties of the classical cover, and in particular, one can effectively compute a
finite representation of this set, even for Vector Addition Systems with one zero-test.

1. Introduction

Context: verifying properties of Vector Addition Systems. Petri Nets, Vector Ad-
dition Systems (VAS), and Vector Addition Systems with control States (VASS) are equiv-
alent well-known classes of counter systems for which the reachability problem is decidable
[30, 27, 29], even if its complexity is still open. On the other hand, testing equality of the
reachability sets of two such systems is undecidable [4, 22]. For this reason, one cannot com-
pute a canonical finite representation of the reachability set that would make it possible to

1998 ACM Subject Classification: F.1.1.
2000 Mathematics Subject Classification: 68R99, 68Q05, 03D99.
Key words and phrases: Vector addition system, zero-test, reachability, cover, boundedness, place bound-

edness, Karp-Miller algorithm, LTL model-checking.
∗ Work based on the earlier extended abstracts [8, 6].

a,b,c,d Supported by the Agence Nationale de la Recherche, AVERISS (grant ANR-06-SETIN-001), AVERILES
(grant ANR-05-RNTL-002), ANR 2010 BLAN 0202 01 FREC, and REACHARD-ANR-11-BS02-001.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:11) 2012

c© Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun
CC© Creative Commons

http://creativecommons.org/about/licenses

2 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

test for equality of two reachability sets. However, there is such an effective finite represen-
tation for the cover, a useful over-approximation of the reachability set which is connected
to various verification problems. Therefore, one can decide not only the coverability problem
(that is, membership to the cover), but also whether two VAS have the same cover.

Vector Addition Systems are powerful models for the verification of networks of identical
finite-state machines communicating by rendez-vous, with dynamic creation and destruction.
Intuitively, a global configuration of such a system is abstracted by nonnegative counters, one
for each possible location of the finite-state machine. A counter value denotes the number of
machines in the corresponding location (see for instance [12]). Notice that dynamic creation
makes the number of processes, and therefore the values of counters, possibly unbounded.
For modeling client-server systems where clients are identical finite-state machines, and the
server is another finite-state machine that can check that no process is in a critical section,
the VAS model is no longer sufficient. Indeed, one must be able to check that a particular
counter is equal to zero, namely the one counting processes in the critical section. This is a
first practical motivation for adding to VAS the ability to test a counter for 0.

Another reason to consider such a model is that it constitutes a first step towards the
verification of VAS equipped with a stack, a model borrowing features both to pushdown
automata and to VAS, and that abstracts recursive programs manipulating constrained
counters. However, these systems are difficult to analyze. Abstracting away the actual stack
alphabet transforms the stack into a counter that can be tested to zero. In this paper, we
study verification problems for VAS with one zero test.

If one adds to VAS the ability to test at least two counters for zero, one obtains a
model equivalent to Minsky machines, for which all nontrivial properties (in the sense of
Rice’s theorem) of the language they recognize are undecidable, and many properties of
their behavior, such as reachability of a control state or termination, are also undecidable.
The study of VAS with a single zero-test is recent, and only few results are known for this
model. Reinhardt [33] has shown that the reachability problem is decidable for VAS with
one zero-test transition (as well as for hierarchical zero-tests), and an alternate, simpler
proof of this result was recently given by the first author [7]. Abdulla and Mayr have shown
that the coverability problem is decidable in [2], by using both the backward procedure of
Well Structured Transition Systems [1] (see [20] for a survey on Well Structured Transi-
tion Systems), and the decidability of forward-reachability of ordinary VASS as an oracle.
The boundedness problem (whether the reachability set is finite), the termination and the
reversal-boundedness problem (whether the counters can alternate infinitely often between
the increasing and the decreasing modes) are all decidable by using a forward procedure,
computing a finite, yet incomplete, Karp-Miller tree [19].

LTL specifications. Linear time temporal logic is a widely used specification logic, which
can express safety and liveness properties. Emerson [12] has designed an algorithm based on
a covering graph to check LTL properties on Well Structured Transition Systems, but which
may not terminate. Esparza [13, 14] has shown that LTL specifications on the actions of a
VAS is decidable (contrary to CTL) and that LTL becomes undecidable if one adds state
predicates. Habermehl [21] completed this proof by showing EXPSPACE-completeness of
LTL satisfiability, by generalizing Rackoff’s proof [32]. These results have been unified in [5].

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 3

Our contribution. We give an algorithm for computing a finite representation of the cover
for a VAS with one zero-test. This result makes it possible to decide the place-boundedness
problem, which is in general undecidable for VAS extensions (such as VAS with resets [11]
or lossy counter machines, i.e., lossy VAS with zero-test transitions [9, 31]).

Our proof first introduces a new notion of cover, called refined cover, where the usual
ordering on vectors is replaced by one that insists on keeping equality on certain components.
The refined cover is a set hybrid between the reachability set and the classical cover. We show
that equality of two refined covers is undecidable, even for usual VAS (with no zero-test).
However, one can show that such a refined cover is recursive for a VAS. We then introduce
filtered covers, the main technical tool of our algorithm. A filtered cover is defined wrt. some
specific values attached to some components. It consists in retaining only these vectors from
the reachability set that agree with these values, before taking the usual downward closure.
By transferring decidability results from refined covers to filtered covers, we are able to
compute a finite representation of any filtered cover. We use this representation to propose
an algorithm à la Karp and Miller, which builds a tree to compute the cover of a VAS with
one zero-test. This allows us to obtain new decidability results for such systems, namely
for the classical problems of place-boundedness. Finally, we show that the repeated control
state reachability for vector addition systems with states and one zero-test is decidable, as
well as LTL model-checking, by reducing these problems to the reachability problem. Note
that, for VASS (with no zero-test), both problems can be reduced to the computation of
the cover set. We do not know whether there is such a reduction between the corresponding
problems for VASS with one zero test, and we leave it as an open problem.

Thus, this work can be viewed as a contribution to understanding the limits of decid-
ability, taking into account two parameters: the models (VAS and VAS with one zero-test)
and the problems (reachability, cover, refined and filtered cover).

The difficulty. The central problem is to compute the cover of a VAS with one zero-test.
Let us explain why the usual Karp-Miller algorithm is not sufficient for that purpose. A
crucial property of VAS used by this algorithm is monotony : actions fireable from a state
are still fireable from any larger state. This property is clearly broken by the zero-test.

A natural idea appearing in [19] is to adapt the classical Karp-Miller construction [25],
first building the Karp-Miller tree, but without firing the zero test. To continue the construc-
tion after this first stage, we need to fire the zero test from the leaves of the Karp-Miller tree
carrying a 0 value on the component that is tested to 0. The problem is that accelerations
performed while building the Karp-Miller tree may have produced, on this component in the
label of such a leaf, an ω value that represents arbitrarily large values, and that abstracts
actual values. For this reason, one may not be able to determine if the zero test succeeds or
not. We therefore want a more accurate information for the labeling of the leaves, for the
component tested to 0. This is what the filtered cover actually captures.

To be more precise, let us illustrate this difficulty with some short examples (assuming
basic knowledge on VAS/VASS, see Sec. 3/7). The Karp-Miller algorithm [25, 15] computes
a finite representation of the cover of a VASS, i.e., the downward closure of its reachability
set (for the usual ordering over N

d, where d is the dimension of the VASS). It builds a
finite tree, whose nodes are labeled by elements of (N∪{ω})d, where intuitively ω represents
arbitrary large values. At the end of the algorithm, the cover is exactly the set of vectors of
N
d belonging to the downward closure of the set of labels. The tree is obtained by unwinding

the system, and by performing acceleration when possible, in order to guarantee termination:

4 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

if one finds two nodes on the same branch, such that the lowest one in the branch is labeled
by a greater element, one replaces by ω all components that have grown (this captures the
iteration of the firing sequence between the two nodes, and this is where monotony is used).
We aim at generalizing this algorithm for VASS with one zero-test.

As a first example, consider in dimension 1 the two VASS with one zero-test represented
in Fig. 1. They only differ by the transition from p to q. The transition from q to r is the

p q r

+2 −2

+1 == 0? p q r

−2+2

0 == 0?

(p, 0)

(p, ω) · · ·

(q, ω)

(p, 0)

(p, ω) · · ·

(q, ω)

(r, 0)

Fig. 1: Two VASS with one zero-test, and their Karp-Miller trees

zero-test, fireable only when the counter is 0, and which does not affect the counter. Starting
from the initial state (p, 0) and firing the loop from p to itself, the algorithm first computes
as left child of the root a node labeled (p, 2), which then gets accelerated as (p, ω). Then,
firing the transition from p to q yields the node (q, ω). Now, the zero-test is not fireable
in the first case, while it is fireable in the second case. Therefore, the Karp-Miller trees we
want to compute should differ (see Fig. 1, which shows two such partial Karp-Miller trees).
However, this cannot be detected with the information available on the branch from (p, 0) to
(q, ω), because this information is identical for both systems: it consists of the nodes (p, 0),
(p, ω), (q, ω). This example illustrates the fact that the ω component, in (q, ω), hides the
actual reachable values, and therefore also hides the ability or inability to fire the zero-test.

The next example (Fig. 2) is in dimension 2. The zero-test occurs on the first component.
It shows that even if one could determine when to fire the zero-test, one might be unable to
compute the relevant node labeling using only information provided by classical Karp-Miller
trees. Indeed, the Karp-Miller trees for both systems before firing the zero-test are identical.

p q r

(+1,+1) (−1,−1)

(0, 0) == 0? p q r

(+1,+1)

(0, 0)

(−1, 0)

== 0?

Fig. 2: Two VASS with one zero-test

However, firing the zero-test from (q, ω, ω) should produce a node labeled (r, 0, 0) in the first

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 5

case, and (r, 0, ω) in the second one. Here, ω values in (q, ω, ω) hide relevant relationships
between components (namely, that both components remain equal in the first system).

The schema of our proof.

(1) We start in Section 4 with usual VAS: we extend the decidability of the reachability
problem for VAS, by proving that the set LimReach of limits of sequences of reachable
states is also recursive. This set LimReach contains the reachability set, and captures
more information, in general. Actually, it is more sophisticated than both the cover
and the reachability set: it allows one to know whether an element in (N ∪ {ω})d is a
reachable state or if it is the limit of a sequence of reachable states. This information
is not given by the reachability set, neither by the cover (using the pointwise ordering
over (N ∪ {ω})d, and the natural ordering over N ∪ {ω}: n 6 ω for all n). The proof
carries on by using Higman’s Lemma, using a nontrivial ordering.

(2) In Section 5, we refine the definition of cover in which the first component of the vectors
has now to be known exactly (and not only bounded by some maximal value). We prove
that, for VAS, the fact that LimReach is recursive implies that one can compute the
finite basis of this filtered cover.

(3) In Section 6, we compute the finite basis of the cover of a VAS with one zero-test by
using a variation of the Karp-Miller algorithm that uses the previously defined filtered
covers in order to convey enough information to go through the zero-test.

(4) We add control states to our VAS with one zero-test in Section 7, and we show that one
can detect reachable increasing loops on a given control state, by reducing this problem
to the reachability problem for VASS with one zero-test, a decidable problem [33, 7].
This allows us to decide repeated control state reachability. We also note that this makes
it possible to solve model checking against LTL or ω-regular specifications. However,
contrary to the situation without any zero-test, this is obtained by reducing this prob-
lem to the reachability problem, and not to the computation of the cover. Whether a
reduction to this simpler problem exists is left open.

2. Preliminaries

Words. We denote by A∗ the set of finite words over A. A word u ∈ A∗ is written a1 · · · an,
with ai ∈ A. The concatenation of two words u and v is simply written uv and the empty
word is denoted ε, with εa = aε = a. We let A+ = A∗ \ {ε} be the set of nonempty words.

Orderings. An ordering 4 on a set X is a reflexive, transitive and antisymmetric binary
relation over X. Given x, y ∈ X, we write x ≺ y for x 4 y and x 6= y. For Y ⊆ X, let

↓4Y = {x ∈ X | ∃y ∈ Y, x 4 y}

denote the downward closure of Y with respect to 4. The set Y is said downward closed
if Y = ↓4Y . When working in N

d or N
d
ω with the usual ordering 6 (see below), we shorten

the corresponding downward closure operator ↓6 as ↓. Symmetrically, the upward closure
of Y ⊆ X, denoted ↑4Y is defined by

↑4Y = {x ∈ X | ∃y ∈ Y, y 4 x}.

The set Y is said to be upward closed if ↑4Y = Y .

6 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

Vectors. For d > 1, we write any vector x ∈ Xd as x = (x(1), . . . ,x(d)), with x(i) ∈ X.
Given an ordering 4 over X, the pointwise ordering over Xd, still denoted 4, is defined by
x 4 y if x(i) 4 y(i) for all i. For X = N, we let 0 be the vector whose components are
all 0, and we say that x is nonnegative if x > 0. For i ∈ {1, . . . , d}, we let ei be the vector
such that ei(i) = 1 and ei(k) = 0 if k 6= i.

Limits in N
d
ω. We introduce an element ω 6∈ N and the set Nω = N∪{ω}. A sequence (ℓn)n>0

(also written (ℓn)n) of elements of Nω converges to ℓ ∈ Nω, if either it is ultimately constant
with value ℓ, or its subsequence of integer values is infinite, tends to infinity, and ℓ = ω. We

then say that ℓ is the limit of (ℓn)n, noted limn ℓn = ℓ, or ℓn
n→∞
99K ℓ. A sequence (xn)n of

vectors of Nd
ω has limit x ∈ N

d
ω, noted limn xn = x, if limn xn(i) = x(i) for all i ∈ {1, . . . , d}.

For M ⊆ N
d
ω, let LimM be the set of limits of sequences of elements of M . Notice that

M ⊆ LimM , (2.1)

and
if M ⊆ N

d, then M = N
d ∩ LimM . (2.2)

Topologically speaking, LimM is the least limit closed set containing M . It is called the
limit closure of M . The set M is said to be limit closed if M = LimM .

Downward closed sets of N
d and N

d
ω. Given an ordered set, one may under suitable

hypotheses construct a topological completion of this set, to recover a finite description of
its downward closed subsets [16, 17]. The completion of (Nd,6) is (Nd

ω,6) where we extend
the ordering 6 over N by n 6 ω for all n ∈ Nω.

A basis of a set D ⊆ N
d
ω is a finite set B ⊆ N

d
ω such that

LimD = ↓B. (2.3)

Such a set B is a finite representation of LimD. One verifies that the maximal elements of
any basis B of D still form a basis, which only depends on D. It is minimal for inclusion
among all bases, and is called the minimal basis of D. Of course, not all sets admit a basis.
By [16, 17], any downward closed set D ⊆ N

d admits a basis. This extends to any downward
closed set D of Nd

ω. Indeed, one can check that

LimD = Lim(D ∩ N
d), (2.4)

so that a basis B of the downward closed set D ∩ N
d satisfies LimD = ↓B. Note that

conversely, if B ⊆ N
d
ω is finite, then ↓B is limit closed (this may fail if B is infinite).

Finally, the limit and downward closure operators commute:

↓LimM = Lim ↓M (2.5)

Upward closed sets. If 4 is a well ordering over X (see Sec. 4 page 10), then for any
upward closed set Y ⊆ X, there exists a finite set B ⊆ Y such that Y = ↑4B. Such a set
is again called a basis (as for downward sets, but there will be no ambiguity). Observe that
contrary to the case of downward closed sets, no topological completion is needed here.

Example 2.1. Consider the set D =
{

(x, y) ∈ N
2 | x 6 3 ∨ y 6 1

}

∪
{

(4, 2), (4, 3), (5, 2)
}

,
which is downward closed. It is represented by the greyed grayed area in Fig. 3. Its limit
closure is LimD = D ∪

(

{0, 1, 2, 3} × {ω}
)

∪ {ω} × {0, 1}. A non-minimal basis of D is
(LimD \D)∪{(4, 3), (5, 2)}, shown with dots • and •© in Fig. 3, where elements involving ω

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 7

fall beyond the grid. Its minimal basis is {(3, ω), (4, 3), (5, 2), (ω, 1)} (circled •© in Fig. 3).
The minimal basis of its (upward closed) complement in N

d is {(4, 4), (5, 3), (6, 2)}.

· · ·
· · ·

· · ·

...
...

...
...

1
2
3

1 2 3 4 5

ω

ω

Fig. 3: A set D (grayed), elements of a basis (• and •©) and of its minimal basis (•©)

3. Vector Addition Systems

Definition 3.1. A Vector Addition System with one zero-test (shortly VASz) of dimension d
is a tuple V = 〈A, az , δ,xin〉, where A is a finite alphabet of actions, az 6∈ A is called the
zero-test, δ : A ∪ {az} → Z

d is a mapping, and xin ∈ N
d is the initial state.

Other equivalent formalisms exist, for instance with states, or with multiple zero-tests
transitions that test the same counter for zero. For now, we stick to the simplest version,
and we shall introduce states in Section 7.

Intuitively, a VASz works with d counters, one for each component, whose initial values
are given by xin. Executing action a ∈ A ∪ {az } translates the counter values according
to δ(a) ∈ Z

d. The mapping δ extends to a monoid morphism δ : (A ∪ {az })
∗ → Z

d, so
that δ(ε) = 0 and δ(uv) = δ(u) + δ(v) for u, v ∈ (A ∪ {az})

∗. More formally, a VASz

V = 〈A, az , δ,xin〉 of dimension d induces a transition relation → ⊆ N
d ×A× N

d with:
{

x
a
−−→ y if δ(a) = y − x for all a ∈ A

x
az−−→ y if δ(az) = y − x, and x(1) = 0.

(3.1)

We extend this relation to words by x
ε
−−→ x and x

uv
−−−→ z if there exists y such that

x
u
−−→ y

v
−−→ z. We say that u ∈ (A ∪ {az })

∗ is fireable from x if there exists y such that

x
u
−−→ y. When there may be ambiguity on the VASz, we will write

u
−−→V instead of

u
−−→.

Definition 3.2. A Vector Addition System (VAS) of dimension d is a tuple 〈A, δ,xin〉,
where A is a finite alphabet, δ : A→ Z

d is a mapping and xin ∈ N
d is the initial state.

A VAS is a particular VASz: choosing az 6∈ A, this VAS is formally equivalent to the
VASz 〈A, az , δ

′,xin〉, where δ′ extends δ by δ′(az) = (−1, 0, ..., 0) (i.e., az can never be fired).

For a VASz or a VAS V of dimension d, the reachability set Reach(V) and the cover
Cover(V) of V are the following subsets of Nd:

Reach(V) =
{

y ∈ N
d | ∃u ∈ (A ∪ {az })

∗,xin

u
−−→ y

}

,

Cover(V) = ↓Reach(V).

8 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

We call elements of Reach(V) reachable states (also called reachable markings in related
work). The reachability (resp. coverability) problem consists in deciding membership in
Reach(V) (resp. in Cover(V)). Reachability is decidable for VAS [30, 27, 29] and VASz [33, 7].

Theorem 3.1. Given a VAS or VASz V, the reachability problem for V is decidable.

Testing membership in the cover set is much easier, and one even gets a more precise
result [25, 20, 17]:

Theorem 3.2. Given a VAS V, one can effectively compute a (finite) basis of Cover(V).

Observe that given a (finite) basis B of a downward closed set D ⊆ N
d, one can effec-

tively test membership in D, since D = N
d∩↓B by (2.2) and (2.3). Therefore, Theorem 3.2

implies that one can effectively decide membership in Cover(V).
Computing a finite basis of the cover makes it also possible to decide whether two VAS

have the same cover, since from a finite basis, one can also compute the minimal basis, which
is canonical. Likewise, one can decide inclusion of covers. Finally, Theorem 3.2 implies that
one can decide place-boundedness, that is, whether the projection of Reach(V) on some given
component is bounded. In the next three sections, we shall show that one can also effectively
compute a finite basis for the cover of a VASz.

4. Limits of reachable states of a VAS

As observed above, for M ⊆ N
d, one can immediately construct an algorithm deciding

membership in M from an algorithm deciding membership in LimM , since M = N
d∩LimM

by (2.2). However, the converse is not true. Let us explain two reasons for this.

a. First, even if M is recursive, it may happen that LimM is not. We recall here an example
from [18, Prop. 2.4]. Let T0, T1, . . . be an effective enumeration of Turing machines. Let
α(k, ℓ) =

∣

∣{j 6 k | Tj halts in at most ℓ steps on ε}
∣

∣ and M =
{

(k, ℓ, α(k, ℓ)) | k, ℓ > 0
}

.
It is easy to describe an algorithm computing α(k, ℓ) given k, ℓ ∈ N, and therefore also
an algorithm to decide membership in M . However, LimM is not recursive, since the
halting problem reduces to it. Indeed, (k, ω,m) ∈ LimM means that exactly m machines
among T0, . . . , Tk halt on the empty word. Therefore, Tk halts on ε if and only if there
exists m 6 k + 1 such that (k, ω,m) ∈ LimM and (k − 1, ω,m− 1) ∈ LimM .

b. Second, even if LimM is recursive, one may not be able to effectively derive an algorithm
deciding membership in LimM from a description of M (such as a data structure, or an
algorithm deciding membership in M). As an example, consider the reachability set M

of a lossy counter machine (see again [31], or [34] for a survey). An algorithm to decide
membership of x in M is to compute the bases of the upward closed sets Prei(↑x) for
i = 0, 1, 2, ..., where Pre(X) denotes the set of predecessors of X. The sequence stabilizes,
since it consists only of upward closed sets. Moreover, due to the lossy behavior, M is
downward closed. Therefore, it admits a finite basis B, so that LimM = ↓B is recursive.
However, there is no algorithm taking as input a lossy counter machine and a vector
x ∈ N

d
ω, and deciding membership of x in LimM , where M is the reachability set.

Indeed, the set M is infinite if and only if LimM contains some vector of Nd
ω having at

least an ω-component. Therefore, the existence of such an algorithm would imply that
the boundedness problem (i.e., whether the reachability set is finite) is co-recursively
enumerable, which is not the case: boundedness for lossy counter machines is Σ0

1-complete.

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 9

The main result of this section considers the case where M is the reachability set of a VAS V.
Since Cover(V) = ↓Reach(V) = N

d ∩ Lim ↓Reach(V) = N
d ∩ ↓LimReach(V) (where the last

two equalities follow from (2.2) and (2.5)), one can by Theorem 3.2 effectively compute a
basis of ↓LimReach(V). However, since LimReach(V) is not necessarily downward closed,
this does not directly entail an algorithm for deciding membership in this set.

Theorem 4.1. Given a VAS V and x ∈ N
d
ω, one can decide whether x ∈ LimReach(V).

We establish Theorem 4.1 by describing two semi-algorithms proving that LimReach(V)
and its complement in N

d
ω are both recursively enumerable sets. Let us start with the

most interesting direction. We shall prove that LimReach(V) is recursively enumerable, by
introducing productive sequences, a notion inspired by Hauschildt [23].

Definition 4.1. Let V = 〈A, δ,xin〉 be a VAS, and let π = (ui)06i6k be a sequence of words
over A. We say that π is productive in V for a word v = a1 · · · ak ∈ A∗ if the words

un0a1u
n
1 · · · aku

n
k , n > 1

are all fireable from xin.

In particular, if π is productive for v, the state xin+δ(v)+nδ(π) is a reachable state in V,

where δ(π) =
∑k

i=0 δ(ui). Definition 4.1 shows that the set
{

(π, v) | π productive in V for v
}

is co-recursively enumerable. The following characterization immediately gives an algorithm
to decide membership in this set, showing that it is actually recursive.

Lemma 4.2. A sequence π = (ui)06i6k is productive in V for a word a1 · · · ak if and only if

(1) the partial sums δ(u0) + · · ·+ δ(uj) are nonnegative for every j ∈ {0, . . . , k}, and
(2) the word u0a1u1 · · · akuk is fireable from xin.

Proof. Let us introduce the states y0 = xin and yj = xin + δ(a1 · · · aj) for j ∈ {1, . . . , k},
and the partial sums x−1 = 0 and xj = δ(u0) + · · · + δ(uj) for j ∈ {0, . . . , k}. We put
u[−1, n] = ε, u[j, n] = un0a1u

n
1 · · · aju

n
j for j > 0, and v[j, n] = u[j, n]aj+1.

If π is productive for v = a1 · · · ak, then u[k, n] is fireable from xin for all n > 1.
Therefore, u[j, n] is also fireable from xin for j 6 k. We deduce that xin+δ(u[j, n]) = yj+nxj

is nonnegative for every n ∈ N. In particular xj > 0. We have proved (1), and (2) is obvious.
Conversely, assume that (1) and (2) both hold. For all n > 1, we have to show that

u[k, n] is fireable from xin, i.e., that xin + δ(w) > 0 for any nonempty prefix w of u[k, n].
Such a prefix is of the form v[j − 1, n]upju

′
j for some 0 6 j 6 k, 0 6 p < n, and some prefix

u′j of uj. By rearranging terms, we obtain

xin + δ(v[j − 1, n]upju
′
j) = xin + δ(un0a1u

n
1 · · · aj−1u

n
j−1aju

p
ju

′
j)

= xin + δ(u0a1u1 · · · aju
′
j) + (n− 1)xj−1 + δ(upj)

= xin + δ(u0a1u1 · · · aju
′
j) + (n− p− 1)xj−1 + pxj .

By (1), we have xj−1,xj > 0. By (2), the word u0a1u1 · · · akuk is fireable from xin, and in
particular, xin+δ(u0a1u1 · · · aju

′
j) > 0. Therefore, xin+δ(v[n, j−1]upju

′
j) > 0, which proves

that un0a1u
n
1 · · · aku

n
k is fireable from xin. We have shown that π is productive for a1 · · · ak.

10 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

We will now show in Proposition 4.4 below that limits of reachable states are witnessed
by productive sequences. Its essential argument is Higman’s Lemma. We recall that an
ordering 4 is well if every infinite sequence (ℓn)n∈N admits an infinite increasing subsequence
(ℓnk

)k∈N: ℓn0
4 ℓn1

4 ℓn2
4 · · · . The pointwise ordering over N

d or over N
d
ω is well

(Dickson’s Lemma).

Higman’s Lemma. Let Σ be a (possibly infinite) set. Given an ordering 4 over Σ, let 4∗

be the ordering over Σ∗ defined as follows: for u, v ∈ Σ∗, we have u 4∗ v if u = a1 · · · an
with ai ∈ Σ, v = v0b1v1 · · · vn−1bnvn, with vi ∈ Σ∗, bj ∈ Σ, and for all i = 1, . . . , n, we have
ai 4 bi. In other words, u is obtained from v by removing some letters, and then replacing
some of the remaining letters by smaller ones. Higman’s Lemma is the following result. See
for instance [10] for a proof.

Lemma 4.3 (Higman). If 4 is a well ordering over Σ, then 4∗ is a well ordering over Σ∗.

We extend the multiplication over Nω by ω · 0 = 0 = 0 ·ω and ω · k = ω = k ·ω if k 6= 0.
This multiplication then extends componentwise to the scalar multiplication of Nd

ω by Nω.

Proposition 4.4. Let V = 〈A, δ,xin〉 be a VAS. Then

LimReach(V) =
{

xin + δ(v) + ωδ(π) | v ∈ A∗and π productive in V for v
}

.

Proof. For the inclusion from right to left, if π is a productive sequence for a word v, then
xin+δ(v)+ωδ(π) is the limit of the sequence (xn)n∈N with xn = xin+δ(v)+nδ(π), which is a
reachable state by Definition 4.1. We prove the reverse inclusion thanks to Higman’s lemma.
We follow the approach of Jančar introduced in [24, Section 6].

Let us first introduce a well ordering ⊑ over Reach(V), using a temporary ordering 4.
Consider the infinite set Σ = A× N

d
ω. This set is well ordered by 4, defined by:

(a,y) 4 (b,z) if and only if a = b and y 6 z.

Since 4 is a well ordering, Higman’s lemma shows that 4∗ is a well ordering over Σ∗. We
associate to every reachable state y ∈ Reach(V) a word αy in Σ∗ as follows: since y is

reachable, the set Vy = {v ∈ A∗ | xin

v
−→ y} is nonempty. Let us choose arbitrarily some vy

in Vy (the actual choice is irrelevant, one can choose for instance the minimal element of Vy

wrt. the lexicographic ordering). Let vy = a1 · · · ak, with k > 0 and ai ∈ A. We introduce
the sequence (yi)06i6k of states defined by y0 = xin, and yi = xin + δ(a1 · · · ai) for i > 1.
We let

αy = (a1,y1) · · · (ak,yk).

We define the ordering ⊑ over Reach(V) by y ⊑ z if αy 4∗ αz and y 6 z. Since the orderings

4∗ over Σ∗ and 6 over N
d are well, we deduce that ⊑ is a well ordering over Reach(V).

Now, let us pick x ∈ LimReach(V): x is the limit of a sequence (xk)k∈N of reachable
states. By extracting a subsequence if necessary, one can assume that for every index i:

(i) if x(i) < ω, then xk(i) is constant, equal to x(i), and
(ii) if x(i) = ω, then (xk(i))k∈N is strictly increasing.

Denote by αj the word αxj
associated to the reachable state xj . Since ⊑ is a well ordering,

there exist m < n such that xm ⊑ xn. By construction of αm, there exists a word v =
a1 · · · ak with aj ∈ A such that the sequence (yj)16j6k defined by yj = xin + δ(a1 · · · aj) for
every j ∈ {1, . . . , k} satisfies:

αm = (a1,y1) · · · (ak,yk)

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 11

Since αm 4∗ αn and by definition of 4∗, there exist a sequence (zj)16j6k of states with
yj 6 zj , and a sequence (βj)06j6k of words in Σ∗ such that the following equality holds:

αn = β0(a1,z1)β1 · · · (ak,zk)βk

We call label of a word (b1, t1) · · · (bℓ, tℓ) over Σ the word b1 · · · bℓ over A. Consider the
sequence π = (uj)06j6k where uj is the label of βj . Since xm and xn are reachable, we have
by definition of αm and αn:

xin

a1−→ y1 · · ·
ak−→ yk = xm

xin

u0a1−−−→ z1 · · ·
uk−1ak
−−−−→ zk

uk−→ xn

(4.1)

From (4.1), we obtain in particular

zj = yj + δ(u0) + · · ·+ δ(uj−1) for every j ∈ {1, . . . , k} (4.2)

and in the same way,
xn = xm + δ(π) (4.3)

Using (4.2) with yj 6 zj for 1 6 j 6 k, and (4.3) with xm 6 xn, we deduce that π satisfies
property (1) of Lemma 4.2. Since, by (4.1), it also satisfies (2), it is productive for v.

It remains to prove that x = y where y = xin + δ(v) + ωδ(π). Let i ∈ {1, . . . , d}.

• If x(i) < ω then by (i), we get xm(i) = x(i) = xn(i), so using (4.3), we obtain
δ(π)(i) = 0. Since we have xn = xin + δ(v) + δ(π) by (4.1), we deduce that
x(i) = xn(i) = xin(i) + δ(v)(i) = y(i).
• If x(i) = ω, then by (ii) xm(i) < xn(i). We deduce from (4.3) that δ(π)(i) > 0.

Therefore, x(i) = ω = y(i).

Finally, x = y, and we have proved that there exists a productive sequence π for a word v
such that x = xin + δ(v) + ωδ(π).

Proposition 4.4 and Lemma 4.2 provide a semi-algorithm to test whether a given vector
x ∈ N

d
ω belongs to LimReach(V): it suffices to enumerate the pairs (π, v), where π is

productive for v, and to check whether x = xin + δ(v) + ωδ(π).

It is easier to prove that the complement of LimReach(V) is recursively enumerable.
Consider y ∈ N

d
ω. We introduce d distinct additional elements b1, . . . , bd 6∈ A. Let B =

{b1, . . . , bd}. We now introduce the VAS Vy = 〈A ⊎B, δy,xin〉, where δy extends δ by:

δy(bi) =

{

0 if y(i) < ω,

−ei if y(i) = ω.

Finally, we define from y a sequence (yℓ)ℓ converging to y, by yℓ(i) =

{

y(i) if y(i) < ω,

ℓ if y(i) = ω.

Lemma 4.5. Let Vy and (yℓ)ℓ constructed from y as above. Then,

y 6∈ LimReach(V)⇐⇒ ∃ℓ ∈ N, yℓ /∈ Reach(Vy). (4.4)

In particular, the complement of LimReach(V) is effectively recursively enumerable.

12 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

Proof. We prove the following, which is equivalent to (4.4):

y ∈ LimReach(V)⇐⇒ ∀ℓ ∈ N, yℓ ∈ Reach(Vy).

Assume that y ∈ LimReach(V). Fix ℓ ∈ N. There exists a sequence (zn)n of elements of
Reach(V) such that limn zn = y, so for n large enough, we have for all i = 1, . . . , d:

• zn(i) = y(i) = yℓ(i) if y(i) < ω,
• zn(i) > ℓ = yℓ(i) if y(i) = ω.

Then zn
u
−→ yℓ in Vy, with u =

∏d
i=1 bi

zn(i)−yℓ(i). Since zn is reachable from xin (already
in V), we deduce that yℓ ∈ Reach(Vy).

Conversely, assume that yℓ ∈ Reach(Vy) for all ℓ, and let uℓ ∈ (A ∪ B)∗ such that

xin

uℓ−→ yℓ, in Vy. Consider the word vℓ obtained from uℓ by erasing all letters of B. Since
δ(b) 6 0 for b ∈ B, the word vℓ is still fireable from xin, so that zℓ = xin+δ(vℓ) ∈ Reach(V).
Moreover, by definition of Vy, zℓ(i) = yℓ(i) if y(i) < ω and yℓ(i) 6 zℓ(i) otherwise.
Therefore, limℓ zℓ = limℓ yℓ = y, and it follows that y ∈ LimReach(V).

This shows (4.4). Hence, we can enumerate vectors yℓ and test, for each yℓ, its mem-
bership in Reach(Vy). This proves that LimReach(V) is co-recursively enumerable.

Theorem 4.1 now follows from Proposition 4.4 and Lemma 4.5.

5. Refined and filtered covers

In this section, we introduce two new notions of covers: refined and filtered covers. Both
are parameterized, and the following inclusions will hold, regardless of the parameters:

Reach(V) ⊆ RefinedCover(V) ⊆ Cover(V), and FilteredCover(V) ⊆ Cover(V)

Let us first introduce the refined cover, a set hybrid between the reachability and cover
sets, that to our knowledge has not yet been considered. Instead of the downward closure
Cover(V) of Reach(V) wrt. the pointwise ordering 6, we consider

Cover6P
(V) = ↓6P

Reach(V),

that is, we replace 6 with an ordering 6P over N
d
ω parameterized by a set of “positions”

P ⊆ {1, . . . , d}:

x 6P y if

{

x(i) = y(i) for i ∈ P ,

x(i) 6 y(i) for i /∈ P .

The set P contains the components for which we insist on keeping equality. Thus, 6∅

is the usual pointwise ordering 6, while 6{1,...,d} boils down to equality. Notice that 6P is
not a well ordering, except if P = ∅ (e.g., N ordered by 6{1} consists only of incomparable
elements, since in this case, 6{1} is just equality).

The ordering 6{1} will be abbreviated as 61. It is a natural order to study for a VASz

(recall that the zero-test occurs on the first component). Indeed, the transition relation of

a VASz is monotonic with respect to this order: if x
u
−→ x′ and x 61 y, then there exists y′

with y
u
−→ y′ and x′ 61 y′. In words, from a 61-larger state than x, one can perform the

same transitions as from x, and reach a state 61-above that the one reached from x. This
is clearly not the case if one uses the pointwise ordering 6 instead of 61: some zero-tests
may fail from the largest state and succeed from the smallest one.

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 13

More precisely, testing if Cover61
(V) contains a vector whose first component is 0 is

what we need to design our algorithm computing the cover of a VAS with one zero test.
Unfortunately, the set Cover61

(V) cannot be represented by a finite set of 61-maximal
elements, since it may well have infinitely many of them. Actually, the following theorem
shows that we cannot find a sensible way to compute a representation of this set, as any
representation would not allow to test for equality.

Theorem 5.1. Given two VAS V1, V2, it is undecidable whether Cover61
(V1) = Cover61

(V2).

Proof. We reduce the equality problem Reach(V1) = Reach(V2), which is known to be unde-
cidable [4, 22], to the problem of the statement. Let us first consider a VAS V = 〈A, δ,xin〉
of dimension d. We introduce a VAS V ′ = 〈A, δ′,x′

in
〉 of dimension d+ 1 that counts in the

first component the sum of the other components. Formally, x′
in

=
(
∑d

i=1 xin(i),xin

)

and

δ′(a) =
(
∑d

i=1 δ(a)(i), δ(a)
)

for every a ∈ A. Observe that the following equivalence holds:

(n,x) ∈ Reach(V ′) ⇐⇒ x ∈ Reach(V) and n =

d
∑

i=1

x(i).

Finally, consider two VAS V1 and V2, and just observe that Reach(V1) = Reach(V2) if and
only if Cover61

(V ′1) = Cover61
(V ′2).

So, we cannot hope for a useful representation of the sets Cover6P
(V). However, one

can capture the needed information differently, by replacing the downward closure ↓6P
in

Cover6P
(V) = ↓6P

Reach(V) with another operator ⇓f , parameterized by a vector f of Nd
ω

(the letter f stands for filter). Informally, ⇓fM is a downward closure taking into account
only elements of M that agree with f on its finite components. Other elements will just be
discarded. Formally, for f ∈ N

d
ω and M ⊆ N

d
ω, we define the filtered cover ⇓fM by:

Filter(M ,f) =
{

x ∈M |
d
∧

i=1

[

f(i) < ω =⇒ x(i) = f(i)
]

}

,

⇓fM =

yFilter(M ,f).

Observe that ⇓fM is a downward closed subset of ↓M , and that ⇓(ω,ω,...,ω)M = ↓M .

Elements of the minimal basis of ⇓fM agree with f on components i where f(i) < ω. One
can check that the limit and filter operators commute:

Filter(LimM ,f) = LimFilter(M ,f).

Since the limit and the downward closure operators also commute (see (2.5)), we obtain

⇓fLimM = Lim⇓fM . (5.1)

The motivation for considering filtered covers is that, for f = (0, ω, . . . , ω) ∈ N
d
ω and

M = Reach(V) where V is a VAS of dimension d, the set ⇓fM captures all information
we need to overcome the difficulty described on page 3. Moreover, contrary to the refined
cover of a VAS, all its filtered covers are computable, as stated in Theorem 5.2 below. Our
goal in this section is to describe an algorithm computing a filtered cover of a VAS. Our
algorithm both refines Karp and Miller’s one to compute the usual cover, and generalizes
Theorem 4.1.

Theorem 5.2. Let V be a VAS. Given f ∈ N
d
ω, one can compute a basis of ⇓fReach(V).

14 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

Karp and Miller’s algorithm computing Cover(V) corresponds to the case f = (ω, . . . , ω).
Since M and LimM have the same bases (by definition (2.3) of a basis), computing a
basis of ⇓fReach(V) is the same as computing a basis of Lim⇓fReach(V), i.e., by (5.1), of
⇓fLimReach(V). We first reduce this computation to a decision problem, as in [35, Th. 2.10].

For M ⊆ N
d
ω, let us introduce the following set:

F(M) =
{

(f ,y) ∈ N
d
ω × N

d
ω | y ∈ ⇓fM

}

.

Lemma 5.3. Let M ⊆ N
d
ω be a limit closed set. From an algorithm solving the membership

problem for F(M), one can construct an algorithm which, given an input vector f ∈ N
d
ω,

outputs a basis of ⇓fM .

Proof. Observe that ⇓fM has the same bases as N
d ∩ ⇓fM . Now, if D ⊆ N

d is downward

closed, one can compute a basis BD ⊆ N
d
ω of D from a basis BU of its (upward closed)

complement U = N
d \D: an algorithm generates all candidates BD for a basis of D, (i.e.,

all finite subsets of the countable set Nd
ω), and checks for each candidate whether it is indeed

a basis of D, i.e., that the union of the sets N
d ∩ ↓BD and N

d ∩ ↑BU is N
d, and that their

intersection is empty. This property is Presburger definable, whence decidable.
Hence, to compute a basis of ⇓fM given f , it suffices to compute a basis of Nd \ ⇓fM .

Now, [35, Th. 2.10] describes an algorithm computing such a basis from an algorithm decid-
ing, given y ∈ N

d
ω, whether (Nd \⇓fM)∩↓y = ∅, or equivalently, whether Nd∩↓y ⊆ ⇓fM .

Note that y may have some components whose value is ω, so, if M were an arbitrary set, it
might happen that ↓y 6⊆ ⇓fM . However, M is limit closed, and therefore N

d ∩ ↓y ⊆ ⇓fM
is equivalent to y ∈ ⇓fM , that is, to (f ,y) ∈ F(M).

Notice that Lemma 5.3 requires as input an algorithm solving the membership problem
in F(M), i.e., a unique algorithm solving the membership of y in ⇓fM where f is an input
parameter. This hypothesis cannot be weakened by just assuming that for each f we have
an algorithm deciding the membership of y in ⇓fM . In fact this hypothesis is a tautology,
since the set ⇓fM is recursive, as every downward closed set. The lemma becomes clearly
wrong without any condition on M .

We will now reduce membership in F(LimReach(V)) to a similar problem involving
refined covers. The next lemma provides a relationship between the sets ⇓fM and ↓6P

M .

Lemma 5.4. Let M ⊆ N
d
ω, P ⊆ {1, . . . , d}, and y ∈ N

d
ω. Define f ∈ N

d
ω by

f(i) =

{

y(i) if i ∈ P , and

ω otherwise.
(5.2)

Then we have:
y ∈ ↓6P

M ⇐⇒ y ∈ ⇓fM . (5.3)

Proof. Assume first that y ∈ ↓6P
M . Then, there exists x ∈ M such that y 6P x. We

prove that x ∈ Filter(M ,f) by observing that if i is an index such that f(i) < ω, then
i ∈ P and f(i) = y(i) < ω. From i ∈ P we get x(i) = y(i). Hence x(i) = f(i) and we have
proved that x ∈ Filter(M ,f). Since y 6 x, we get y ∈ ⇓fM .

Conversely, assume that y ∈ ⇓fM : there exists x ∈ Filter(M ,f) such that y 6 x. Let
i ∈ P . If y(i) = ω then from y(i) 6 x(i) we get y(i) = x(i). If y(i) < ω then f(i) = y(i)
and form x ∈ Filter(M ,f) we get x(i) = f(i). Hence in both cases, we have x(i) = y(i).
We have proved that y 6P x. Therefore y ∈ ↓6P

M .

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 15

Let us now introduce another set, again for a set M ⊆ N
d
ω:

P(M) =
{

(P,y) ∈ 2{1,...,d} × N
d
ω | y ∈ ↓6P

M
}

Corollary 5.5 (of Lemma 5.4). The membership problems in P(M) and in F(M) are
inter-reducible. Both reductions are effective: from an algorithm solving the first problem,
we construct an algorithm solving the second one.

Proof. From P ⊆ {1, . . . , d} and y ∈ N
d
ω, define f ∈ N

d
ω by (5.2). From (5.3), we deduce

that (P,y) ∈ P(M) if and only if (f ,y) ∈ F(M).

Conversely, let f ∈ N
d
ω and y ∈ N

d
ω. Observe that if y 66 f then y 6∈ ⇓fM . So we can

assume that y 6 f . We introduce the set P =
{

i ∈ {1, . . . , d} | f(i) < ω
}

and the vector

z ∈ N
d
ω defined by z(i) = f(i) if i ∈ P and z(i) = y(i) otherwise. We have y ∈ ⇓fM if

and only if z ∈ ⇓fM . Moreover, from Lemma 5.4 we deduce that z ∈ ⇓fM if and only if
z ∈ ↓6P

M . In summary, (y,f) ∈ F(M) if and only if y 6 f and (z, P) ∈ P(M).

To establish Theorem 5.2, it remains, in view of Lemma 5.3 and Corollary 5.5, to find
an algorithm solving membership to P(LimReach(V)). This is obtained by first proving
that, for a VAS VP suitably constructed from V and P , we have

Reach(VP) = Cover6P
(V) (5.4)

which implies LimReach(VP) = LimCover6P
(V) = Lim ↓6P

Reach(V) = ↓6P
LimReach(V).

Then, Theorem 4.1 applied to VP will give an algorithm to decide membership in this set.
Since there is a finite number of subsets P of {1, . . . , d}, this yields an algorithm to decide
membership in P(LimReach(V)).

So let V = 〈A, δ,xin〉 be a VAS and P ⊆ {1, . . . , d}, and let us define a VAS VP satisfy-
ing (5.4). We consider d distinct additional elements b1, . . . , bd 6∈ A. Let B = {b1, . . . , bd}.
We consider the VAS VP = 〈A ⊎B, δP ,xin〉, where δP extends δ by:

δP (bi) =

{

0 if i ∈ P

−ei if i /∈ P .

Lemma 5.6. Let VP constructed from V and P as above. Then Cover6P
(V) = Reach(VP).

Proof. Let x ∈ Cover6P
(V). By definition, there exists y ∈ Reach(V) such that x 6P y.

Note that y ∈ Reach(VP), and that y
u
−→ x in VP with u =

∏d
i=1 b

y(i)−x(i)
i , so x ∈ Reach(VP).

Conversely let x ∈ Reach(VP), and u ∈ (A ∪ B)∗ such that xin

u
−→VP

x. Let v be obtained
from u by erasing all letters of B. Since δP (b) 6 0 for b ∈ B, the word v is fireable from xin.
Thus y = xin+δ(v) ∈ Reach(V). By definition of VP we have x 6P y, so x ∈ Cover6P

(V).

As explained above, Theorem 5.2 is now established, by combining Lemmas 5.3 and
Corollary 5.5 applied to M = LimReach(V), as well as Lemma 5.6.

6. Computing the cover of a VAS with one zero-test

This section describes an algorithm computing a basis of the cover of a VASz given as input.

It will be convenient to consider VAS or VASz whose initial state belongs to N
d
ω. The

semantics given by (3.1) is generalized by extending addition to Nω, letting ω+n = n+ω = ω
for all n ∈ Z. Notice that all results obtained so far for a VAS, and in particular Theorem 5.2,

16 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

extend to VAS with such generalized initial states. Indeed, an ω value in some component
of xin remains frozen to ω, whatever action is executed, and can therefore be safely ignored.

We introduce a notation to change the initial state of a VAS/VASz V. For x ∈ N
d
ω, we

let V(x) be the VAS/VASz obtained from V by replacing the initial state xin by x.

In this section, we fix a VASz Vz = 〈A, az , δ,xin〉. To simplify the presentation, we
assume without loss of generality that xin ∈ {0} × N

d−1, and that δ(az) ∈ {0} × Z
d−1. In

the sequel, we denote by V = 〈A, δ,xin〉 the VAS obtained from Vz by removing the zero test.
We shall work with a single filter throughout the section: we introduce f = (0, ω, . . . , ω).

Input/output of the algorithm. Our algorithm is inspired by Karp and Miller’s one for
a VAS [25]. Given as input a VASz Vz, it builds a finite tree with nodes labeled by vectors
in {0} × N

d−1
ω , such that when the algorithm terminates:

The set R of node labels is a basis of ⇓fReach(Vz). (∗)

Observe that, at the end of the algorithm, R is not a basis of the whole cover of Vz, but
only a basis of an f -filtered cover of Vz.

Let us first explain how to compute from R a basis of Cover(Vz). If x ∈ Cover(Vz),

then there exist u ∈ A∗ and y ∈ N
d such that xin

u
−→ y > x. Let us factorize u = u1u2,

where u1 ends with the last zero test az , or is empty if there is no zero-test. Then, we

have xin

u1−→ r
u2−→ y > x, with r ∈ {0} × N

d−1 (if u1 is empty, we use the assumption
xin ∈ {0} × N

d−1). In particular, r ∈ ⇓fReach(Vz) = ↓R ∩ N
d by (∗). Since no zero-

test occurs in u2, the state y reached after firing u belongs to Reach(V(r)), and therefore,
x ∈ ↓Reach(V(r)). This simple remark yields the following result:

Lemma 6.1. If R is a basis of ⇓fReach(Vz), then Cover(Vz) =
⋃

r∈R ↓Reach(V(r)).

In words, we obtain a basis of Cover(Vz) as the union of all bases output by the usual
Karp-Miller algorithm run on inputs V(r), for r ∈ R. Let us now explain how to compute R.

Outline of the algorithm. To build a tree whose set of labels is R ⊆ {0} × N
d
ω, the

algorithm works top-down from the root labeled by the initial state xin ∈ {0} × N
d−1. Its

main loop is similar to that of the Karp-Miller algorithm: for each leaf of the tree,

(1) if the label of the leaf already occurs above it along the path to the root, then the leaf
is not expanded, and will remain a leaf during the execution of the algorithm.

(2) Otherwise, we try to expand the tree from the leaf. As in the Karp-Miller algorithm:
a. we perform some standard acceleration, which is explained below,
b. we then expand the leaf, adding new children to it. However, unlike the Karp-Miller

algorithm, which fires all original transitions of the VAS from the label of the leaf,
we add two kinds of children to the current leaf labeled x ∈ {0} × N

d−1
ω :

(i) one child corresponding to firing the zero-test from the leaf label, if possible,
(ii) several children representing a basis of ⇓fReach(V(x)).

Note that Step (ii) involves V and not Vz, i.e., the zero-test is not considered during this step.
It is a macro-step computing itself a basis of a cover, to be used in the whole computation.
In the particular case where the VASz is obtained by just adding to states of a VAS an extra
first component, left untouched (therefore remaining 0 forever) and where the zero-test is
never fired, step (ii) actually computes in one shot the cover of the original VAS (completed
with the first component, left to 0). Theorem 5.2 shows that Step (ii) is effective.

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 17

We now enter the details of the algorithm. At any step of the execution, in the tree built

by the algorithm, every ancestor node nx of a node ny satisfies the invariant x
∗
=⇒ y where

x,y are the labels of nx, ny and where
∗
=⇒ is the binary relation defined over {0}×N

d−1
ω by:

x
∗
=⇒ y if y ∈ ⇓fLimReach(Vz(x)).

By the next lemma, it is sufficient to maintain this invariant along each parent-child edge.

Lemma 6.2. The binary relation
∗
=⇒ over {0} ×N

d−1
ω is reflexive and transitive.

The proof of Lemma 6.2 is itself based on the following intermediate statement. To
shorten notation, for a set M ⊆ N

d
ω, we let ReachM =

⋃

x∈M Reach(Vz(x)) denote the set
of states that can be reached in Vz from any initial vector chosen in M (in this notation
used only in Lemmas 6.2 and 6.3, the VASz will always be Vz, and is therefore omitted).

Lemma 6.3. Let M ⊆ N
d
ω. Then, we have LimReach LimM = LimReachM .

Proof. Since M ⊆ LimM , we have LimReachM ⊆ LimReach LimM . For the other inclu-
sion, pick x ∈ LimReach LimM . This means that we have the following situation

yn

n→∞
99K y

un−→ xn
n→∞
99K x,

with yn ∈M , y,xn ∈ N
d
ω and un ∈ A∗ for all n.

Since limn yn = y, we may assume that yn(i) = y(i) for all n if y(i) < ω, and that
(yn(i))n is strictly increasing if y(i) = ω. Let kn be a strictly increasing sequence such that
kn > n +max16i6d |δ(un)(i)|, and let y′

n = ykn . Clearly, limn y
′
n = y. By construction, un

is fireable from y′
n: let y′

n
un−→ x′

n. We then have x′
n(i) = xn(i) if y(i) < ω, and x′

n(i) > n
if y(i) = ω. So, x = limn x

′
n ∈ LimReachM .

Proof of Lemma 6.2. Reflexivity is obvious. For transitivity, assume that x
∗
=⇒ y

∗
=⇒ z. Then

by definition of
∗
=⇒, we have z ∈ ⇓fLimReach(Vz(y)) and y ∈ ⇓fLimReach(Vz(x)). Since

f = (0, ω, . . . , ω), we can use monotony to obtain ⇓fReach(Vz(x)) = Reach⇓fReach(Vz(x)).
We deduce from this equality that

⇓fLim⇓fReach(Vz(x)) = ⇓fLimReach⇓fReach(Vz(x)) by applying the monotonous

operator ⇓fLim,

= ⇓fLimReach Lim⇓fReach(Vz(x)) by Lemma 6.3.

Since Lim and ⇓f commute (see (5.1)), and since the operator ⇓f is obviously idempotent, we
finally get ⇓fLimReach(Vz(x)) = ⇓fLimReach⇓fLimReach(Vz(x)). Now, the hypotheses
imply that z ∈ ⇓fLimReach⇓fLimReach(Vz(x)). We deduce that z ∈ ⇓fLimReach(Vz(x)),

that is, x
∗
=⇒ z.

Assume now that x ∈ {0}×N
d−1
ω labels a leaf. We create a child of this leaf if the vector

y = x + δ(az) is nonnegative. Note that in this case y ∈ {0} × N
d−1
ω , since δ(az)(1) = 0.

We do not violate the invariant when creating the child labeled y since x
∗
=⇒ y. We also add

new children labeled by elements of the minimal basis B(x) of ⇓fLimReach(V(x)). Since

N
d ∩⇓fLimReach(V(x)) is equal to N

d ∩⇓fReach(V(x)), by Theorem 5.2, one can compute

B(x). Observe that x
∗
=⇒ b for every b ∈ B(x), so that the invariant is still fulfilled after

adding elements of B(x).

18 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

The termination of the algorithm is obtained by introducing an acceleration operator ∇.
For x,y ∈ {0} × N

d−1
ω such that x 6 y, we define the vector x∇ y ∈ {0} × N

d−1
ω by:

(x∇ y)(i) =

{

ω if x(i) < y(i)

x(i) if x(i) = y(i).

Let us first verify that performing acceleration cannot violate the invariant.

Lemma 6.4. If x
∗
=⇒ y with x 6 y then x

∗
=⇒ (x∇ y).

Proof. If x
∗
=⇒ y, then y ∈ ⇓fLimReach(Vz(x)), and we obtain the following situation

x
un−−−→ zn

n→∞
99K z > y,

with un ∈ (A ∪ {az })
∗ and z,zn ∈ {0} × N

d−1
ω . Since z > y > x, there exists ℓ such that

zℓ(i) > x(i) for all indices i satisfying x(i) < ω, and further zℓ(i) > x(i) if x(i) < y(i).
Therefore, zℓ > x, and as we have zℓ(1) = x(1) = 0, we deduce that ukℓ is fireable from x

for all k. Call tk the state reached from x after firing ukℓ . Then we have tk ∈ {0} × N
d−1
ω

and limk→∞ tk > x∇ y, which proves x∇ y ∈ ⇓fLimReach(Vz(x)).

Algorithm 1 An algorithm to compute a basis of ⇓fReach(Vz)

• Inputs: A VASz Vz such that xin ∈ {0} × N
d−1 and δ(az) ∈ {0} × Z

d−1.
• Outputs: R, a finite subset of {0} × N

d−1
ω .

• Internal Variables:
– T , a tree labeled by elements of Nd

ω.
– N , a set of nodes.

• Algorithm:

1: Initialize T as a single root nin, labeled by xin

2: N ← {nin}
3: while N 6= ∅ do
4: Choose a node n from N
5: N ← N \ {n}
6: x← label(n)
7: if no strict ancestor of n has label x then
8: for all strict ancestor n0 of n do ⊲ Acceleration, step 2.a

9: x0 ← label(n0)
10: if x0 6 x then
11: x← x0 ∇ x

12: Replace the label of n by x

13: if x+ δ(az) > 0 then ⊲ Expand by zero-test, step 2.b (i)
14: Create a new node in T labeled by x+ δ(az), as a child of n
15: Add this node to N
16: for all b ∈ B(x) do ⊲ Expand by B(x), step 2.b (ii)

17: Create a new node in T labeled by b, as a child of n
18: Add this node to N
19: R←

{

label(n) | n ∈ nodes(T)
}

20: return R

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 19

Algorithm 1 computes R. If every leaf has a (strict) ancestor with the same label,
then it terminates and returns the current set of node labels. If it finds some leaf n whose
ancestors carry different labels than that of n, it performs acceleration at n (step 2.a of the
outline): while n has an ancestor n0 labeled by a vector x0 such that x0 6 x < x0 ∇ x, it
replaces the label x of the leaf n with x0 ∇ x.

From Lemma 6.4, we deduce that the invariant still holds. Since this loop just replaces
some components by ω, it terminates. Finally, once the label x of n has been updated, the
algorithm creates a new child labeled by x+ δ(az) if this vector is nonnegative (step 2.b(i)),
and it creates a new child of n labeled by b for each b ∈ B(x) (step 2.b(ii)). Note that all
labels belong to {0} × N

d
ω, since {xin, δ(az)} ∪B(x) ⊆ {0} × N

d
ω.

Proposition 6.5. Algorithm 1 terminates, and it returns a finite set R such that

↓R = ⇓fLimReach(Vz). (6.1)

Proof. The termination of the algorithm follows from König’s lemma. If the algorithm does
not terminate, then it would generate an infinite tree. Because this tree has a finite branching
degree, by König’s lemma, there is an infinite branch. Since 6 is a well-ordering over
{0} ×N

d−1
ω , this implies that we can extract from this infinite branch an infinite increasing

subsequence. However, since we add children to a leaf only if there does not exist a strict
ancestor labeled by the same vector, this sequence cannot contain the same vector twice, and
must therefore be strictly increasing. But, due to the use of the operator ∇, a component
with an integer is replaced by ω at every acceleration step. Because the number of ω’s in the
vectors labeling a branch cannot decrease, we obtain a contradiction. Let us now prove (6.1).

⊆ Let n be a node of T , whose label is x. By Lemmas 6.2 and 6.4, we have xin

∗
=⇒ x. By

definition of
∗
=⇒, we conclude that x ∈ ⇓fLimReach(Vz).

⊇ We shall show ⇓fReach(Vz) ⊆ ↓R. The desired inclusion follows by taking limits of both
sides, since Lim⇓fReach(Vz) = ⇓fLimReach(Vz) and Lim ↓R = ↓R (since R is finite).

So let (0,α) ∈ ⇓fReach(Vz): there exist α′ ∈ N
d−1 with α 6 α′ and u ∈ (A ∪ {az})

∗

such that xin

u
−→ (0,α′). We will show by induction on the length of u that (0,α′) ∈ ↓R.

If u is empty, just observe that xin labels the root, hence xin ∈ R. Otherwise, u = va
and we have:

xin

v
−→ (0,β)

a
−→ (0,α′)

The induction hypothesis yields (0,β) ∈ ↓R. Hence, there is in the tree a node labeled
γ > β. Since a node label cannot be modified after acceleration (lines 8 to 11), this
means that instructions at lines 13 and 16 have been executed when the variable x was
set to γ, and this ensures that α′ ∈ ↓R.

We have proved that Algorithm 1 computes a basis R of ⇓fReach(Vz).

Proposition 6.5 and Lemma 6.1 finally imply the central theorem of this paper:

Theorem 6.6. Given a VASz Vz, one can effectively compute the minimal basis of Cover(Vz).

This theorem solves the place-boundedness problem for VASz. For vector addition
systems, it can be transferred to obtain model-checking algorithms. We investigate model-
checking problems in the presence of one zero-test in the next section. However, we shall
use the decidability of the reachability problem instead of Theorem 6.6.

20 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

7. Repeated Control State Reachability is decidable for VASSz

Vector addition systems can be extended with control flow graphs. Such a control flow graph
is given by a finite set of control states and a finite set of transitions labeled by actions.
This model is called Vector Addition Systems with States (VASS for short). If instead of a
VAS, we enrich a VASz with a control flow graph, we obtain a Vector Addition System with
States and one zero-test (VASSz for short). These models are formally defined in the sequel.

For these systems, the repeated control state reachability consists in deciding whether a
given control state can be visited infinitely often along some run. This problem is interesting
since a number of model-checking problems, such as LTL model-checking, are reducible to
it. For the class of VASS, the repeated control state reachability problem is known to be
decidable thanks to a reduction to the computation of the cover set. In this section, we extend
this decidability result for the class of VASSz. However, our proof relies on a reduction to the
reachability problem for VASSz [33, 7]. We leave as an open question whether the repeated
control state reachability for VASSz can be reduced to the computation of the cover.

Let us first recall the classical extensions of VAS and VASz with States, respectively
written VASS and VASSz. States can be seen as mutually-exclusive, 1-bounded counters,
and hence are only used as a syntactic convenience.

Definition 7.1. (VASSz) A Vector Addition System with States and one zero-test (VASSz)
of dimension d is a tuple V = 〈A, az , δ,xin, Q, T, qin〉, where 〈A, az , δ,xin〉 is a VASz of
dimension d, Q is a non-empty finite set of control states, T ⊆ Q× (A∪{az})×Q is a finite
set of transitions, and qin ∈ Q is the initial control state.

A Vector Addition System with States (VASS) is defined similarly from a VAS 〈A, δ,xin〉,
with T ⊆ Q × A × Q, and can be thought of as a VASSz where the action az is not used.
The VASSz semantics is defined as follows. Let us call state any pair (q,x) ∈ Q × N

d. A
VASSz of dimension d induces a transition system over the set of states, given for every
a ∈ A ∪ {az } by:

(p,x)
a
−−→ (q,y) if (p, a, q) ∈ T and x

a
−−→ y

These relations extend uniquely into relations
w
−−→ over the set of states, for w ∈ (A∪{az })

∗,

by requiring that
ε
−−→ is the identity relation and

w1w2−−−−→ is the composition
w1−−−→ ◦

w2−−−→,

for w1, w2 ∈ (A ∪ {az})
∗. The reachability relation, denoted by

∗
−−→ is defined as the union

of all relations
w
−−→, when w ranges over (A ∪ {az})

∗. We also introduce the relation
+
−−→

defined as the union of all relations
w
−−→ when w ranges over (A ∪ {az})

+.

A control state qf ∈ Q is said to be visited infinitely often if there exists an infi-

nite sequence (xj)j>0 of vectors xj ∈ N
d such that (qin ,xin)

∗
−−→ (qf ,x1) and such that

(qf ,xj)
+
−−→ (qf ,xj+1) for all j > 0. The repeated control state reachability consists in

deciding whether a given control state qf is visited infinitely often.

We first reduce the repeated control state reachability to a simpler property.

Lemma 7.1. Let V = 〈A, az , δ,xin, Q, T, qin〉 be a VASSz of dimension d. A control state

qf is visited infinitely often if and only if there exist x,y ∈ N
d such that (qin ,xin)

∗
−−→

(qf ,x)
w
−−→ (qf ,y), and one of the following conditions is satisfied:

(i) we have x 6 y and w ∈ A+, or
(ii) we have x 61 y and w ∈ (A ∪ {az})

+.

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 21

Proof. Naturally, if (i) or (ii) holds, then qf is visited infinitely often by monotony of
w
−−→.

Conversely, assume that qf is visited infinitely often. There exists an infinite sequence

(xj)j>0 of vectors xj ∈ N
d, a word w0 ∈ (A ∪ {az})

∗ such that (qin ,xin)
w0−−−→ (qf ,x1), and

an infinite sequence (wj)j>0 of words wj ∈ (A ∪ {az })
+ such that (qf ,xj)

wj
−−−→ (qf ,xj+1)

for every j > 0. We introduce the set J of indexes j > 0 such that az occurs in wj. We
distinguish two cases according to whether J is finite or infinite.

Assume first that J is finite. By replacing w0 with w0 · · ·wm, where m = max J , and
wℓ with wm+ℓ for ℓ > 0, we may assume without loss of generality that J = ∅, i.e., that
wj ∈ A+ for all j > 0. By Dickson’s lemma, there exist positive integers j < k such that

xj 6 xk. We deduce that (i) holds, by observing that (qin ,xin)
v
−−→ (qf ,x)

w
−−→ (qf ,y) with

v = w0 . . . wj−1, w = wj . . . wk−1, x = xj and y = xk.
Assume now that J is infinite. By suitably concatenating some words wj , we can assume

without loss of generality that az occurs in wj for every j > 0. This means that wj can be
decomposed into wj = ujazvj for some words uj , vj ∈ (A ∪ {az})

∗. Hence there exists a

state (qj ,yj) such that (qf ,xj)
ujaz
−−−−→ (qj,yj)

vj
−−→ (qf ,xj+1). Dickson’s lemma shows that

there exist j < k such that yj 6 yk and qj = qk. Since the vectors yj and yk appear just
after the zero test az , we deduce that yj(0) = yk(0), so yj 61 yk. Let z = yk − yj. Note
that we have:

(qin ,xin)
w0...wj−1ujaz
−−−−−−−−−→ (qj,yj)

vj
−−→ (qf ,xj+1)

wj+1...wk−1ukaz
−−−−−−−−−−−−→ (qk,yk)

Now we use monotony: since (qj,yj)
vj
−−→ (qf ,xj+1), yj 61 yk, and qk = qj, we get

(qk,yk)
vj
−−→ (qf ,xj+1 + z). Therefore (qin ,xin)

v
−−→ (qf ,x)

w
−−→ (qf ,y) with v = w0 . . . wj ,

w = wj+1 . . . wk−1ukazvj , x = xj+1, and y = xj+1 + z.

Theorem 7.2. The repeated control state reachability problem is decidable for VASSz.

Proof. Consider a VASSz V = 〈A, az , δ,xin, Q, T, qin〉 of dimension d and a control state
qf ∈ Q. Without loss of generality, by introducing some extra control states and actions, we
can assume that δ(az) is the zero vector.

We construct from V a VASSz V
′ = 〈A′, az , δ

′, Q′, T ′, qin〉 of dimension 2d as follows. We
duplicate the set of control states Q into two additional copies for simulating conditions (i)
and (ii) of Lemma 7.1. These copies are denoted by Q(i) and Q(ii), and the copies of a
control state q ∈ Q are denoted by q(i) and q(ii). We define Q′ = Q ∪ Q(i) ∪ Q(ii). We
duplicate the set of actions A into two additional copies A(i) and A(ii). The copies of an
action a ∈ A are denoted by a(i) and a(ii). We introduce the set of transitions

T(i) = {(p(i), a(i), q(i)) | (p, a, q) ∈ T ∧ a ∈ A} ∪ {(qf , a(i), q(i)) | (qf , a, q) ∈ T ∧ a ∈ A},
T(ii) = {(p(ii), a(ii), q(ii)) | (p, a, q) ∈ T} ∪ {(qf , a(ii), q(ii)) | (qf , a, q) ∈ T},

where (az)(ii) denotes az . Observe that transitions in T(i) are not labeled by the zero-test az .
The set of transitions of V ′ is T ′ = T ∪T(i)∪T(ii). The displacement function δ′ is defined by
δ′(a) = (δ(a), δ(a)), and δ′(a(i)) = δ′(a(ii)) = (δ(a),0) for every a ∈ A, and δ′(az) = (0,0).

Now just observe that for every x,y ∈ N
d, we have:

(i) There exists a run in V of the form (qin ,xin)
∗
−−→ (qf ,x)

w
−−→ (q,y) such that w ∈ A+

if and only if (q(i),y,x) is reachable in V ′.

(ii) There exists a run in V of the form (qin ,xin)
∗
−−→ (qf ,x)

w
−−→ (q,y) such that

w ∈ (A ∪ {az})
+ if and only if (q(ii),y,x) is reachable in V ′.

22 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

From Lemma 7.1 we deduce that qf is a repeated control state in V if and only there exists
for V ′ a reachable state of the form ((qf)(i),y,x) with x 6 y, or a reachable state of the
form ((qf)(ii),y,x) with x 61 y.

We reduce these two problems to the reachability problem for a VASSz V
′′ obtained

from V ′ by adding two extra states r(i) and r(ii), two extra transitions ((qf)(i), (0,0), r(i))
and ((qf)(ii), (0,0), r(ii)), and two extra cycles on r(i) and r(ii) that suitably decrease the
counters, in such a way that

– ((qf)(i),y,x) with x 6 y is reachable in V ′ if and only if (r(i),0,0) is reachable in V ′′, and
– ((qf)(ii),y,x) with x 61 y is reachable in V ′ if an only if (r(ii),0,0) is reachable in V ′′.

We have reduced the repeated control state reachability problem to the reachability problem
for VASSz, which is decidable [33, 7].

A classical application of the decidability of the repeated control state reachability for
VASS is the decidability of LTL model-checking, and more generally of model-checking
against ω-regular specifications (it is well-known that LTL specifications can be effectively
compiled into ω-regular specifications, see [37] for some original results, or [36] for a survey).
Let us informally describe this problem (see [14, 5] for formal presentations). Its inputs are
a Σ-labeled VASSz V and an ω-regular language L over Σ. By a Σ-labeled VASSz, we mean
a VASSz V with transition set T , equipped with a labeling function ℓ : T → Σ. The trace
of an infinite run of V is the infinite word over Σ obtained as the image under ℓ of the run.
The question is whether all traces of V belong to L.

For VASS, the standard technique to solve this problem is to build the product V × A
of the VASS V with a Büchi automaton A recognizing L, synchronized on Σ. The problem
then reduces to the repeated control state reachability in V ×A, which is a VASS. This also
works in our case, since the class of VASSz is closed under direct product with a finite-state
automaton. We deduce the following statement.

Theorem 7.3. Model-checking a labeled vector addition system with states and one zero-test
against an ω-regular property (and in particular against an LTL specification) is decidable.

8. Conclusion and perspectives

Summary. Our main result is a forward algorithm, à la Karp and Miller, to compute the
downward closure of the reachability set of a non-monotonic transition system: VASz. The
proof first goes by strengthening the decidability of the reachability set of a VAS: we show
that the limit closure of this set is decidable. We have then introduced new sets, sitting
between the cover and the reachability set. We have shown that the decidability of the limit
closure of the reachability set entails the decidability of filtered covers for a usual VAS. This
tool has then be used to perform accurate macro-steps in an adapted Karp-Miller algorithm
for VASz. Finally, we have shown how to use this result to decide place boundedness for
VASz, as well as the repeated control state reachability problem, and LTL model-checking.

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 23

VAS vs. VASz. Classical decidable problems for VAS are still decidable for VASz: reacha-
bility, coverability, boundedness, place boundedness, LTL model-checking, repeated control
state state reachability. One may want to investigate which logical properties remain de-
cidable for VASz (see e.g. [5] for properties on VAS solvable using Karp-Miller trees). Note
that VASz cannot be simulated by VAS. For instance the prefix-closure of the language
{anbn | n > 1}∗ can be recognized by a VASz, but not by a VAS [26].

Complexity and dependency to the reachability problem. Unfortunately, we cannot
say anything about the complexity of the computation of the cover for VASz, because our
proof uses the decidability of the reachability problem for VAS as an oracle, whose complexity
is still open. Observe that, more precisely, we have used the decidability of the reachability
problem for VAS in Section 4, and this cannot be avoided to get Theorem 4.1. However,
to decide the repeated control state reachability problem in Section 7, we have also used a
reduction to the decidability of the reachability problem, this time for VASz. It is not clear
whether one can avoid it: we leave it as an open problem.

Future work. Our results cannot be trivially extended to the more general class of VAS with
hierarchical zero-tests [33]. In fact, for this class, the coverability problem and the reachabil-
ity problem are mutually reducible with immediate log-space reductions. The reachability
problem was proved to be decidable by Reinhardt in [33]. Recently, the model of VAS with
hierarchical zero-tests was proved to be equivalent to VAS with one stack encoding bounded-
index context-free languages [3]. As future work, we are interested in the decidability of the
reachability problem for VAS equipped with an unrestricted stack. With this class, it be-
comes possible to model client-server systems where clients are dynamically created and
destructed, identical finite-states machines, and the server is a recursive finite-state machine
communicating by rendez-vous. The reachability problem for this class is open. For tackling
this problem, we recently investigated a simplification of Reinhardt’s decidability proof of
the reachability problem for VAS with hierarchical zero-tests [33]: for the subclass of VASz,
the first author published a simplified proof in [7], based on the work of the third author [28].

Acknowledgements

We thank the referees whose careful reading helped us to improve the paper.

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state
systems. In 11th IEEE Symp. on Logic in Computer Science, LICS’96, pages 313–321, New Brunswick,
New Jersey, 1996. IEEE Computer Society Press.

[2] P. A. Abdulla and R. Mayr. Minimal cost reachability/coverability in priced timed Petri nets. In
L. de Alfaro, editor, 3rd Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS’09, volume 5504 of Lect. Notes Comp. Sci., pages 348–363, York, UK, 2009. Springer.

[3] M. F. Atig and P. Ganty. Approximating Petri net reachability along context-free traces. In 31th IARCS
Conf. on Foundations of Software Technology and Theoretical Computer Science, FSTTCS’11, vol-
ume 13 of LIPIcs, pages 152–163. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[4] H. Baker. Rabin’s proof of the undecidability of the reachability set inclusion problem of vector addition
systems. M.I.T., Project MAC, CSGM 1979, 1973.

[5] M. Blockelet and S. Schmitz. Model checking coverability graphs of vector addition systems. In F. Murlak
and P. Sankowski, editors, Mathematical Foundations of Computer Science, MFCS’11, volume 6907 of
Lect. Notes Comp. Sci., pages 108–119. Springer, 2011.

24 RÉMI BONNET, ALAIN FINKEL, JÉRÔME LEROUX, AND MARC ZEITOUN

[6] R. Bonnet. Decidability of LTL model checking for vector addition systems with one zero-test. In
G. Delzanno and I. Potapov, editors, 5th Workshop on Reachability Problems, RP’11, volume 6945 of
Lect. Notes Comp. Sci., pages 85–95, Genova, Italy, 2011. Springer.

[7] R. Bonnet. The reachability problem for vector addition systems with one zero-test. In F. Murlak and
P. Sankowski, editors, 36th Mathematical Foundations of Computer Science, MFCS’11, volume 6907 of
Lect. Notes Comp. Sci., pages 145–157, Warsaw, Poland, 2011. Springer.

[8] R. Bonnet, A. Finkel, J. Leroux, and M. Zeitoun. Place-boundedness for vector addition systems with
one zero-test. In K. Lodaya and M. Mahajan, editors, 30th IARCS Conf. on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS’10, volume 8 of Leibniz International Proceed-
ings in Informatics, pages 192–203, Chennai, India, 2010. Leibniz-Zentrum für Informatik.

[9] A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In Ch. Meinel and S. Tison,
editors, 16th Symp. on Theoretical Aspects of Computer Science, STACS’99, volume 1563 of Lect. Notes
Comp. Sci., pages 323–333. Springer, 1999.

[10] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, fourth edition, 2010.
[11] C. Dufourd. Réseaux de Petri avec Reset/Transfert : décidabilité et indécidabilité. Thèse de doctorat,

Laboratoire Spécification et Vérification, ENS Cachan, France, Oct. 1998.
[12] E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state systems. In

13th IEEE Symp. on Logic in Computer Science, LICS’98, pages 70–80, Washington, DC, USA, 1998.
IEEE Computer Society Press.

[13] J. Esparza. On the decidability of model checking for several µ-calculi and Petri Nets. In S. Tison,
editor, Trees in Algebra and Programming, CAAP’94, volume 787 of Lect. Notes Comp. Sci., pages
115–129. Springer, 1994.

[14] J. Esparza. Decidability and complexity of Petri Net problems: An introduction. In W. Reisig and
G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lect. Notes Comp. Sci.,
pages 374–428. Springer, 1998.

[15] A. Finkel. The minimal coverability graph for Petri nets. In G. Rozenberg, editor, Advances in Petri
Nets 1993, volume 674 of Lect. Notes Comp. Sci., pages 210–243. Springer, 1993.

[16] A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Completions. In S. Albers
and J.-Y. Marion, editors, 26th Symp. on Theoretical Aspects of Computer Science, STACS’09, pages
433–444. Springer, 2009.

[17] A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, Part II: Complete WSTS. In S. Albers,
A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas, and W. Thomas, editors, 36th Int. Colloquium
on Automata, Languages and Programming, ICALP’09, volume 5556 of Lect. Notes Comp. Sci., pages
188–199. Springer, 2009.

[18] A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for analysing Petri Net exten-
sions. Inf. Comput., 195(1-2):1–29, 2004.

[19] A. Finkel and A. Sangnier. Mixing coverability and reachability to analyze VASS with one zero-test. In
D. Peleg and A. Muscholl, editors, SOFSEM’10, volume 5901 of Lect. Notes Comp. Sci., pages 394–406.
Springer, 2010.

[20] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoret. Comput. Sci.,
256(1–2):63–92, 2001.

[21] P. Habermehl. On the complexity of the linear-time µ-calculus for Petri nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lect. Notes Comp. Sci., pages 102–
116. Springer, 1997.

[22] M. Hack. The equality problem for vector addition systems is undecidable. Theoret. Comput. Sci.,
2(1):77–95, 1976.

[23] D. Hauschildt. Semilinearity of the Reachability Set is Decidable for Petri Nets. PhD thesis, University
of Hamburg, 1990.

[24] P. Jančar. Decidability of a temporal logic problem for Petri nets. Theoret. Comput. Sci., 74(1):71–93,
1990.

[25] R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. System Sci., 2:147–195, 1969.
[26] S. R. Kosaraju. Limitations of Dijkstra’s Semaphore Primitives and Petri Nets. In 4th Symp. on Oper-

ating System Principles, SOSP’73, pages 122–136, Yorktown Heights, New York, USA, 1973. ACM.
[27] S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary version). In 14th

ACM Symp. on Theory of Computing, STOC’82, pages 267–281, New York, NY, USA, 1982. ACM.

MODEL CHECKING VECTOR ADDITION SYSTEMS WITH ONE ZERO-TEST 25

[28] J. Leroux. The general vector addition system reachability problem by Presburger inductive invariants.
In 24th IEEE Symp. on Logic in Computer Science, LICS’09, pages 4–13. IEEE Computer Society
Press, 2009.

[29] J. Leroux. Vector addition system reachability problem: a short self-contained proof. In 38th ACM
Symp. on Principles of Programming Languages, POPL’11, pages 307–316. ACM, 2011.

[30] E. W. Mayr. An algorithm for the general Petri net reachability problem. In 13th ACM Symp. on
Theory of Computing, STOC’81, pages 238–246, New York, NY, USA, 1981. ACM.

[31] R. Mayr. Undecidable problems in unreliable computations. Theoret. Comput. Sci., 297(1-3):337–354,
2003.

[32] Ch. Rackoff. The covering and boundedness problems for vector addition systems. Theoret. Comput.
Sci., 6(2):223–231, 1978.

[33] K. Reinhardt. Reachability in Petri Nets with inhibitor arcs. Electr. Notes Theor. Comput. Sci., 223:239–
264, 2008.

[34] Ph. Schnoebelen. Lossy counter machines decidability cheat sheet. In A. Kucera and I. Potapov, editors,
4th Workshop on Reachability Problems, RP’10, Lect. Notes Comp. Sci., pages 51–75, Brno, Czech
Republic, 2010. Springer.

[35] R. Valk and M. Jantzen. The residue of vector sets with applications to decidability problems in Petri
Nets. Acta Informatica, 21:643–674, 1985.

[36] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proceedings of the VIII Banff
Higher order workshop conference on Logics for concurrency: structure versus automata, pages 238–266,
Secaucus, NJ, USA, 1996. Springer.

[37] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inform. Comput., 115(1):1–37,
1994.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Vector Addition Systems
	4. Limits of reachable states of a VAS
	5. Refined and filtered covers
	6. Computing the cover of a VAS with one zero-test
	7. Repeated Control State Reachability is decidable for VASS0
	8. Conclusion and perspectives
	Acknowledgements
	References

