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using a high-order discontinuous Galerkin method
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aXLIM Institute, OSA Department, UMR CNRS 6172, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France

Abstract

In this work, we investigate the application of polynomial integrators in a high-order discontinuous Galerkin method

for solving the time-domain Maxwell equations. After the spatial discretization, we obtain a time-continuous system

of ordinary differential equations of the form, ∂tY(t) = HY(t), where Y(t) is the electromagnetic field, H is a matrix

containing the spatial derivatives, and t is the time variable. The formal solution is written as the exponential evolution

operator, exp(tH), acting on a vector representing the initial condition of the electromagnetic field. The polynomial

integrators are based on the approximation of exp(tH) by an expansion of the form
∑∞

m=0 gm(t)Pm(H), where gm(t) is

a function of time and Pm(H) is a polynomial of order m satisfying a short recursion. We introduce a general family of

expansions of exp(tH) based on Faber polynomials. This family of expansions is suitable for non-Hermitian matrices,

and consequently the proposed integrators can handle absorbing media and conductive materials. We discuss the

efficient implementation of this technique, and based on some test problems, we compare the virtues and shortcomings

of the algorithm. We also demonstrate how this scheme provides an efficient alternative to standard explicit integrators.

Keywords: Maxwell’s equations, discontinuous Galerkin method, time-stepping schemes, Faber polynomials

1. Introduction

Nowadays, a variety of methods exist for the numerical treatment of the time-domain Maxwell equations, ranging

from the well established and still prominent FDTD methods based on Yee’s scheme [1], to the more recent finite ele-

ment time domain (FETD) [2], and discontinuous Galerkin time domain (DGTD) methods [3]. The use of unstructured

meshes is an intrinsic feature of the latter methods which can easily deal with complex geometries and heterogeneous

propagation media. In this paper we are interested in discontinuous Galerkin (DG) methods which are a class of finite

element methods (FE) based on completely discontinuous piecewise polynomial spaces for the numerical solution and

the test functions. For the same order of accuracy, DG methods require more degrees of freedom than continuous

FE methods. To obtain highly accurate and stable DG methods, suitable numerical fluxes need to be designed over

elemental interfaces. The construction of such numerical fluxes can be done in many different ways that are closely
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related to the particular equations [4]. The DG method has become very popular in recent years for solving electro-

magnetic (EM) wave propagation problems [5]. It has several distinct advantages. We refer to the lecture notes [6] and

the textbook [3] for details and history of the DG method. In particular, the DG method is flexible with regards to the

choice of the time-stepping scheme. One may combine the DG spatial discretization with any explicit [7] or implicit

[8] time schemes, or even a blending between these two schemes [9], provided that the resulting scheme will be stable.

The DGTD methods for Maxwell’s equations are derived in two stages. First, the spatial operators are discretized

on an appropriate mesh covering the spatial domain, together with the accompanying boundary conditions. This leads

to a time-continuous, semi discrete problem in the form of an initial-value problem for a system of first-order ordinary

differential equations (ODEs), see Section 3,

∂tY(t) = HY(t), (1)

where Y(t) is the EM field andH is a real time-independent matrix arising from the DG discretization and depends on

the spatial configuration, material parameters and boundary conditions. Second, a numerical integration method for

this ODE system is chosen, which turns the semi-discrete solution into the desired fully discrete solution on the chosen

space-time grid. In this paper we focus on the second numerical integration stage, as in [9, 10]. The solution of Eq. (1)

can be formally written as Y(t) = Φ(t)Y(0), where Y(0) represents the initial state of the EM field and Φ(t) = exp(tH)

is the time evolution operator. The construction of high-order time integrators for problems of type Eq. (1) is usually

based on an approximation of the operatorΦ(t). These methods employ various algorithms to compute an exponential

and other functions of the matrix H . Most frequently, these algorithms are based on Taylor or Padé expansions.

Although in principle these expansions are convergent, in practice they are very inaccurate when ‖tH‖ is large [11].

Other integration schemes use the Suzuki product formula or the split operator (SPO) method [12] which facilitates

the implementation of higher-order accurate schemes with very low dispersion even for large time steps. Although

these schemes are unconditionally stable, they rely on rewriting Maxwell’s equations as an operator-equation with

a strictly skew-symmetric matrix H and, therefore, are not convenient for absorbing or dispersive media. A more

general approach to approximating an exponential or other functions of a large matrix comes from computational

linear algebra. Van der Vorst [13] was amongst the first to be aware of the potential of using established methods, such

as the Lanczos or Arnoldi algorithms. For Hermitian matrices, the Krylov-subspace technique based on the Arnoldi

process is highly accurate and efficient. Min and Fischer [14] applied the Krylov algorithm to a spectral-element DG

method for Maxwell’s equations and very accurate results were obtained compared to a fourth-order Runge-Kutta

method. For non-Hermitian matrices, the Krylov technique is usually combined with the SPO method in order to treat

absorbing media. While the unconditional stability is maintained, the accuracy is limited by the accuracy of the SPO

approximation rather than by the dimension of the Krylov space, see [15] for a recent discussion on this issue.

Another class for calculating the operator Φ(t) for large matrix H consists to expand it in the form Φ(t) =
∑∞

m=0 gm(t)Pm(H), where gm(t) is a function of time and Pm(H) is a polynomial of order m. This class will be re-

ferred to as polynomial expansion method (PEM) which is the subject of this paper. The PEM has been widely used
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in the calculation of dynamics and/or spectral properties of large quantum systems with great success [16–18]. In

1984 Tal-Ezer and Kosloff [16] proposed an expansion in terms of first-kind Chebyshev polynomials (CH-scheme)

for solving the Shrödinger wave equation in one and two dimensions. The authors tested the method with the simple

harmonic oscillator and the problem of scattering from a metal surface; very accurate results were obtained with an

efficiency six times higher compared to the conventional scheme. A detailed comparison of the CH-scheme with vari-

ous propagation schemes, was performed by Leforestier et al. [17] who showed that the CH-scheme offers an accurate

and flexible alternative to other existing techniques for propagating the time-dependent Shrödinger equation. Since

Maxwell’s equations can be cast in the form of the Schrödinger equation, it is then natural to extend time-domain

methods of quantum mechanics to numerical electrodynamics. For instance, the CH-scheme has been recently applied

to electromagnetic [19], seismic [20] and acoustic [21] wave propagations in the context of FDTD methods; very ac-

curate results were obtained for long time simulations compared to the Yee’s algorithm and the SPO algorithm. While

the CH-scheme is the most frequently used method, other expansions based on Legendre polynomials have also been

introduced to study dynamics of large quantum systems [18]. These expansions provide similar accuracy compared

to the CH-scheme. However, all PEMs cited above are consequently suited for Hermitian matrices, i.e., with real or

purely imaginary eigenvalues. For non-Hermitian matrices, when the spectrum is defined in the complex plane, the

Faber polynomials are more appropriate, and their use has been proposed by Moret and Novati [22]. The Faber ap-

proximation method has been applied to quantum scattering problems [23] to compute the causal Green’s function for

the Schrödinger equation. The Faber polynomial approximation of the exponential of a non-Hermitian operator has

also been used to solve the initial value problem in electrodynamics of passive media [24] and for the Liouville-von

Neumann equation that describes the time evolution of the density matrix in statistical systems [25, 26]. As mentioned

above, PEM has been extensively used in quantum electrodynamics, but to our knowledge, it has never been used for

integrating the Maxwell equations using a DG method. This is the main topic of this paper.

The main purpose of this paper is to investigate the capabilities of PEM as a time-integration scheme for solving

the time-dependent Maxwell equations with a high-order DG method. Below we will (i) describe the ideas behind con-

structing polynomial integrators, (ii) introduce a general family of integrators based on Faber polynomial expansions,

(iii) discuss the efficient implementation of this technique, and (iv) based on some test problems, compare the virtues

and shortcomings of the algorithm and provide guidance as to what computational savings one can expect compared

to standard explicit methods. The rest of the paper is organized as follows. Section 2 recalls the Maxwell system and

its DG discretization. In Section 3, we show that the solution of the Maxwell equations can be written in the form

of Eq. (1). In this section we also give the basic idea of the polynomial expansion approach for the approximation of

the time evolution operator. In Section 4, we construct expansions based on Faber polynomials that are able to treat

absorbing media and conductive materials. Then, in Section 5, we present numerical results for several test cases.

Finally, Section 6 contains a few concluding remarks and ideas for future works.
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2. Governing equations and spatial discretization

The evolution of a time-dependent electromagnetic field E(x, t), H(x, t) propagating through a linear isotropic

medium is determined by Maxwell’s equations

ε∂tE = −σE + ∇ ×H, µ∂tH = −∇ × E, (2)

where ε(x), µ(x) andσ(x) are respectively the permittivity, the permeability and the conductivity of the medium. These

equations are set and solved on a bounded open domainΩ of Rd, d ≥ 1. On the boundary ∂Ω = Γa∪Γm, we impose the

following boundary conditions: a perfect electric conductor (PEC) condition: n × E = 0 on Γm and/or a Silver-Müller

absorbing condition: L(E,H) = L(Einc,Hinc) on Γa where L(E,H) = n × E + cµn × (n ×H). Here n denotes the unit

outward normal to ∂Ω, c = 1/
√
εµ is the speed of propagation and (Einc,Hinc) is a given incident field.

We shall now discretize Maxwell’s equations in space using the central DG method [10]. First, we consider a

regular or r-irregular partition Th of Ω into a collection of non-overlapping d-simplices or elements τi. Thus a (d− 1)-

dimensional face of each element τi in Th is allowed to contain at most r hanging (irregular) nodes. We shall suppose

that the family of partitions Th is shape-regular and that each τi ∈ Th is the image, under a smooth bijective map Ψτi
,

of a fixed master element τr; that is, τi = Ψτi
(τr) for all τi ∈ Th, where τr is the open unit simplex in R

d. Within this

construction we allow for elements τi with curved edges or faces. For an integer p ≥ 1, we denote by [Pp(τr)]
d the

space of d-dimensional nodal polynomials of degree at most p on τr . The dimension N(p, d) of this space depends on

the order p and on the spatial dimension d and is given by N(p, d) = (p+ d)!/p!d!. Then, to each τi ∈ Th we assign an

integer pi ≥ 1 that is the local polynomial degree inside τi; collecting the pi and Ψτi
in the vectors ppp = {pi : τi ∈ Th}

andΨΨΨ = {Ψτi
: τi ∈ Th}, respectively, we seek approximate solutions to Eq. (2) in the finite element space

Vp(Ω,Th,ΨΨΨ) = {u ∈ [L2(Ω)]d : uk |τi
◦Ψτi

∈ [Ppi
(τr)]

d, k = 1, . . . , d, ∀τi ∈ Th},

where [L2(Ω)]d is the space of square integrable functions on Ω. For each element τi, the parameters εi, µi and σi

denote respectively the local permittivity, permeability and conductivity of the medium, which are assumed constant

inside the element τi. For two distinct elements τi and τk in Th, the intersection aik = τi ∩ τk is a (d − 1)-dimensional

face in Th (a convex polyhedron), with unitary normal vector nik, oriented from τi towards τk. For the boundary faces,

the index k corresponds to a fictitious element outside the domain. Finally, we denote by F int,F m and F a the union

of all interior, metallic and absorbing faces of Th, respectively, and set F = F int ∪ F m ∪ F a.

Following the DG approach, the electric and magnetic fields are approximated inside each finite element τi by a

linear combination of basis functions ϕi j(x) with support τi and with time-dependent coefficient functions Ei j(t) and

Hi j(t) as follows

Ei =
∑

1≤ j≤Ni

Ei j(t)ϕi j(x), Hi =
∑

1≤ j≤Ni

Hi j(t)ϕi j(x). (3)

Here, the index j indicates the j-th basis function and Ni = N(pi, d) denotes the local number of degrees of freedom

inside τi. As usual for DG schemes, the Maxwell system, Eq. (2), is multiplied by a test function ϕ ∈ span{ϕi j, 1 ≤

4



j ≤ Ni} and integrated over each single element τi. After integration by parts, inserting the DG approximation, Eq. (3),

and after applying a centered numerical flux in the boundary integrals, the semi-discrete formulation of the scheme in

the physical element τi reads as [10]

∫

τi

ϕ · εi∂tEi = −
∫

τi

ϕ · σiEi +
1

2

∫

τi

(∇ × ϕ ·Hi + ∇ ×Hi · ϕ) − 1

2

∑

aik∈F

∫

aik

ϕ · (Hk × nik),

∫

τi

ϕ · µi∂tHi = −1

2

∫

τi

(∇ × ϕ · Ei + ∇ × Ei · ϕ) +
1

2

∑

aik∈F

∫

aik

ϕ · (Ek × nik).

(4)

The boundary conditions are dealt with weakly, in the sense that the traces on aik of fictitious fields Ek and Hk are used

for the computation of numerical fluxes in Eq. (4) for the boundary element τi. More precisely, for aik ∈ Γm we set

Ek = −Ei and Hk = Hi. Concerning absorbing faces aik ∈ Γa, we propose the fictitious fields Ek = ciεi(nik × Ei) and

symmetrically Hk = −ciµi(nik ×Hi), where ci = 1/
√
εiµi. These values correspond to upwind fluxes at the absorbing

boundary, based on the hyperbolic nature of the Maxwell system. Equation (4) can be rewritten in terms of scalar

unknowns inside each element τi. We now denote by Ēi and H̄i, respectively, the column vectors (Ei j)1≤ j≤Ni
and

(Hi j)1≤ j≤Ni
. Then, Eq. (4) is equivalent to

Mεi ∂tĒi = −Mσi Ēi + KiH̄i −
∑

aik∈F int

SikH̄k −
∑

aik∈F m

SikH̄i +
∑

aik∈F a

SεikĒi,

M
µ

i
∂tH̄i = −KiĒi +

∑

aik∈F int

SikĒk −
∑

aik∈F m

SikĒi +
∑

aik∈F a

S
µ

ik
H̄i,

(5)

where the mass matrices Mκ

i (κ stands for ε or, µ or, σ), the stiffness matrix Ki (all of size Ni × Ni) and the Ni × Nk

flux matrices Sik and Sκik (κ stands for ε or µ) are given by

(Mκ

i ) jl = κi

∫

τi

ϕi j · ϕil, (Ki) jl =
1

2

∫

τi

ϕi j · ∇ × ϕil + ϕil · ∇ × ϕi j,

(Sik) jl =
1

2

∫

aik

ϕi j · (ϕkl × nik), (Sκik) jl =
1

2
ciκi

∫

aik

(ϕi j × nik) · (ϕkl × nik).

(6)

These matrices are evaluated by a numerical integration scheme based on a family of high-order cubature formulas for

line, surface, and volume integrals. For complete details on this issue, see [10, 27].

3. Polynomial integrators applied to discrete Maxwell’s equations

In some cases, the discretization of Maxwell’s equations actually leads to a Hamiltonian system of ODEs: it is

indeed the case for some FDTD methods [19], more generally for FETD methods [28], and also for the case considered

here: DGTD methods with totally centered fluxes. In this section, we will describe the main idea behind the polynomial

integrators and will explain how to apply them to the Hamiltonian form of the discretized Maxwell equations.

The set of local system of ODEs for each τi, Eq. (5), can be formally transformed in a global system. To this end, we

suppose that all electric (resp. magnetic) unknowns are gathered in a column vector E (resp. H) of size Ng =
∑ne

i=1
Ni
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where ne stands for the number of elements in Th. Then system (5) can be rewritten as

Mε∂tE = −MσE +KH − AH − BH + CεE,
Mµ∂tH = −KE + AE − BE + CµH,

(7)

where we have used the following definitions and properties: (a) Mε,Mµ, Mσ and K are Ng × Ng block diagonal

matrices with diagonal blocks equal to Mεi ,M
µ

i
, Mσi and Ki respectively. Mε,Mµ and Mσ are symmetric positive

definite matrices, and K is a symmetric matrix; (b) A is also a Ng×Ng symmetric block sparse matrix, whose non-zero

blocks are equal to Sik when aik ∈ F int; (c) B is a Ng × Ng skew-symmetric block diagonal matrix, whose non-zero

blocks are equal to Sik when aik ∈ F m; and (d) Cε and Cµ are Ng × Ng symmetric block diagonal matrices, whose

non-zero blocks are equal to Sεik and S
µ

ik
respectively, when aik ∈ F a. Let S = K − A − B; the system (7) rewrites as

∂t





















MεE

MµH





















=





















Cε −Mσ S

−S† Cµ









































E

H





















, (8)

where the dagger symbol stands for the conjugate transpose. Introducing the scaled fields Ẽ = M
1/2
ε E, H̃ = M

1/2
µ H,

and writing Y = (Ẽ, H̃)†, Eq. (8) reads as

∂tY(t) = HY(t), with H =





















C̃ε,σ S̃

−S̃† C̃µ





















, (9)

where S̃ =M
−1/2
ε SM

−1/2
µ , C̃ε,σ =M

−1/2
ε (Cε −Mσ)M

−1/2
ε , C̃µ =M

−1/2
µ CµM

−1/2
µ , and the 2Ng × 2Ng matrixH depends

only on the spatial configuration. Equation (9) is called the Hamiltonian form of the Maxwell equations, where H is

the matrix Hamiltonian. For non-absorbing media and/or non-conducting materials (σ = 0), the matrix H is skew-

symmetric, otherwise, it is unsymmetric. The formal solution of Eq. (9) is given by

Y(t) = exp(tH)Y(0) ≡ Φ(t)Y(0), (10)

where Y(0) represents the initial state of the EM field and the operator Φ(t) = exp(tH) determines its time evolution

matrix. We consider to solve Eq. (10) on a discrete time grid {tn = nτ, n = 0, 1, . . . }, where τ is the fixed time step, and

denote Yn = Y(tn). The time discrete solution of Eq. (10) is given by

Y
n+1 = Φ(τ)Yn. (11)

The construction of explicit polynomial integrators for problems of type Eq. (9) is based on the approximation of the

time evolution operator Φ(τ), which can be expressed in a degenerate kernel form

Φ(τ) =

∞
∑

m=0

gm(τ)Pm(H), (12)

where Pm(H) is a polynomial of order m and gm(t) is a function of time. In most cases the polynomials Pm(H) satisfy

a three-term recurrence formula in the form

Pm+1(H) = (amH + bm)Pm(H) + cmPm−1(H), (13)
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where the coefficients am, bm and cm depend on Pm and its order m. Thus, to find the vector Yn+1, we just need to sum

successively the terms of the series (12), using Eq. (13) for calculation of the subsequent terms, until we reach some

predefined value M of m, which can be determined by the required precision. The number M of terms in the sum

depends on the polynomial used and on the size of the time step for which the propagator is needed.

In what follows, we are performing formal manipulations using functions of the matrix H . All these functions are

defined by the spectral decomposition [11]

f (H)Yn =

N
∑

l=0

wl f (λl)〈w†l ,Y
n〉, (14)

where 〈x, y〉 = x†y denotes the inner product of the vectors x and y, wl is an eigenfunction of H corresponding to

the eigenvalue λl, and N is the dimension of spectrum of H . If we choose f (H) = exp(τH) in Eq. (14) and in the

resulting expression we replace exp(τH) with the right-hand side of Eq. (12), we obtain

exp(τH)Yn =

N
∑

l=0

wl

∞
∑

m=0

gm(τ)Pm(λl)〈w†l ,Y
n〉. (15)

Interchanging the sums and using the definition, Pm(H)Yn =
∑N

l=0 wlPm(λl)〈w†l ,Yn〉, allows us to write Eq. (15) as

exp(τH)Yn =

∞
∑

m=0

gm(τ)Pm(H)Yn. (16)

The right-hand side of Eq. (16) is now well defined, since there is not ambiguity in the meaning of matrix polynomials.

However, since we use the spectral decomposition in the derivation, we must make sure that the polynomial Pm(λl) is

well defined. We will clarify this issue in the next sections. Now, assuming exp(τH)Yn has the following polynomial

approximation of order M

exp(τH)Yn ≈
M
∑

m=0

gm(τ)Pm(H)Yn, (17)

the following algorithm can be used to compute an approximation to exp(τH)Yn:

Algorithm 1 Approximating exp(τH)Yn by polynomial expansions

Input: the fixed time step τ

1: Compute the truncation order M

2: p0 = P0(H)Yn; p1 = P1(H)Yn

3: z1 = g0(τ)p0 + g1(τ)p1

4: for m = 1 to M − 1 do

5: pm+1 = amHpm + bmpm + cmpm−1

6: zm+1 = zm + gm+1(τ)pm+1

7: end for

8: return zM ≈ exp(τH)Yn

The Algorithm 1 uses Eq. (13) in line 5 and Eq. (17) in lines 3 and 6. IfH is a 2Ng ×2Ng matrix with Nz(H) non-zero

entries, then Algorithm 1 entails a computational cost of about 14Ng + 2Nz(H) operations per pass through the for-

loop. Two vectors are needed to store pm and pm−1. These are exchanged to the pair pm, pm+1 in the next step, which

7



can be carried out in a constant number of operations by redirecting pointers rather than copying data. Another vector

is needed to perform the matrix-vector (matvec) product Hpm and another one to store the solution zM . This brings

the total number of vectors to four and the computational work per time step to M matvecs.

Finally, it is worth noting that the polynomial integrator can be used as one-step method by getting the solution at the

final time directly from the initial data. It can also be used as a marching scheme if one is interested in intermediate

results (e.g., for comparisons with standard leap-frog or Runge-Kutta schemes). The size of the time step depends only

on the information one wants to get out of the numerical procedure. The parameter M is then determined accordingly.

The refinement of the scheme is then based on increasing the parameter M and not by decreasing the time step.

4. Faber polynomial integrators

As mentioned in the introduction, the Chebyshev polynomial integrator is, in general, well-suited only when the

Hamiltonian matrix H in Eq. (9) is skew-symmetric, that is, when the boundaries of the domain are assumed to be

PEC and the material is non-conductive. In this section we discuss the modifications required to extend the polynomial

integrator schemes to include the treatment of absorbing boundaries (i.e., Γa , ∅) and/or non-conductive materials (i.e.,

Mσ , 0). We shall construct time integrators based on the development of Φ(τ) in a series of Faber polynomials which

are generally appropriate when the eigenvalues ofH are defined in the complex plane. In the remainder of this paper,

τ refers to the normalized time step which is related to the physical time step, δt, as δt = τ/c0, where τ has units of

meters (m) and δt has units of seconds (s). Here c0 = (ε0µ0)−1/2 ≈ 3 × 108 m/s represents the dimensional vacuum

speed of light with ε0 and µ0 being the vacuum permittivity and permeability, respectively.

4.1. Motivating example

Let us begin with an example to illustrate the advantages of using polynomials with a complex variable. We

consider the propagation of a Gaussian pulse in a 1D cavity, x ∈ [−2, 2], with absorbing boundary conditions at the

endpoints x = ±2. Furthermore, we assume that x = 0 represents an interface between the two halves of the cavity

and that each half is a different homogeneous material. For simplicity we assume the materials are nonmagnetic (i.e.

µ1 = µ2 = 1) and the positive region is occupied by the vacuum (i.e. ε1 = 1 if x > 0) while the remaining region is

filled with a glass (i.e. ε2 = 4 if x ≤ 0). The exact time-domain solution of this problem can be found in [1, 29]. At

time T = 0 ns, the pulse is located at x = 1 (i.e. in the vacuum region) and propagates from right to left as shown on

the left of Figure 1. The computational domain, [−2, 2], is discretized into non-uniform grid where the cell sizes of the

glass region are twice finer than those of the vacuum region. The global grid contains 72 cells which corresponds to

6 points per wavelength. We stop the simulation when the excitation pulse goes through the material interface, i.e. at

time T = 5 ns. We shall compare the exact solution with the results obtained by using the DG method combined with

the Chebyshev time scheme (DG-CH scheme). The DG-CH scheme can be written as

Y
n+1 = Φ(τ)Yn, where Φ(τ) =

∞
∑

m=0

imǫm Jm(τ‖H‖2)Tm(Hsc), (18)
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where Jm(·) is the m-th order Bessel function of the first kind, ǫ0 = 1 and ǫm = 2 for m > 0, Hsc = −iH/‖H‖2 is

the scaled matrix, and Tm(Hsc) are the Chebyshev polynomials of the first kind, defined by the three-term recurrence

relation: Tm+1(Hsc) = 2HscTm(Hsc) − Tm−1(Hsc), with T0(Hsc) = I and T1(Hsc) = Hsc. The series in Eq. (18)

converges if m = M > eτ‖H‖2/2, where M is the truncation order. The right graph of Figure 1 displays results

obtained by using interpolation orders p = 2 and p = 6, and integrated until final time with the time step δt = 0.1 ns.

We can see that the DG-CH scheme leads to a large error in the vacuum region and the solution becomes less accurate

when increasing p from p = 2 to p = 6. In order to understand this loss of accuracy in the DG-CH scheme, we

show in Figure 2 the eigenvalue spectrum of the Hamiltonian matrix H for different p. We note in particular that

the eigenvalues are distributed symmetrically with respect to the real axis. Note also that some of the eigenvalues,

λ, are complex numbers with Re(λ) , 0 and Im(λ) , 0. Moreover the eigenvalues of Hsc all lie in the rectangle

[−1, 1] × [−a, b], where a < 1 and b < 1, as illustrated in Figure 3. When applied the DG-CH scheme we need

to calculate the matrix polynomial Tm(Hsc) in Eq. (18). According to the spectral decomposition, Eq. (15), this can

be accurately done if Tm(λsc) (where λsc is an eigenvalue of the matrix Hsc) is well defined, which is not the case

in the present example since the Chebyshev polynomial is applied to ℜ(λsc) instead of λsc, which is not true if λsc

is a complex number. Here, the evaluation of Φ(τ) with Chebyshev polynomials for M = eτ‖H‖2/2 leads to non-

convergent results for all p. We have increased M by about 300% to obtain an accuracy of 10−2 and 10−1 for p = 2 and

p = 6, respectively. To remedy this, we must use polynomials defined in the complex plane like Faber polynomials as

described in the following sections and to modify the underlying scheme accordingly.
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Figure 1: On the left we plot the initial condition, E(x, t = 0) = exp(−50(x − 1)2), of the Gaussian pulse in the 1D cavity with a material interface

located at x = 0 and with Silver-Müller absorbing boundary conditions (ABC) at the endpoints x = ±2. The pulse propagates from the vacuum to

glass regions. On the right we compare solutions for the E-field component to the 1D Maxwell equation, computed using the DG-CH scheme when

the pulse goes through the material interface. The solid line represents the exact solution while dashed and dotted lines are for DG-CH scheme with

p = 2 and p = 6, respectively.
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Figure 2: Structure of the eigenvalue spectrum, λ, of the matrix H for p = 2, 4, 6 and absorbing boundary conditions.
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Figure 3: Structure of the eigenvalue spectrum, λ, of the matrix Hsc = −iH/‖H‖2 for p = 2, 4, 6 and absorbing boundary conditions.

4.2. General aspects

Let G be a closed bounded continuum (not a single point) in the complex z-plane such that Gc, the complement of

G, is simply connected in the extended z-plane and contains the point at infinity (e.g., a polygon, an ellipse, etc.). The

Riemann mapping theorem asserts that there exists a conformal mapping w = Υ(z) which maps Gc onto {w : |w| > ρ},
the exterior of a closed disk of radius ρ in the w-plane, and satisfies the conditions Υ(∞) = ∞ and Υ′(∞) = 1 [30,

Chap 1, pp. 8-13 ]. The function Υ(z) has a Laurent expansion of the form

Υ(z) = z +
∑

m≥0

βmz−m,

about the point at infinity. The constant ρ is called the logarithmic capacity or transfinite diameter of G. For a given

positive integer m, the Faber polynomial of degree m, Fm(z) = zm + . . . , is obtained by deleting all negative powers of

z from the corresponding Laurent expansion of [Υ(z)]m. Let Ψ(w) be the inverse of Υ(z). Then Ψ(w) maps the domain

{w : |w| > ρ} conformally onto Gc and has a Laurent expansion at infinity

Ψ(w) = w +
∑

m≥0

γmw−m, (19)
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where γm = 1/βm. The family of Faber polynomials {Fm(z)}∞
m=0

associated with the conformal mapping Ψ(w) can be

defined by a generating function

Ψ′(w)

Ψ(w) − z
=

∞
∑

m=0

Fm(z)

wm+1
, |w| > ρ, z ∈ G,

and satisfies the recurrence relation

Fm+1(z) = zFm(z) −
m

∑

j=0

γ jFm− j(z) − mγm, m ≥ 0, F0(z) = 1. (20)

This formula is particularly useful for polygonal regions for which the expansion of Ψ may be obtained by means of

the Schwarz-Christoffel transformation.

Any function f (z) that is analytic inside G can be uniquely expanded into a series of Faber polynomials

f (z) =

∞
∑

m=0

cmFm(z), z ∈ G, (21)

where the coefficients cm are called Faber coefficients with respect to G; they are defined as

cm =
1

2πi

∫

|w|=R

f (Ψ(w))

wm+1
dw, R > ρ, (22)

where the circle CR = {w : |w| = R} can be replaced by any closed rectifiable Jordan curve ΓR such that ΓR ⊂
Gc ∪ {∞}, z ∈ ΓR. In particular, we can choose ΓR to be the image under z = Υ(w) of CR. Here, the number R is

chosen sufficiently small that f can be extended analytically to ΓR. If Ψ can be extended continuously to Cρ, then the

value R = ρ is also acceptable. We note that the Faber series, Eq. (21), converges uniformly and absolutely to f on

every region bounded by ΓR to which f can be extended analytically [30, pp. 108-112]. For some continuum G, one

can get some special family of Faber polynomials. For instance, for the unit disk the Faber polynomial of degree m

is zm and the corresponding Faber series for an analytic function is its Taylor series about the origin. Multiples of the

Chebyshev polynomials are the Faber polynomials for an ellipse with foci at z = ±1, and, in particular, for the real

interval [−1, 1]. Full details of the theory of Faber polynomials and their approximating properties can be found in the

standard books of Markushevich [30, Chap. 3] and Gaier [31, Chap. l] and the other important references cited there.

4.3. The Faber algorithm

Let Γ be the boundary of G. The Faber polynomial algorithm for solving the initial value problem in Eq. (9) is

as follows. First, choose a Jordan curve Γ that encloses the spectrum of the Hamiltonian matrix H . Next, find the

corresponding conformal mapping Ψ. Finally, compute the Faber coefficients, cm(τ), by means of Eq. (22) where

f (z) = exp(τz). Once the coefficients cm(τ) are evaluated, the discrete solution is calculated as

Y
n+1 =

∞
∑

m=0

cm(τ)Fm(H)Yn,

11



and the action of the Faber polynomials on Yn is computed using the relation in Eq. (20) as

Fm+1(H)Yn = HFm(H)Yn −
m

∑

j=0

γ jFm− j(H)Yn − mγmY
n. (23)

However, this relation is, in general, unstable since the norm of the Faber polynomials growth rapidly with their orders,

‖Fm(z)‖∞ ≤ ρmV/π (see [32]). Here ‖ · ‖∞ denotes the uniform norm, ‖ f ‖∞ = maxz∈G | f (z)|, and V =
∫

Γ
|dθ(z)| ≥ 2π,

where θ(z) is the angle between the positive real axis and a tangent line to Γ. If G is convex, then V = 2π. To avoid this

instability, the matrixH has to be scaled so that its spectrum lies inside the domain whose logarithmic capacity ρ ≤ 1.

If λF is the scaling factor, then exp(τH) = exp(τ̃Hsc), whereHsc = H/λF and τ̃ = λFτ. The scaling factor λF should

be chosen as small as possible to allow for larger time steps τ. In the following, we choose ρ = 1 and the curve Γ is

taken to be an ellipse tightly enclosing the complex spectrum ofH . It is well known that, under these circumstances,

the conformal mapping,Ψ(w), in Eq. (19) is finite (i.e. it terminates) [30], and has the form

Ψ(w) = w + γ0 + γ1/w, γ1 , 0, (24)

where γ0 = x0 + iy0 is the center of the ellipse whose minor and major semi-axis a = ρ + γ1/ρ and b = ρ − γ1/ρ,

respectively. The logarithmic capacity of an ellipse is ρ = (a + b)/2. For ρ = 1, we have γ1 = 1 − b and b = 2 − a.

Thus, the recursion relation for the Faber polynomials, Eq. (23), becomes

Fm+1(Hsc)Y
n = (Hsc − γ0I)Fm(Hsc)Y

n − γ1Fm−1(Hsc)Y
n, m > 0, (25)

where F0(Hsc)Y
n = Yn and F1(Hsc)Y

n = (Hsc − γ0I)Yn. Then the discrete solution is given by

Y
n+1 =

∞
∑

m=0

cm(τ̃)Fm(Hsc)Y
n,

where the Faber coefficients can be solved analytically as

cm(τ̃) =
1

2πi

∫

|w|=1

exp[τ̃Ψ(w)]w−(m+1)dw =
1

2π

∫ 2π

0

exp[τ̃Ψ(eiθ)]e−imθdθ (w = eiθ)

=

( −i
√
γ1

)m

exp(τ̃γ0)Jm

(

2τ̃
√−γ1

)

.

(26)

Here we have used the identity exp[z(s+a/s)/2] =
∑∞

k=−∞(s/i
√

a)kJk(i
√

az), s, a ∈ C, and the Cauchy residue theorem

to the contour integral involved. Note that, for the conformal mapping, Eq. (24), the Faber polynomials generated by

Eq. (25) are related to Chebyshev polynomials of the first kind, Tm(z), by Fm(z) = 2(γ1)m/2Tm

(

(z − γ0)/
√

4γ1

)

, m ≥ 1.

Choice of the optimal ellipse. As we have already mentioned, the spectrum of the matrixH is symmetric with respect

to the real axis. Hence, we set y0 = 0. This spectrum lies in a rectangle [χ1, χ2] × [−ℓ, ℓ] with constants χ1,2 and ℓ to

be determined below. The strategy is to find an “optimal” ellipse that contains a scaled rectangle [χsc
1
, χsc

2
]× [−ℓsc, ℓsc],

where χsc
1,2
= χ1,2/λF and ℓsc = ℓ/λF .
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Let W(H) denote the field of values (or numerical range) of the matrixH , that is, W(H) =
{

z†Hz/z†z : z ∈ Cn, z , 0
}

.

Like the spectrum of a matrix, the field of values is a set that can be used to learn something about the matrix. In the

case where H is nonnormal, W(H) can give information that the spectrum alone cannot give. For a comprehensive

overview of the theory of the field of values we refer to [33, Chap. 1]. Now we derive the bounds, χ1,2 and ℓ, for the

field of values and the spectrum ofH which is a non-Hermitian matrix. Any matrixH can be split into two Hermitian

matrices as H = ℜ(H) + iℑ(H), where ℜ(H) = (H +H†)/2 and ℑ(H) = (H − H†)/2i. Then, the field of values

of H is W(H) = W(ℜ(H) + iℑ(H)). Since the field of values of a Hermitian matrix is real, we have the following

properties for the real and imaginary parts of the field of values of a non-Hermitian matrix [33, pp. 9-10]

Re(W(H)) = W(ℜ(H)) and Im(W(H)) = W(ℑ(H)).

Here Re and Im are used to denote the real and imaginary parts of a set, respectively. Hence, bounds on W(ℜ(H))

and on W(ℑ(H)) amount to a bounding box in the complex plane for W(H). Since the spectrum ofH is contained in

W(H), the same box gives bounds on the eigenvalues ofH

λ
ℜ(H)

min
≤ Re(λH ) ≤ λℜ(H)

max and λ
ℑ(H)

min
≤ Im(λH ) ≤ λℑ(H)

max ,

where λH is an eigenvalue ofH and the subscripts min and max refers to a minimal and a maximal value, respectively.

Moreover, since the matrix ℑ(H) has the form

ℑ(H) = −i





















0 S̃

−S̃† 0





















,

we have that λ
ℑ(H)

min
= −λℑ(H)

max . Then, we choose the parameters χ1,2 and ℓ as

χ1 = λ
ℜ(H)

min
, χ2 = λ

ℜ(H)
max , ℓ = λ

ℑ(H)
max . (27)

The center of the ellipse coincides with that of the rectangle then γ0 = (χsc
1
+ χsc

2
)/2. Since the vertices of the scaled

rectangle lies in the ellipse, the following condition holds

b2

a2
=

b2 − (ℓsc)2

c2
sc

, csc ≔

∣

∣

∣

∣

∣

∣

χ
sc
2
− χsc

1

2

∣

∣

∣

∣

∣

∣

.

This condition gives a relation between b and the scaling factor λF .

Choice of the scaling factor. Let FM be the Faber projection obtained by truncating the Faber series, i.e. FM( f )(z) =
∑M

m=0 cmFm(z). The truncation order, M, can be determined by requiring that the Faber coefficients decay exponentially,

e.g., for M ≥ eτ̃. The projection FM is a bounded linear operator which satisfies FM(pM) = pM for any polynomial

pM of degree M. The error bound for truncated Faber series is given by (see [32])

‖ f − FM( f )‖∞ =
V

π

(ρ/R)M+1

1 − ρ/R max
z∈ΓR

| f (z)|.
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In our experiments, G is an ellipse (which is convex V = 2π) with ρ = 1 and symmetric with respect to the real axis.

For the exponential function it can be proved following [22] that

‖ exp−FM(exp)‖∞ =
2

e

1 + α

α
exp

[

τ̃ (γ0 + O(1/M))
]

(

e

M

)M+1

, M ≥ 1 + α, (28)

for any α > 0. Hence, the Faber series converges exponentially as the truncated order M increases. To avoid the

exponential growth of the factor exp
[

τ̃ (γ0 + O(1/M))
]

and to allow for larger time steps τ = τ̃/λF , the scaling factor

λF must be minimal. The idea is to construct the minimum-area ellipse circumscribed to the scaled [χsc
1
, χsc

2
]×[−ℓsc, ℓsc]

such that λF is minimal. One can show that the ellipse with center γ0 and

γ1 =

(

c
2/3
sc + ℓ

2/3
sc

) (

c
4/3
sc − ℓ4/3sc

)

4ρ
, ρ =

√

c2
sc +

(

ℓscc2
sc

)2/3
+

√

ℓ2sc +
(

cscℓ
2
sc

)2/3

2
,

(29)

is that circumscribed to the scaled rectangle with minimal area and smallest capacity [34]. Since ρ = 1, the smallest

λF is reached when b2 = ℓ2sc +
(

cscℓ
2
sc

)2/3
, or

b

a
=

(

ℓsc

csc

)2/3

=

(

ℓ

c

)2/3

, c ≔

∣

∣

∣

∣

∣

χ2 − χ1

2

∣

∣

∣

∣

∣

.

Substituting a = 2 − b in the above equation we find the scaling factor

λF =

(

ℓ2/3 + c2/3
)3/2

2
. (30)

Finally, the Faber algorithm for approximating exp(τH)Yn is summarized in Algorithm 2.

Algorithm 2 Approximating exp(τH)Yn by Faber polynomials

Input: the fixed time step τ

Input: the matrix H
1: Computeℜ(H) = (H +H†)/2 and ℑ(H) = (H −H†)/2i

2: Compute χ1,2 and ℓ using Eq. (27)

3: Compute the scaling factor λF using Eq. (30)

4: Compute γ0 = (χ1 + χ2)/2λF and γ1 using Eq. (29)

5: Compute the Faber coefficients cm(τ̃) using Eq. (26)

6: Choose the truncation order M, such that M ≥ eλFτ

7: p0 = F0(Hsc)Y
n; p1 = F1(Hsc)Y

n

8: z1 = c0(τ̃)p0 + c1(τ̃)p1

9: for m = 1 to M − 1 do

10: pm+1 = Hscpm − γ0pm − γ1pm−1

11: zm+1 = zm + cm+1(τ̃)pm+1

12: end for

13: return zM ≈ exp(τH)Yn

5. Numerical results

In this section, we provide three numerical examples to illustrate the accuracy and capability of the Faber scheme

developed in the previous section. For the last two examples, we compare the Faber scheme with the fourth-order
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leap-frog (LF4) time scheme developed in [35]. The LF4 scheme can be written as

Y
n+1 = Y

n−1 + 2 τG(τ)Yn, where G(τ) = H + τ2H3/6.

The LF4 scheme is stable if the time step satisfies τ ≤ (2
1
3 + 2

2
3 )/‖H‖2 ≃ 2.847/‖H‖2. The computational work of the

LF4 scheme per time step mainly consists of three matrix-vector products and the algorithm to compute Yn+1 involves

the storage of four vectors (Yn−1,Yn,HYn,Y⋆ = Yn +HYn).

5.1. Gaussian pulse propagation in an absorbing dielectric medium

We consider the example of the Gaussian pulse already treated in Section 4.1 and we apply the Faber propagation

scheme associated with an elliptic contour. The time step is fixed to δt = 1 ns (i.e. τ = 0.3 m) and the simulation time

is T = 5 ns. In Figure 4 we show the elliptic contours that contain the eigenvalue spectrum of the scaled Hamiltonian

Hsc = H/λF for p = 2 and p = 6. The truncation order, M, of the Faber polynomial approximation is set by the

exponential decay of the Faber coefficients, cm, in Eq. (26). Figure 5 shows the behavior of |cm| (the modulus of cm)

together with the approximation error for the truncated Faber expansion, Eq. (28), as a function of M. The modulus

of cm is bounded by 1 and decays exponentially from M = τ̃ = λFτ on. The approximation error is constant until

M = τ̃ and then starts to decrease. The choice of M in the interval [1.3τ̃, 2τ̃] gives an error which ranges in the interval

[10−10, 10−15]. Taking more than 2τ̃ terms has no impact on improving the accuracy. In the present case, we use

M = 70 for p = 2 and M = 230 for p = 6. In Figure 6 we compare the exact solution for the E-field with those

obtained by the DG-Faber method. It is particularly noteworthy how much improvement there is in the accuracy of

the phase error when increasing the order of approximation from p = 2 to p = 6.
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Figure 4: We show the elliptic contour (dotted line) used in the simulation of the Gaussian pulse for p = 2 (left) and p = 6 (right). This contour

circumscribes the scaled rectangle (solid line) that encloses the numerical range (dashed line) of the scaled Hamiltonian Hsc = H/λF where

λF = 117.85 for p = 2 and λF = 568.44 for p = 6. We can see that the numerical range gives bounds on the eigenvalues (filled circle), λ, of Hsc.

The logarithmic capacity is one, ρ = 1, and the corresponding conformal mapping, Eq. (24), reads Ψ(w) = w + 0.1432 − 0.2827/w for p = 2 and

Ψ(w) = w + 0.1616 − 0.2224/w for p = 6.
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Figure 6: We compare the exact solution (solid line) of the Gaussian pulse with solutions obtained using the DG method based on Faber polynomial

integrator for p = 2 (cross) and p = 6 (square). On the right we show a zoom of the area [−0.5, 2.0] × [−0.02, 0.04].We note that the L2 error

between exact and DG solutions decreases from 4.93 × 10−3 for p = 2 to 3.6 × 10−5 for p = 6.

5.2. Plane-wave scattering by a dielectric circular cylinder

As a more challenging problem, let us consider the scenario shown on Figure 7 in which a plane wave with fre-

quency F=300 MHz impinges on a dielectric cylinder, experiencing reflection and refraction at the material interface.

The problem is solved in a total field formulation [1]. The exact time-domain solution of this problem is given in

[29, p. 666]. The cylinder has a radius of r0 = 0.6 m and bounds a nonmagnetic material with a relative permittivity

εr = 8. The surrounding medium is assumed to be vacuum, i.e., εr = µr = 1. The computational domain Ω is

bounded by a square of side length 3.2 m centered at (0, 0). A Silver-Müller absorbing condition is applied on the

boundary of the square. We use a fully bodyconforming grid with a total of 2527 vertices and 4896 elements, having

an average edge length of 0.2 wavelength, as illustrated in Figure 7. The physical simulation time has been set to 9

periods (T = 33 ns) of the incident wave. To ensure a proper representation of the curved boundaries, and to eliminate
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the geometrical error, we apply a high-order geometrical mapping for elements near the curvilinear boundaries while

the interior elements are treated with affine mapping [27]. We compare the Faber scheme with the LF4 scheme for

different p. For the LF4 scheme we use the maximum time step allowed by the stability condition which is given by

δt = τ/c0 where τ = 2.847/‖H‖2 with ‖H‖2 ≈ 617, 2609, 4808, 8358 for p = 2, 3, 4, 5, respectively. For the Faber

scheme we fix the time step δt = 1 ns for all p then we calculate the truncation order M = 1.3τλF where the scaling

factor λF ≈ 379, 1601, 2950, 5128 for p = 2, 3, 4, 5, respectively. Results are gathered in Table 1 in terms of accuracy

and computational effort for simulations conducted on a Dell Precision M90 workstation equipped with an Intel Core

processor and 2GB of RAM. For a given p, the Faber scheme yields 1 to 3 orders of magnitude improvement in accu-

racy over the LF4 scheme. The memory storage required by both schemes is similar while the Faber scheme requires

almost 1.35 times less CPU time than the LF4 scheme. This improvement in CPU time is due to the scaling factor λF

being 1.6 times smaller than ‖H‖2, which reduces the number of truncation order, M, in the Faber series. Furthermore,

to achieve a given accuracy, the Faber scheme yields a considerable saving in computational effort. Careful inspec-

tion of the computational results in Table 1 confirms this. Finally, contour lines of the Ez component for numerical

simulations performed with the LF4 and Faber schemes, are illustrated in Figure 8 using the interpolation order p = 2.
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Figure 7: Starting from the left, the computational domain and problem setup for the scattering example is depicted in the first graph. In the center

is shown the finite element grid, consisting of 4896 triangles, used for computing scattering by a dielectric cylinder of size 0.6 m. A zoom of the

boundary of the cylinder in the right figure illustrates the bodyconforming nature of the mesh.

5.3. Exposure of human head tissues to a localized source radiation

As a final example, we consider the application of the Faber propagation scheme to the simulation of a consider-

ably more challenging problem involving an irregularly shaped and heterogeneous medium with conductive materials.

The problem under consideration is concerned with the propagation of an EM wave emitted by a localized source in a

realistic geometrical model of head tissues. Starting from magnetic resonance images of the Visible Human 2.0 project

[36], head tissues are segmented and the interfaces of a selected number of tissues are triangulated. Different strategies

can be used in order to obtain a smooth and accurate segmentation of head tissues and interface triangulations as well.

The strategy adopted in this example consists in using a variant of Chew’s algorithm [37], based on Delaunay trian-

gulation restricted to the interface, which allows to control the size and aspect ratio of interface triangles. Example of
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Table 1: Computational effort and L2-errors when the LF4 and Faber time-stepping schemes are applied to the scattering problem with interpolation

order p after integrating over time T = 33 ns. For each case, we give the number of matrix vector products (# matvecs), the CPU time (CPU) in

minutes, and the memory usage (RAM) in Megabytes to achieve the final time period. For the Faber scheme, the CPU time also includes the time

for computing the parameters given in lines 1-5 of Algorithm 2.

Scheme (p = 2) δt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 1.538E-02 2.02E-02 6438 28 38.83

Faber 1.000E-00 1.63E-03 4851 20 39.91

Scheme (p = 3) δt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 3.638E-03 2.75E-03 27216 197 91.72

Faber 1.000E-00 6.78E-05 20592 145 93.51

Scheme (p = 4) δt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 1.974E-03 9.52E-04 50157 556 173.38

Faber 1.000E-00 2.53E-06 37950 413 176.07

Scheme (p = 5) δt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 1.135E-03 5.12E-05 87192 1404 248.95

Faber 1.000E-00 8.56E-08 65967 1036 252.71
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Figure 8: Contour lines of Ez component for the exact solution (left) and for solutions resulting from the Faber (center) and LF4 (right) schemes.

triangulations of the skin and skull are shown in Figure 9. Then, these triangulated surfaces together with a triangu-

lation of the artificial absorbing boundary of the overall computational domain are used as inputs for the generation

of volume meshes. Finally, the GHS3D tetrahedral mesh generator [38] is used to mesh the volume domains between

the various interfaces. The exterior of the head must also be meshed, up to a certain distance from the skin. The com-

putational domain is here artificially bounded by a sphere on which the Silver-Müller condition is imposed. Overall,

the constructed geometrical model considered here consists of four tissues (skin, skull, CSF - Cerebro Spinal Fluid,

brain) and the global tetrahedral mesh consists of 60,590 vertices and 361,848 tetrahedra. The minimum, maximum

and average lengths of the mesh edges are equal to 1.85 mm, 45.37 mm and 11.36 mm, respectively. The character-

istics of the tissues are summarized in Table 2 where the values of the relative permittivity εr, and the conductivity
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σ, correspond to a frequency F=1800 MHz and have been obtained from a special purpose online data base. For all

tissues, the relative permeability, µr, is set to 1. Finally, a dipolar type source is localized near the right ear of the head

yielding a current of the form Jz(x, t) = δ(x−xd) f (t), where f (t) is a sinusoidally varying temporal signal and xd is the

localization point of the source. The physical simulation time has been fixed to five periods of the temporal signal. A

discrete Fourier transform of the components of the electric field is computed during the last period of the simulation.

Contour lines of the modulus of the electric field, |E|, on selected planes of the skin for the approximate solutions

resulting from the Faber and LF4 schemes are visualized in Figure 10 using the interpolation order p = 2. The Faber

scheme produces a smoother solution around the right ear of the head (here the error between both solutions is about

10%). The time step used in the simulations are δt = 0.00103 ns for LF4 scheme and δt = 0.1 ns for Faber scheme.

The corresponding truncation order in the Faber expansion is chosen as M = 1.3τλF with λF ≈ 5171. For the sake of

completeness, we compare in Figure 11 the time evolution of the Ez component at two selected points in the free space

near the ear and in the brain. With such comparisons, the advantage of the Faber scheme over the LF4 scheme is more

remarkable. Finally, we give some informations on the simulation times required by both schemes. On a workstation

equipped with an Intel Xeon 2.33 GHz processor and 32 GB of RAM, the LF4 scheme requires 10 h 18 min for a total

of 2695 time steps, while the Faber scheme requires 6 h 31 min for a total of 28 time steps. We obtain that in this case

the Faber scheme is 1.6 times less costly than LF4 scheme for a given mesh. This gain could be larger since the LF4

scheme would have required a very fine mesh or high-order interpolation order yielding a huge computation time to

obtain the same kind of accuracy. We have run the LF4 scheme on the same mesh for p = 3, the simulation time is

45 h 44 min for a total of 4826 time steps, and the error with the Faber solution is reduced to 3.7%.

Figure 9: Surface mesh of the skin (left) and the skull (right).

6. Concluding remarks

We have continued the development of a new family of high-order time-stepping schemes for time-domain electro-

magnetics and discussed its properties and implementation in a high-order discontinuous Galerkin method. First, the
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Table 2: Electromagnetic characteristics of the selected head tissues at frequency F=1800 MHz.

Tissue εr σ (S/m) wavelength (mm)

Skin 38.87 1.18 26.73

Skull 15.56 0.43 42.25

CSF 67.20 2.92 20.33

Brain 43.55 1.15 25.26
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Figure 10: Contour lines of the modulus of the electric field, |E|, in selected cut planes of the head, using the Faber (top) and LF4 (bottom) schemes.

discretized Maxwell equations are written in a Hamiltonian form. This leads to a time-continuous problem in the form

of an initial-value problem for a system of first-order ODEs. Then the time integration method considered here is based

on the expansion of the time evolution operator in a series of Faber polynomials. The proposed expansion is suitable

for non-Hermitian Hamiltonian matrices,H , and, hence, the proposed time integrator can handle absorbing media and

conductive materials. The Faber algorithm consists of three ingredients. First, the choice of the optimal ellipse that

encloses the spectrum ofH . Next, the calculation of the corresponding conformal mapping. Finally, the evaluation of

the coefficients of the Faber series. We have implemented this algorithm in one, two and three space dimensions. The

Faber scheme converges spectrally when increasing the polynomial degree. Compared to the fourth-order leap-frog

scheme, the Faber method is more accurate and allows to reduce significantly the overall computing time and memory

overhead. However, despite these encouraging results, some points still deserve to be addressed in order to improve

the Faber algorithm. For instance, the optimization of the Jordan contour, Γ, that encloses the spectrum of H . This
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Figure 11: Time evolution of the Ez component at selected points in free space (left) and in the brain (right).

should decrease the truncation order in the Faber expansion and consequently reduce the computational effort of the

algorithm. In the present paper, Γ is chosen to be an ellipse since the associated Faber polynomials have the shortest

(three-term) recurrence relation. This ellipse is obtained from the field of values of H which provides bounds of the

eigenvalue. One should improve the bounds of the real part of the eigenvalues in order to obtain a tighter ellipse.

Finally, it is worth pointing out that only the ohmic current term, σE, is considered in the Maxwell equations, Eq. (2).

However, external currents such as time-dependent sources can also be handled by the Faber method, but this still

requires further research. We plan to address these issues in future work.
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