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ABSTRACT

With the growing capacity of video devices, human operators
are nowadays overwhelmed by the huge volumes of data gen-
erated in different applications including surveillance. There-
fore, automatic video processing techniques are required in
order to filter out uninteresting data and to focus the atten-
tion of operators. However, reliability is still a challenging
problem.

In this paper, we show how spatio-temporal redundancy
may be exploited to enhance the accuracy of automatic
change detection in aerial videos. More precisely, we present
an algorithm based on Belief Propagation in order to improve
spatio-temporal consistency between successive change de-
tection results. Experiments demonstrate that our method
leads to increased accuracy in change detection.

Index Terms— Change detection, aerial videos, spatio-
temporal redundancy, belief propagation.

1. INTRODUCTION

With the growing capacity of video devices, frame rates and
acquisition resolutions, nowadays more and more applica-
tions are dealing with huge amounts of data. As human
operators cannot manually process these data streams con-
tinuously and indefinitely, automatic video processing tech-
niques are required for various tasks. Change detection is one
of these tasks which focuses on detecting abnormal events or
areas of potential interest.

In this paper, we focus on the specific problem of change
detection in aerial videos, as a way to filter out uninteresting
data and focus only on areas containing changes. Change de-
tection [1] refers to the problem of detecting significant and
possibly subtle changes between reference and test data (e.g.
appearing or disappearing buildings or vehicles), while ignor-
ing insignificant ones, such as environmental changes (illumi-
nation, weather, ...) and parallax effects due to camera motion
and 3D objects (trees, buildings, relief ...). Most of the current
change detection techniques focus on comparison of image
pairs, and their extension to video is not straightforward and
raises many specific problems. For instance, prior to image

12/27/2011 

1 

Query 

Reference 

Database 

Preparation 

Reference 
videos 

Candidate 
reference 

images 

n 

Test video 
frame 

Preparation 
Change 

Detection 

Temporal 

Consolidation 

Comparable 
reference 

data 

Raw 
results 

Consolidated 
results 

OFFLINE ONLINE 

Fig. 1. This drawing presents a work flow visualization of the
change detection framework used in our experiments.

comparison, one needs to find reference data which covers
the same area as test data. Possible solutions use temporal
synchronization of videos acquired along similar trajectories
[2, 3] or summarization of reference data into a 3D model [4].

Redundancy is another specific problem, which aims to
exploit the spatial and temporal coherence of acquisitions
through different video frames. Indeed, successive frames
cover the same areas but they are taken under different noise
conditions, angles, etc., which may affect the precision of
change detection if frames are processed independently. In
this paper, we present an alternative which exploits the spatial
and temporal redundancy, using Belief Propagation. Our ap-
proach unifies a pixel-wise change detection criterion with a
high order transition term which defines the spatio-temporal
interaction between neighbor pixels. Compared to baseline
techniques, the gain of our algorithm is clear and consis-
tent. Moreover, the use of Belief Propagation is adequate
in the context of aerial video, because it does not require an
explicit construction of graphs, hence resulting in improved
efficiency.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes our aerial video change detection



framework followed in Section 3 by our main contribution
which exploits spatio-temporal redundancy to improve ac-
curacy. Finally, Section 4 presents and discusses the perfor-
mance of our method.

2. OVERVIEW

This section briefly introduces our change detection frame-
work adapted to spatial and temporal consolidation. In or-
der to speedup the whole process, an off-line preparation of
reference data is achieved. Video frames are first spatially
indexed by organizing their viewprints using an R-Tree struc-
ture. Change detection is then achieved online using only the
frames of reference video which cover the same spatial area as
the test ones. Finally, candidate reference frames are merged
into a mosaic and compared to the current test frame using
our algorithm introduced in [5]. The latter has proven to be
fast and accurate. As an extension of this previous work, spa-
tial and temporal consolidation is the main focus of this paper
as depicted in the flowchart of Fig. 1.

3. SPATIAL AND TEMPORAL INTERACTION

This section describes two approaches for spatio-temporal
consolidation of change detection results. The first one is a
baseline; it is based on a simple and fast temporal averaging
of change detection scores, but suffers from inaccuracies.
The second method constitutes our new contribution which
addresses the problem using Loopy Belief Propagation [6]
and achieves better accuracy while still being computation-
ally efficient.

3.1. Averaging

The baseline method enforces the consistency of the results
by averaging the scores of change detection on the same ar-
eas through successive frames in a test video. This averag-
ing makes it possible to predict the status of a given pixel as
changed or unchanged depending on the average score. Let
Ωt � tt � T � 1, . . . , tu be a temporal window starting at
frame t � T � 1 and ending at frame t and let tbkpXqukPΩt

denote a collection of binary variables all referring to an ex-
isting physical point X in the scene; here bkpXq is set to 1 if
X is inside the kth frame and 0 otherwise. In the remainder of
this section, pepXq stands for a scoring function which allows
us to predict the status of X .

As camera sensors may move through successive frames,
it is necessary to estimate correspondence between pixels. We
address this problem by computing the average score pepXq
in an absolute coordinate system, the most natural being the
dominant plane of the ground. More precisely, raw change
detection scores are computed in the current frame of the test
video and mapped to the ground plane, via a projective trans-

formation, where they are averaged with previous observa-
tions as follows:

pepXq �
1

NobspXq
�
¸
k PΩt

bkpXq � ekpH
�1
k �Xq (1)

with NobspXq �
¸
kPΩt

bkpXq,

where ekpH�1
k �Xq refers to the raw change detection score

of X in the kth test frame and H�1
k is a projective transfor-

mation mapping the coordinates of X from the ground plane
to the kth frame. Notice that, when using an infinite temporal
window (T � 8), the sums in Eq. 1 may be updated incre-
mentally, which allows us to achieve very efficient and effec-
tive consolidation of change detection scores through succes-
sive frames. Following evaluation of Eq. 1, physical point X
is declared as changed (resp. unchanged) if and only if the
score pepXq is bigger (resp. lower) than a fixed threshold. The
latter is adjusted depending on the required false alarm and
mis-detection rates (see Section 4).

3.2. Belief Propagation for Spatio-Temporal Interaction

In this section, we use Loopy Belief Propagation in order to
predict the status of pixels in test frames. Let Itestt be the
current frame of a test video including w � h pixels. Let
tXi,j,tui,j and tYi,j,tui,j be collections of random variables
respectively standing for pixels in Itestt and their labels (cor-
responding to the predicted status); here Yi,j,t � 1 if pixel
pi, jq in Itestt has changed and Yi,j,t � 0 otherwise. En-
forcing the spatio-temporal consistency in change detection
may be viewed as finding the optimal configuration of la-
bels tYi,j,kui¤w,j¤h,kPΩt , best explaining the observations
tXi,j,ku obtained on previous test frames. In the following,
we denote by tItestk ukPΩt

) and tIrefk ukPΩt
respectively the

kth test and reference frames, for k P Ωt. Without any loss of
generality, we assume that all these frames are registered with
respect to the current test frame Itestt (see [7] for a survey on
image registration methods).

For a fixed t, we model the labeling problem as a 3D
Markov Random Field using a non-oriented adjacency graph
Gt � pVt, Etq where each vertex in Vt � tvi,j,kui¤w,j¤h,kPΩt

is associated to a pair tpXi,j,k,Yi,j,kqui,j,k and where edges
Et � ten,n1 ; n � pi, j, kq,n1 � pi1, j1, k1qu are connections
between neighbor nodes. More precisely, we consider that
neighborhood connections en,n1 are connections between
vertices vn and vn1 , where }n�n1}1 � 1 (with }.}1 denoting
the L1 norm). This definition characterizes the neighbor-
hood system: each vertex has four spatial and two temporal
neighbors. In this context, Loopy Belief Propagation aims
to predict the optimal configuration of labels tYi,j,kui,j,k
by minimizing an objective function which trades off unary



potential terms tφpXi,j,k,Yi,j,kqui,j,k and binary interac-
tion terms tψpYi,j,k, Yi1,j1,k1qu. The unary potential terms
tφpXi,j,k,Yi,j,kqui,j,k link the predicted labels to the under-
lying observations, and each term is defined as:

φpXi,j,k,Yi,j,kq �

$''&
''%

fpXi,j,kq if Yi,j,k � 0
(unchanged)

1 � fpXi,j,kq if Yi,j,k � 1
(changed)

(2)

where fpXi,j,kq �

�
c0 � expp�c1 � ∆pXi,j,kqq � c0 � 1



�

exp

�
�
ekpXi,j,kq

τ



(3)

and ∆pXi,j,kq � ∆i,j,k �
���Itestk pi, jq � Irefk pi, jq

��� (4)

The right-hand side term in Eq. 3, encourages labeling pix-
els as changed (respectively, unchanged) if the underlying
change detection score is high (respectively, low). This term
is weighted by the scale parameter τ which controls false-
alarm and mis-detection rates. The left-hand side term in
Eq. 3 also controls these detection rates by taking into ac-
count image differences weighted by the coefficients c1, c0.
When tuning these parameters, we found that the best perfor-
mance is achieved with c0 � 0.33 and c1 �

logp2q
30 .

The binary interaction terms tψpYi,j,k, Yi1,j1,k1qu exploit the
neighborhood system defined earlier in order to enhance the
spatio-temporal consistency of labels. These terms are de-
fined as:

ψpYi,j,k, Yi1,j1,k1q � (5)$''&
''%

0.95 � λp∆i,j,k, ∆i1,j1,k1q � 0.5 � p1 � λp∆i,j,k, ∆i1,j1,k1qq
if Yi,j,k � Yi1,j1,k1

0.05 � λp∆i,j,k, ∆i1,j1,k1q � 0.5 � p1 � λp∆i,j,k, ∆i1,j1,k1qq
if Yi,j,k � Yi1,j1,k1 ,

where

λp∆i,j,k, ∆i1,j1,k1q �
π
2 � atanpb � p|∆i,j,k � ∆i1,j1,k1 | � aqq

π
2 � atanp�b � aq

(6)

In the above definition, λp�q acts as a Radial Basis Func-
tion (see plots for different values of a and b in Fig. 2) which
influences the interaction between labels depending on the
gradient norm |∆i,j,k � ∆i1,j1,k1 |. More precisely, large val-
ues of this norm are likely caused by the fact that nodes vi,j,k
and vi1,j1,k1 belong to independent objects in the scene. There-
fore, there should not be any correlation between the under-
lying labels, this is why the right-hand side terms in Eq. 5,
are weighted uniformly. Conversely, low values of the gradi-
ent norm are likely caused by nodes vi,j,k and vi1,j1,k1 which
belong to the same object, therefore we strongly encourage
similar labels for these nodes. Hence, a large weight (0.95) is
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Fig. 2. This figure illustrates the aspect of RBF function λ
used in the binary interaction terms. The curve used in our
experiments is highlighted in green.

used in the left-hand side term of Eq. 5 in order to encourage
similar labels, while a small weight (0.05) is used for differ-
ent labels. In practice, we used a � 25 and b � 0.175, and
we chose a temporal window T � 8.

Using these unary and binary terms, Loopy Belief Propa-
gation estimates the probability of change for each node of the
graph. This algorithm is iterative and propagates messages
carrying the likelihood of each state, from each node to its
neighbors (see [6] and [8] for more details). Convergence of
this message passing algorithm is not guaranteed in the pres-
ence of cycles in the graph, but in practice we observe that
this algorithm reaches a good solution in few iterations (cor-
roborated by the enhancement of the change detection perfor-
mance with respect to the baseline versions, see Section 4 and
Fig. 4).

4. EVALUATION

In this section, we compare our approach based on Belief
Propagation with respect to the baseline averaging scheme de-
scribed in Section 3.1 using aerial video sequences for which
ground truth changes are known for each frame. Fig. 3 shows
visual inspection results obtained using the temporal averag-
ing approach on several video frames, where true detections,
false alarms and mis-detections are respectively highlighted
in green, yellow and red. In these results, a few false alarms
still occur in some locations, especially in areas containing
untargeted changes such as waving trees. We also observe
in our video results that small changes might not be detected
when they enter into the field of view. Nevertheless, tempo-
ral consolidation tracks back these mis-detections most of the
time a few frames after their appearance. In contrast, impor-
tant changes are detected as soon as they appear.

Fig. 4 presents the comparison of Precision/Recall perfor-
mance with respect to the baseline versions (with and with-
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Fig. 3. This figure shows typical results of our video change detection algorithm, where true detections, false alarms and
mis-detections are respectively highlighted in green, yellow and red.
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Fig. 4. This figure presents performances obtained by our ap-
proach based on Belief Propagation and its comparison with
respect to baseline versions (with and without averaging).

out averaging). As expected, for the same values of Recall,
spatio-temporal consolidation, based on belief propagation,
consistently improves Precision. This results from the op-
timization of an objective function which accurately models
the problem of change detection. This performance enhance-
ment is achieved at the detriment of an increase of processing
time, which is still reasonable. On a standard 2.4 GHz com-
puter using a mono-thread implementation, spatio-temporal
consolidation of change detection results (800 � 600 pixels)
takes approximately 0.75 seconds for the averaging method
and about 15 seconds for the Belief Propagation method. No-
tice that these execution times may be further improved using
hardware acceleration.
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