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ABSTRACT

Aims. The physical interpretation of spectro-interferometric data is strongly model-dependent. On one hand, models involving elab-
orate radiative transfer solvers are too time consuming in general to perform an automatic fitting procedure and derive astrophysical
quantities and their related errors. On the other hand, using simple geometrical models does not give sufficient insights into the physics
of the object. We propose to stand in between these two extreme approaches by using a physical but still simple parameterised model
for the object under consideration. Based on this philosophy, we developed a numerical tool optimised for mid-infrared (mid-IR)
interferometry, the fast ray-tracing algorithm for circumstellar structures (FRACS), which can be used as a stand-alone model, or as
an aid for a more advanced physical description or even for elaborating observation strategies.
Methods. FRACS is based on the ray-tracing technique without scattering, but supplemented with the use of quadtree meshes and the
full symmetries of the axisymmetrical problem to significantly decrease the necessary computing time to obtain e.g. monochromatic
images and visibilities. We applied FRACS in a theoretical study of the dusty circumstellar environments (CSEs) of B[e] supergiants
(sgB[e]) in order to determine which information (physical parameters) can be retrieved from present mid-IR interferometry (flux and
visibility).
Results. From a set of selected dusty CSE models typical of sgB[e] stars we show that together with the geometrical parameters
(position angle, inclination, inner radius), the temperature structure (inner dust temperature and gradient) can be well constrained
by the mid-IR data alone. Our results also indicate that the determination of the parameters characterising the CSE density structure
is more challenging but, in some cases, upper limits as well as correlations on the parameters characterising the mass loss can be
obtained. Good constraints for the sgB[e] central continuum emission (central star and inner gas emissions) can be obtained whenever
its contribution to the total mid-IR flux is only as high as a few percents. Ray-tracing parameterised models such as FRACS are
thus well adapted to prepare and/or interpret long wavelengths (from mid-IR to radio) observations at present (e.g. VLTI/MIDI) and
near-future (e.g. VLTI/MATISSE, ALMA) interferometers.

Key words. methods: numerical – methods: observational – techniques: high angular resolution – techniques: interferometric –
stars: mass loss – stars: emission-line, Be

1. Introduction

When dealing with optical/IR interferometric data, one needs to
invoke a model for the understanding of the astrophysical ob-
ject under consideration. This is because of (1) the low coverage
of the uv-plane and most of the time because of the lack of the
visibility phase; and (2) because our aim is to extract physical
parameters from the data. This is particularly true for the Mid-
Infrared Interferometric Instrument (MIDI, Leinert et al. 2003)
at the Very Large Telescope Interferometer (VLTI), on which
our considerations will be focused. Some pure geometrical in-
formation can be recovered through a simple toy model such as
Gaussians (see e.g. Leinert et al. 2004; Domiciano de Souza
et al. 2007).

However, this approach does not give any insights into the
physical nature of the object. One would dream of having a
fully consistent model to characterise the object under inspec-
tion. In many cases, if not all, a fully consistent model is out
of reach and one uses at least a consistent treatment of the ra-
diative transfer. Models based for instance on the Monte Carlo
method are very popular (see e.g. Ohnaka et al. 2006; Niccolini
& Alcolea 2006; Wolf et al. 1999) for this purpose. Still, the

medium density needs to be parameterised and it is not deter-
mined in a self-consistent way. For massive stars for instance, it
would be necessary to take into account non-LTE effects includ-
ing both gas and dust emission of the circumstellar material as
well as a full treatment of radiation hydrodynamics. Fitting in-
terferometric data this way is as yet impossible because of com-
puting time limitations.

Of course, solving at least the radiative transfer in a self-
consistent way is already very demanding for the computa-
tional resources. Consequently, model parameters cannot be de-
termined in a fully automatic way and the model fitting process
must be carried out mostly by hand, or automatised by systemat-
ically exploring the parameter-space , the “chi-by-eye” approach
mentioned in Press et al. (1992). The followers of this approach
consider the “best fitting” model as their best attempt: a model
that is compatible with the data. It is admittedly not perfect, but
it is in most of the cases the best that can be done given the dif-
ficulty of the task. It is remarkable that a thorough χ2 analysis
of VLTI/MIDI data of the Herbig Ae star AB Aurigae has been
performed by di Folco et al. (2009) which remains to date one
of the most achieved studies of this kind. From the χ2 analysis,
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formal errors can be derived and at least the information con-
cerning the constraints for the physical parameters can be quanti-
fied. Qualitative information about the correlation of parameters
can be pointed out.

The next step after the toy models for the physical char-
acterisation of the astrophysical objects can be made from the
pure geometrical model towards the self-consistency by includ-
ing and parameterising the object emissivity in the analysis.
For instance, Lachaume et al. (2007) and Malbet et al. (2005)
use optically thick (i.e. emitting as black bodies) and infinitely
thin discs to model the circumstellar environment of pre-main-
sequence and B[e] stars. Of course this approach has some re-
striction when modelling a disc: for instance it cannot handle
nearly edge-on disc and an optically thin situation.

We propose an intermediate approach: between the use of
simple geometrical models and sophisticated radiative transfer
solvers. Indeed, it is a step backwards from the “self-consistent”
radiative transfer treatment, which is in most cases too advanced
with regard to the information provided by the interferometric
data. For this intermediary approach, we assume a prescribed
and parameterised emissivity for the medium. Our purpose is to
derive the physical parameters that characterise this emissivity.
In the process, we compute intensity maps and most particularly
visibility curves from the knowledge of the medium emissivity
with a fast ray-tracing technique (a few seconds depending on
map resolution), taking into account the particular symmetries
of a disc configuration. Then, the model fitting process can be
undertaken in an automatic way with standard methods (see e.g.
Levenberg 1944; Marquardt 1963). The techniques we present
are designed to be quite general and not tailored to any particular
emissivity except for the assumed axisymmetry of the problem
under consideration.

Our purpose is twofold. On one hand – as already mentioned
– we aim to estimate physical parameters and their errors char-
acterising the circumstellar dusty medium under consideration
with as few restrictive assumptions as possible; at least within
the obvious limitations of the present model. On the other hand
our purpose is to provide the user of a more detailed model, such
as a Monte Carlo radiative transfer code, with a first characteri-
sation of the circumstellar matter to start with.

In Sect. 2 we describe the general framework of the proposed
ray tracing technique. In particular how to derive the observable
from the astrophysical object emissivity. In Sect. 3 we describe
the numerical aspects that are specific to the present ray-tracing
technique. In particular, the use of a quadtree mesh and the sym-
metries that allow us to speed up the computation are detailed.
In Sect. 4 we focus our attention on the circumstellar disc of
B[e] stars and describe a parametric model of the circumstel-
lar environment. In Sect. 5 we analyse artificial interferometric
data generated both from the parametric model itself and from a
Monte Carlo radiative transfer code (Niccolini & Alcolea 2006).
Our purpose is not to fit any particular object, but to present our
guideline to the following question: which physical information
can we get from the data? A discussion of our results and the
conclusions of our work are given in Sects. 6 and 7 respectively.

2. The ray-tracing technique

We describe here the FRACS algorithm, developed to study
stars with CSEs from mid-IR interferometric observables
(e.g. visibilities, fluxes, closure phases). Although FRACS could
be extended to investigate any 3D CSE structures, we focus
here on the particular case of axisymmetrical dusty CSEs. This

Fig. 1. Coordinate systems. The shaded ellipse represents a disc viewed
by the observer.

study is motivated by the typical data one can obtain from disc-
like CSE observed with MIDI, the mid-IR 2-telescope beam-
combiner instrument of ESO’s VLTI (Leinert et al. 2003).

2.1. Intensity map

Intensity maps of the object are the primary outputs of the model
that we need to compute the visibilities and fluxes that are di-
rectly compared to the observations. For this purpose, we in-
tegrate the radiation transfer equation along a set of rays (ray-
tracing technique) making use of the symmetries of the problem
(see Sect. 3 for details).

The unit vector along the line of sight is given by n̂ =
ŷ sin i + ẑ cos i, i being the inclination between the z-axis and
the line of sight and x̂, ŷ the unit vector along the x et y-axis of
a cartesian system of coordinates (see Fig. 1), referred to as the
“model system” below. The problem is assumed to be invariant
by rotation around the z-axis. We define a fictitious image plane
by giving two unit vectors Ŷ = −ŷ cos i + ẑ sin i and X̂ = −x̂.
This particular choice is made making use of the axisymmetry
of the problem. Note that for this particular coordinate system
(X, Y) the disc position angle (whenever i � 0) is always defined
as 90◦. The actual image plane, with the Y′ and X′ axis corre-
sponding respectively to North and East, is obtained by rotating
the axis of our fictitious image plane by an angle PAd − π2 , where
PAd is the position angle of the disc with respect to North.

The dust thermal emissivity at wavelength λ and position
vector r is given by

ηλ(r) = κabs
λ (r) Bλ(T (r)), (1)

where κabs
λ (r) is the absorption coefficient and Bλ(T (r) the Planck

function at the medium temperature T (r) at r. κabs
λ is defined as

n(r) Cabs
λ , where Cabs

λ is the absorption cross section and n(r) the
number density of dust grains at r.

We neglect the scattering of the radiation by dust grains, opti-
mising our approach to long wavelengths (from mid-IR to radio).
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This assumption simplifies the radiative transfer equation by re-
moving the scattering term.

We obtain the intensity map at position (X, Y) in the image
plane (inclined by i) and at wavelength λ by integrating the trans-
fer equation along the particular ray that passes through the con-
sidered point of the image plane. Defining rs(X, Y, i) (simply rs
for short) as the position vector along a ray, given in the model
system of coordinates by

rs(X, Y, i) =

⎛⎜⎜⎜⎜⎜⎜⎝
−X

−Y cos i + s sin i
Y sin i + s cos i

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

and by introducing the optical depth at wavelength λ and posi-
tion s along the ray by

τλ(X, Y, i; s) =

√
R2

out−R2∫
s

κext
λ (rs′) ds′, (3)

we obtain

Iλ(X, Y, i) =

√
R2

out−R2∫

−
√

R2
out−R2

κabs
λ (rs) Bλ [T (rs)] e−τλ(X, Y, i; s) ds, (4)

where the extinction coefficient κext
λ (r) ≈ κabs

λ (r) because scatter-
ing is neglected.

We assume that the CSE is confined within a sphere

of radius Rout, s varies consequently from −
√

R2
out − R2 to√

R2
out − R2 (R2 = X2 + Y2) in Eq. (4) and in the definition of

a ray Eq. (2). This hypothesis can be relaxed without altering the
present considerations and the domain of integration of Eq. (4)
suitably chosen.

If some radiation sources (e.g. black body spheres) are in-
cluded in the analysis, an additional term must be added in
Eq. (4) whenever a particular ray intersect a source. For a
source with specific intensity Is

λ this additional term is given
by Is

λ e−τλ(X,Y,i;s(s)), s(s) being the distance at which the ray given
by X, Y and i (see Eq. (2)) intersects the outermost (along the
ray) source boundary. In that case the lower integration limit in

Eq. (4), that is −
√

R2
out − R2, must also be replaced by s(s).

2.2. Interferometric observables

From the monochromatic intensity maps at wavelength λ
(Eq. (4)) we obtain both the observed fluxes Fλ and visibili-
ties Vλ for an object at distance d,

Fλ(i) =
1
d2

∞∫
−∞

∞∫
−∞

Iλ(X, Y, i) dXdY, (5)

and

Vλ(B, PA) =
1

d2 Fλ(i)

∞∫
−∞

∞∫
−∞

Iλ(X, Y, i)

×e−2 jπ B
λ [ X

d cos(Δ)+ Y
d sin(Δ)] dXdY, (6)

where Vλ is obtained for a given baseline specified by its pro-
jected length B (on the sky, i.e. (X′, Y′) coordinates) and its polar
angle PA from North to East (direction of the Y′ axis). Δ and j
represent, respectively, PAd − PA and

√−1.

3. Numerical considerations

We seek to produce intensity maps within seconds1 and we aim
for our numerical method to be sufficiently general in order to
deal with a large range of density and temperature structures.
Given these two relatively tight constraints, the numerical inte-
gration of Eq. (4) is not straightforward.

For example we have tested that the 5th order Runge-Kutta
integrators of Press et al. (1992) with adaptive step-size (as dis-
cussed in Steinacker et al. 2006) doest not suit our constraints.
Indeed, the step adaption leads to difficulties if sharp edges
(e.g. inner cavities) are present in the medium emissivity.

3.1. Mesh generation

Regarding the above mentioned constraints and the different nu-
merical approaches tested, we found that Eq. (4) is more effi-
ciently computed with an adaptive mesh based on a tree data
structure (quadtrees/octrees). The mesh purpose is twofold: first,
it must guide the computation of Eq. (4) and distribute the in-
tegration points along the rays according to the variations of
the medium emissivity; second, within the restriction of axis-
symmetrical situations, the mesh must handle any kind of emis-
sivity. Quad/octree meshes are extensively used in Monte Carlo
radiative transfer codes (e.g. see Bianchi 2008; Niccolini &
Alcolea 2006; Jonsson 2006; Wolf et al. 1999); the mesh gen-
eration algorithm is thoroughly described in Kurosawa & Hillier
(2001).

The mesh we use is a cartesian quadtree. Cartesian refers
here to the mesh type and not to the system of coordinates we
use. Indeed, the mesh is implemented as a nested squared do-
main (cells) in the ρ− |z| plane (ρ =

√
x2 + y2). The whole mesh

is enclosed by the largest cell (the root cell in the tree hierarchy)
of size Rout in ρ and |z|. The underlying physical coordinate sys-
tem is cylindrical (with z > 0) and the mesh cells correspond
to a set of two (for z > 0 and z < 0) tori, which are the actual
physical volumes.

The mesh generation algorithm consists in recursively divid-
ing each cell in four child cells until the following conditions are
simultaneously fulfilled for each cell in the mesh (see Kurosawa
& Hillier 2001, for more details):
�
Vξ

[
κabs
λ (r)

]α
d3r

�
Vtot

[
κabs
λ (r)

]α
d3r
< η and (7)

�
Vξ

[T (r)]β d3r

�
Vtot

[T (r)]β d3r
< η, (8)

where Vξ is the volume of cell ξ, Vtot is the volume of the root cell
and α, β and η are parameters controlling the mesh refinement.

In the present work α and β have been fixed to 1, but higher
values can be useful for some particular situations where the
generated mesh must be tighter than the mesh generated directly
from the κabs

λ and T variations. Typically, these situations show
up for high optical depths (in this paper, optical depth values
do not exceed �1 at 10 μm along the rays). The practical choice
of α, β and η is obtained from a compromise between execu-
tion speed and numerical accuracy of the Eq. (4) integration

1 The actual computation time reached is less than 10 s for a 104 pixel
map on an Intel T2400 1.83 GHz CPU.
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Fig. 2. Quadtree mesh for a disc configuration. The disc parameters are
those of model (b) described in Sect. 5.2 (see also Tables 2 and 4). The
mesh refinement parameter η (Eqs. (7) and (8)) has been set to the high
value 10−3 in order to obtain a coarse mesh more easily represented.

(e.g. typical values of η range from 10−5 to 10−4). When deal-
ing with optically thick situations, a supplementary conditions
can be added to Eqs. (7) and (8) in order to prescribe an upper
limit to the cell optical depth. For instance, making use of the
computation of the integral in Eq. (7), one can add the following
criterion for cell ξ (whose centre is (ρξ, zξ) and size Δξ)

1
2 π ρξ Δξ

�

Vξ

κext
λ (r) d3r ≤ Δτlim, (9)

where Δτlim is the prescibed upper limit to the cell optical depth.
For the moderate optical depths reached in this work, with

values of η down to 10−5 and Δτlim set to 10−2, the crite-
ria of Eqs. (7) and (8) are the leading conditions to the mesh
refinement.

Figure 2 shows the mesh obtained in the particular case of a
B[e] circumstellar disc (see Sect. 4) for models whose parame-
ters are given in Table 2 (see caption for more details).

The volume integrals in Eqs. (7) and (8) are estimated by
Monte Carlo integration. For a quantity f (r) and for the cell ξ
the integral

�
Vξ

f (r) d3r is approximated by

2π

zξ+
Δξ
2∫

zξ− Δξ2

ρξ+
Δξ
2∫

ρξ− Δξ2

ρ f (ρ, z) dz dρ ≈
2 πΔ2

ξ

N

N∑
k=1

ρk f (ρk, zk), (10)

where we made explicit use of the mesh coordinates and where
(ρk, zk) with k = 1, · · · ,N are chosen randomly and uniformly
within the cell domain.

3.2. Symmetries

We can make use of the CSE symmetries to reduce the compu-
tation domain of an intensity map from Eq. (4) to only a fourth
of it and consequently reduce the computation time.

Recalling the definition of a ray (Eq. (2)), we have two no-
ticeable identities for any disc physical quantityΦ (e.g. κabs

λ , κext
λ ,

T , n, . . . ) depending on r

Φ (rs(X, Y, i)) = Φ (rs(−X, Y, i)) and (11)

Φ (rs(X, Y, i)) = Φ (r−s(X,−Y, i)) , (12)

where Eq. (11) expresses the disc symmetry with respect to the
y − z plane and Eq. (12) the point symmetry with respect to the
origin of the model system of coordinates.

From the above identities it is straightforward to deduce their
counterpart for the intensity map

Iλ(X, Y, i) = Iλ(−X, Y, i) and (13)

Iλ(X, Y, i) = Iλ(X,−Y, i)e
−
+smax∫
−smax

κext
λ (rs′ ) ds′

, (14)

where smax =

√
R2

out − R2. Note that the exponential factor in
Eq. (14) has to be evaluated when computing Iλ(X, Y, i) anyway;
no extra effort is required to derive Iλ(X, Y, i) from Iλ(X,−Y, i)
except for the multiplication of Iλ(X,−Y, i) by this factor.

3.3. Intensity map

The fictitious image plane is split into a set of pixels whose po-
sitions X j and Yk are given by

X j = ΔX ×
(

j +
1
2
− N

2

)
, (15)

Yk = ΔY ×
(
k +

1
2
− N

2

)
, (16)

where ΔX = ΔY is the pixel size in X and Y, and N is the number
of pixels in X and Y, and where

0 ≤ j, k ≤ (N ÷ 2) + δ, (17)

where δ = −1 for N even and δ = 0 otherwise and “÷” stands
for the integer division. Taking into account the symmetries
mentioned in Sect. 3.2 only a fourth of the pixels need to be
considered.

The evaluation of the integral in Eq. (4) is carried out for
each pixel (X j, Yk) and along the ray rs(X j, Yk, i). The intersec-
tion points of the ray with the cell boundaries corresponds to a
set of distances along the ray defined as

s0 = 0 (18)

sl = sl−1 + Δsl−1 for 1 ≤ l ≤ ncells, (19)

where ncells is the number of cells encountered along the ray,
and Δsl the distance crossed within the lth cell.

We estimate numerically the optical depth τλ(X, Y, i; s), de-
fined in Eq. (3), via the midpoint rule quadrature by

τλ(X, Y, i; sl) ≈ τ(l)
λ =

ncells−1∑
k=l

κext
λ (rsl+1/2 )Δsl, (20)

where we defined sl+1/2 = sl +
Δsl
2 for l = 0, · · · , ncells − 1.
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The numerical estimate of Iλ(X j, Yk, i) is obtained by

Iλ(X j, Yk, i) ≈
ncells−1∑

l=0

κabs
λ (rsl+1/2 ) Bλ(T (rsl+1/2 )) e−τ

(l)
λ Δsl. (21)

The results for all j and k can then be obtained from the discrete
counterpart of the symmetry relations (13) and (14)

Iλ(XN−1− j, Yk, i) = Iλ(X j, Yk, i), (22)

Iλ(X j, YN−k−1, i) = Iλ(X j, Yk, i) e−τ
(0)
λ . (23)

3.4. Interferometric observables

From the numerical estimate of Iλ(X j, Yk, i) given above we ob-
tain (similarly to Eqs. (5) and (6)) the numerical fluxes and vis-
ibilities, which can be directly compared to the observed data.
The numerical estimate of these quantities is again obtained
through the mid-point rule.

The numerical flux Fλ(i) is computed by

Fλ(i) ≈ 1
d2

N−1∑
k=0

N−1∑
l=0

Iλ(Xk, Yl, i)ΔXΔY . (24)

The complex visibility is approximated numerically by

Vλ ≈ 1
d2 Fλ(i)

N−1∑
k=0

N−1∑
l=0

Iλ(Xk, Yl, i) e2 jπ B
λ ·

Rkl
d ΔXΔY , (25)

where B = (B cosΔ, B sinΔ) and Rkl = (Xk, Yl).

3.5. Artificial data generation

The procedure described below aims to mimic the observables
of the VLTI/MIDI instrument: the flux Fλ (Eq. (24)) and the
modulus of the visibility |Vλ| (Eq. (25)). The wavelengths and
baselines chosen for the artificial data generation correspond to
accessible values to VLTI/MIDI with the Unit Telescopes (UTs):
λ j = 7, 8, 9, 10, 11, 12, and 13 μm ( j = 1, · · · , nλ; nλ = 7), and
(Bk, PAk) as shown in Table 1 (k = 1, · · · , nB; nB = 18). These
values amount to 126 points covering the uv-plane.

For a given intensity map at λ j, Fλ j and |Vλ j | are taken
as the expectation values of the simulated data. The observed
flux Fobs

λ j
is then generated assuming a Gaussian noise with

an RMS (root mean square) corresponding to 10% relative er-
ror σF ( j) = 0.1 × Fλ j .

The artificial observed visibility amplitudes |Vobs
λ | are ob-

tained as

|Vobs
λ j

(Bk, PAk)| = |Vλ j(Bk, PAk)| + ΔVk, (26)

where ΔVk is a wavelength independent shift that mimics the
error in the observed visibilities, introduced by the calibra-
tion procedure commonly used in optical/IR interferometry. For
each (Bk, PAk), ΔVk is computed assuming a Gaussian noise
with an RMS corresponding to 10% relative error (typical for
VLTI/MIDI)σV (k) = 0.1×〈|Vλ(Bk, PAk)|〉, where 〈|Vλ(Bk, PAk)|〉
is the wavelength mean visibility modulus.

3.6. Model fitting and error estimate

We describe here the procedure adopted in order to simultane-
ously fit observed fluxes and visibilities using FRACS models

Table 1. Projected baselines. These values correspond to the baselines
accessible from pairs of Unit Telescopes (UT) at ESO-VLTI.

k Bk [m] PAk [deg]
1 37.8 61.7
2 41.3 53.4
3 43.7 44.8
4 46.2 44.5
5 49.5 37.5
6 51.9 30.0
7 61.7 134.6
8 62.0 111.2
9 62.4 122.5

10 81.3 108.2
11 83.0 52.2
12 86.3 96.0
13 89.0 84.4
14 89.9 44.8
15 94.8 36.7
16 113.6 82.4
17 121.2 73.6
18 126.4 64.9

defined by a given set of input parameters. This procedure is ap-
plied to artificial data in the next sections.

In order to quantify the discrepancy between the artificial ob-
servations (|Vobs

λ j
| and Fobs

λ j
) and the visibilities and fluxes from a

given model (|Vλ j(Bk, PAk)| and Fλ j) we use the χ2 like quantities

χ2
|V | =

nλ∑
j=1

nB∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝
|Vobs
λ j

(Bk, PAk)| − |Vλ j(Bk, PAk)|
σV (k)

⎞⎟⎟⎟⎟⎟⎟⎠
2

, (27)

and

χ2
F =

nλ∑
j=1

nB∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝
Fobs
λ j
− Fλ j

σF ( j)

⎞⎟⎟⎟⎟⎟⎟⎠
2

· (28)

To take into account both the mid-IR flux and the visibilities on
the same level in the fitting process, we minimise the following
sum

χ2 = χ2
|V | + χ

2
F . (29)

In the discussion below about the parameter and error determi-
nation we use the reduced χ2 defined by χ2

r = χ
2/(2nBnλ − nfree)

(for nfree free parameters).
From a minimising algorithm the best-fit model parameters

can then be found by determining the minimum χ2
r : χ2

r,min. The
“error” estimate is obtained from a thorough exploration of the
parameter space volume, defined by a contour level χ2

r,min +Δχ
2
r ,

where Δχ2
r has been chosen equal to 1. This volume can be inter-

preted as a confidence region. The quantity defined in Eq. (29)
is a weighted sum of χ2 variables whose cumulative distribu-
tion function can be approximated by a gamma distribution (see
Feiveson & Delaney 1968) with the same mean and variance.
It is then possible to obtain a rough estimate of the confidence
level associated with the Δχ2

r = 1 confidence region given ap-
proximately by �2σ.

The size of the confidence region is determined by consid-
ering all possible pairs of parameters for a given fitted model
and computing χ2

r maps for each. The procedure to estimate the
errors can be summarised as follows:

– For a given χ2
r map, i.e. for a given couple of parameters

among the nfree × (nfree − 1)/2 possibilities, we identify the
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region bounded by Δχ2
r = 1 around the minimum of this

particular map.
– The boundaries of the projection of these regions on each

of the two parameter axis considered are recorded for each
map.

– The final errors on a given parameter are taken as the highest
boundary values of the projected regions over all maps.

4. Astronomical test case: sgB[e] stars

In the following sections we apply FRACS to a theoretical in-
terferometric study of dusty CSE of B[e] supergiants (sgB[e] in
the nomenclature of Lamers et al. 1998). However, we empha-
sise that FRACS is in no way restricted to this particular class of
objects.

sgB[e] stars reveal in particular a strong near- or mid-IR
excess caused by hot dust emission. There is evidence (e.g.
Zickgraf et al. 1985) that the stellar environment, and in par-
ticular dust, could be confined within a circumstellar disc. Our
purpose is to characterise this class of objects and derive not
only geometrical parameters (e.g. inner dust radius, disc posi-
tion angle and inclination) but also physical parameters such as
temperature gradients, dust formation region, material density, ...

The physical description of the CSE chosen for our study is
the wind model with equatorial density enhancement. This is a
classical CSE model commonly adopted for sgB[e] (e.g. Porter
2003).

In order to compute the model intensity maps we need to pa-
rameterise the emissivity of the disc. Consistently with FRACS
assumptions, we consider only dust thermal emission without
scattering by dust grains and the gas contribution to the medium
emissivity. In the rest of this section we characterise the emis-
sivity by describing the dust density law, the absorption cross
section, and the temperature structure of the CSE.

4.1. Mass loss and dust density

Dust is confined between the inner and outer radius Rin and Rout
respectively. We assume a stationary and radial mass loss; phys-
ical quantities will consequently depend only on the radial com-
ponent r and the co-latitude θ. The disc symmetry axis coincides
with the z axis of the model cartesian system of coordinates. The
mass loss rate and velocity parametrisations are simplifications
of the one adopted by Carciofi et al. (2010), and we refer the
reader to their work for a complete description (see also Stee
et al. 1995, for a similar description).

The mass loss rate per unit solid angle, at co-latitude θ, is
parameterised as follows

dṀ
dΩ

(θ) =
dṀ
dΩ

(0) (1 + A1 sinm(θ)) , (30)

with the help of two dimensionless parameters A1 and m.
Even though our computations make no explicit use of the

radial velocity field vr(θ) (assumed to have reached the termi-
nal velocity v∞(θ) in the region under considerations, i.e. vr(θ) ≈
v∞(θ)), the dust density depends on vr(θ) parameterised in a sim-
ilar fashion

vr(θ) = vr(0) (1 + A2 sinm θ) , (31)

where we have introduced the supplementary dimensionless pa-
rameters A2. From Eqs. (30) and (31) we see that A1 and A2 are

the relative differences of the values of dṀ
dΩ (θ) and vr(θ) at the

equator and the pole (relatively to the pole).
From the mass continuity equation one obtains the number

density of dust grains

n(r, θ) = nin

(Rin

r

)2 1 + A2

1 + A1

1 + A1 (sin θ)m

1 + A2 (sin θ)m , (32)

where nin is the dust grain number density at Rin in the disc equa-
torial plane. In Eq. (32), the parameter m controls how fast the
density drops from the equator to the pole, defining an equatorial
density enhancement (disc-like structure).

Consistent with the accepted conditions for dust formation
(Carciofi et al. 2010; Porter 2003) we assume that the dust can
survive only in the denser parts of the disc. We thus define a
dusty disc opening angle Δθd determined by the latitudes for
which the mass loss rate has dropped to half of its equatorial
value:

Δθd = 2 arccos

(
A1 − 1
2 A1

) 1
m

· (33)

To summarise, the dust grains only exist (i.e., n(r, θ) � 0) in the
regions bounded by Rin ≤ r ≤ Rout and by π−Δθd2 ≤ θ ≤ π+Δθd2 .

4.2. Dust opacities

The absorption cross section Cabs
λ for the dust grains is ob-

tained from the Mie (1908) theory. The Mie absorption cross
sections are computed from the optical indices of astronomical
silicate (Draine & Lee 1984). Note that since scattering is ne-
glected, Cabs

λ ≈ Cext
λ , with Cext

λ being the extinction cross section.
For a power-law size distribution function according

to Mathis et al. (1977) the mean cross sections (e.g. for Cabs
λ )

are given by

Cabs
λ =

amax∫
amin

a−βCabs
λ (a) da

amax∫
amin

a−β da

, (34)

where amin and amax are the minimum and maximum radii for
the dust grains under consideration and β is the exponent of the
power-law. The computation of the cross section in Eq. (34) was
performed with the help of the Wiscombe (1980) algorithm.

4.3. Temperature structure

The dust temperature is assumed to be unique (i.e. independent
of grain size) and described by a power-law

T (r) = Tin

(Rin

r

)γ
, (35)

where Tin is the temperature at the disc inner radius Rin. We note
that γ is not necessarily a free parameter because in the optically
thin regime (large wavelength and radius) the temperature goes
as T (r) ∝ r−

2
4+δ with δ � 1 (see Lamers & Cassinelli 1999).

4.4. Central continuum emission

The continuum emission from the central regions is composed
by the emission from the star and from the close ionised gas
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Table 2. Model parameters. This table lists the parameters of 12 differ-
ent models.

Parameters Values Unit
A1 150 –
A2 −0.8 –
Δθd 10/60 deg
Rs 60 R
Rin 30 Rs

Rout 3000 Rs

nin 0.015/0.15 m−3

Tin 1500 K
γ 0.75 –

Is
λ0

6500 W m−2 μm−1 str−1

α 3 –
PAd 125 deg

i 20/50/90 deg
amin 0.5 μm
amax 50 μm
β −3.5 –

Notes. The parameter values that change (Δθd, nin and i) from one model
to the other have been inclosed in a box and separated by a slash. The
values of Δθd = 10◦/60◦ given below correspond via Eq. (33) to m =
183.56/4.86 respectively.

(free-free and free-bound emission). This central source emis-
sion is confined to a small region of radius Rs (� Rin), which is
unresolved (angular sizes of a few milliarcseconds) by mid-IR
interferometers. Thus, in our modelling Rs is simply a scaling
factor of the problem fixed to a typical radius value for massive
stars. The specific intensity (in W m−2 μm−1 str−1) of this central
source is parameterised as follows

Is
λ = Is

λ0

(
λ0

λ

)α
, (36)

where Is
λ0

is the specific intensity at a reference wavelength λ0

(=10 μm in the following), and α gives the spectral dependence
of the continuum radiation. In the mid-IR its value is expected
to lie between α = 4 (pure black body) and α � 2.6 (free-free
emission) for an electron density proportional to r−2 (Panagia &
Felli 1975; Felli & Panagia 1981).

5. Study of the tested models

Following the description in the last sections we describe
here the chosen sgB[e] model parameters used to simulate
VLTI/MIDI observations (visibilities and fluxes) and the cor-
responding analysis, i.e. model fitting, using FRACS. The list
of chosen parameters is summarised in Table 2. Two types of
numerical tests are presented. Firstly, synthetic mid-IR interfer-
ometric data are generated from FRACS itself. In that way, it
is possible to determine what information the mid-IR interfero-
metric data contain under the optimistic assumption that we do
have the true model. Secondly, this study is supplemented by the
comparison of FRACS to a Monte Carlo radiative transfer com-
putation. This confirms that FRACS can indeed mimic, under
appropriate conditions, the results of a more sophisticated code
as seen from the mid-IR interferometric eye.

5.1. Parameter description

The distance to the simulated object has been fixed to d = 1 pc,
which is a typical distance for Galactic sgB[e].

The inner radius Rin = 30 Rs = 1800 R value was cho-
sen by considering the location of the hottest dust grains (see
Lamers & Cassinelli 1999) with a condensation temperature of
1500 K assumed to be the Tin value. The value of Rout can-
not be determined from the mid-IR data and has been fixed to
3000 Rs = 1.8× 105 R. The temperature gradient γ was fixed to
0.75 according to Porter (2003). PAd was fixed to 125◦.

The central source emission is supposed to have a radius
Rs = 60 R. We recall that the central region is unresolved by
the interferometer and that its radiation describes both the stellar
and inner gas contribution to the continuum mid-IR emission.
The specific intensity of this central source Is

λ0
has been chosen

to be 6500 W m−2 μm−1 str−1. If the central source was a pure
blackbody this value would correspond to the 10 μm emission
of a blackbody with an effective temperature around �8000 K.
However, this central emission is not a pure blackbody, and we
adopt the spectral dependence of the central source emission to
be α = 3, which is a compromise between α = 4 for a pure
blackbody and a value of �2.6 for free-free emission (Panagia &
Felli 1975; Felli & Panagia 1981).

Spectroscopic observations of Hα and forbidden line emis-
sions from B[e] CSE (Zickgraf 2003) reveal that typical values
for A2 are expected to range from −0.95 to −0.75. We adopt
the value −0.8 in our models. According to Lamers & Waters
(1987), the values of A1 range from 102 to 104 in most cases
(though values as low as 10 are not excluded). With this high
value of A1 the factor 1+ A1(sin θ)1/m in Eq. (32) of n(r, θ) is ap-
proximatively given by A1(sin θ)1/m for all pertinent values of θ,
i.e. those close to π/2 within the disc. This leads to an evident
degeneracy in nin × A1 in n(r, θ): we are only sensible to the
product of the two parameters as a scaling factor for the density.
Therefore, the value of A1 is assumed to be fixed to 150.

To define the dust opacities the chosen value for β is that
of Mathis et al. (1977), i.e. β = −3.5. Because some sgB[e]
show weak 9.7 μm silicate features in their spectrum (e.g. Porter
2003; Domiciano de Souza et al. 2007) we chose to use large
grains in our test models: amin = 0.5 μm and amax = 50 μm.
However, with this particular choice of large grains, the average
albedo from 7 to 13 μm is 6.4%, with the highest value reached
at 7 μm. We have checked with a Monte Carlo (MC) simulations
(see Sect. 5.3) that the effect of scattering on our primary ob-
servables, visibilities, and fluxes is indeed negligeable by com-
paring the results obtained by switching the scattering process
off and on2. The mean relative differences are 3.5% and 3.0%
for the visibilities and the fluxes respectively. These values must
be compared to the effect of random noise in the MC simulation,
estimated to be of the same order and to experimental errors,
typically ∼10% for the visibilities and fluxes. We underline that
whenever the albedo can be neglected, it is theoretically safe to
compute visibilities and fluxes from the consideration presented
in Sect. 2, in any other situations the effect of scattering on the
observable must be carefully tested.

The parameters nin, m and i were set to different values
defining 12 test models to be analysed from their correspond-
ing simulated data. Two nin values (0.015 m−3 and 0.15 m−3)
have been chosen in order to have an approximate disc-dust
optical depth in the equatorial plane (from Rin to Rout) close
to �0.1 and �1 in the wavelength range considered (from 7 μm
to 13 μm). These values corresponds to a mass loss rate of Ṁ �
2.5×10−7···−6 M yr−1. Two m values were chosen corresponding

2 The computation have been done for model b described in Sect. 5.2,
the baselines listed in Table 1 and the wavelengths under consideration
from 7 to 13 μm.
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Table 3. Relative errors (given in %) on the parameters for models (a) et (b) (see text for description of models).

Models\Parameters A2 m Rin nin Tin γ Is
λ0

α PAd i

(a) (53) ≥100 1.9 46 15 7.1 27 13 4.3 6.2
(b) (59) ≥100 4.5 100 20 12 ≥100 96 9.4 7.2

Notes. For each of the 10 free parameters considered in the analysis, the values of the relative error corresponding to the 12 different models are
given. Indeed, these relative errors are “mean values” for the errors because the error bars are not symmetric with respect to the best-fit values. The
parenthesis around the relative error of A2 recall that this parameter is bounded.

Table 4. Constraints on the model parameters.

Models\parameters Constraints [%]
τ Δθd [deg] i [deg] ≤ 10 10 → 25 ≥ 25

1 0.1 60 20 Rin, γ Tin, α PAd, i
2 1. 60 20 Rin Tin, γ α, PAd, i
3 0.1 10 20 – Rin Tin, γ, α, PAd, i
4 1. 10 20 Rin, γ Tin α, PAd, i

(a) 0.1 60 50 Rin, γ, PAd, i Tin, α
(b) 1. 60 50 Rin, PAd, i Tin, γ α

5 0.1 10 50 – Rin Tin, γ, α, PAd, i
6 1. 10 50 Rin, γ, PAd, i Tin α

7 0.1 60 90 Rin, γ, PAd Tin, i, α
8 1. 60 90 Rin, PAd Tin, γ, i α

9 0.1 10 90 PAd Rin Tin, γ, α, i
10 1. 10 90 Rin, γ, PAd, i Tin α

Notes. For the 12 models considered here (differing in their value of τ, Δθd and i), numbered from 1 to 10 (except for model a and b), we classified
the parameters into 3 different relative error ranges: below 10%, between 10 and 25% and above 25%. Because A2, m, nin, Is

λ0
are determined for

all the models with an error greater than 25% they have been discarded from the table for the sake of clarity.

to a wide and a narrow opening angle, i.e. Δθd = 10◦ and
Δθd = 60◦. Three inclinations i were tested (20◦, 50◦, and 90◦)
corresponding to discs seen close to pole-on, intermediate incli-
nation, and equator-on. These values of nin, m, i, together with
the parameters fixed above, define 12 test models that will be
studied below.

From these 12 test models we have generated 12 sets of arti-
ficial VLTI/MIDI observations (visibilities and fluxes) following
the procedure described in Sect. 3.5. We do not aim to present an
exhaustive revue of all types of sgB[e] CSE. Rather, we focussed
on the analysis of the parameter constraints one can hope to ob-
tain from present and near-future mid-IR spectro-interferometry.
The quantitative estimate of these constraints is derived from a
systematic analysis of the χ2

r variations with the parameters.
In our model fitting and χ2

r analysis we concentrate on
10 free parameters (nfree = 10) that can be set into four different
groups:

– the geometrical parameters: PAd, i and Rin;
– the parameters related to the central source: Is

λ0
and α;

– those describing the temperature structure: Tin and γ;
– and the number density of dust grains: A2, Δθd (or equiva-

lently m) and nin.

The remaining parameters of the model are in general loosely
constrained by mid-IR interferometric observations so that we
kept them fixed to the values described above.

5.2. Model fitting and χ2
r analysis of the 12 test models

We describe here the data analysis procedure adopted to study
our 12 test models. The results of our analysis are summarised

in Tables 3 and 4, and their physical interpretation is presented
in Sect. 6.

As a first step we chose 2 of the 12 models, hereafter called
models (a) and (b), to be exhaustively studied from a complete
model fitting procedure. As an example we show the simulated
observed mid-IR fluxes and visibilities for model (a) and (b)
in Figs. 3−5. The parameters of models (a) and (b) are those
of Table 2 with Δθd = 60◦, i = 50◦ and nin fixed to the val-
ues 0.015 m−3 and 0.15 m−3 respectively. These two models are
those presenting some of the best constrained model parameters
for the dust CSE. On the other hand, the contribution of the cen-
tral regions to the total flux and visibilities is quite different in
models (a) and (b) (see discussion in Sect. 6).

The study of models (a) and (b) have thus been performed
as for real interferometric observations. The best-fit values of
the parameters have been obtained by the Levenberg-Marquardt
algorithm with a stopping criterion corresponding to a relative
decrease in χ2

r of 10−3.
The errors on each model parameter have been obtained fol-

lowing the methods described in Sect. 3.6. The χ2
r maps have

been computed with a resolution of 21 × 21 around the best-
fit values of the parameters. The map sizes have been adjusted
in order to enclose the Δχ2

r = 1 contour. This adjustment was
performed until an upper limit for the map size of 100% of the
best-fit parameter values was reached. This amounts to the com-
putation of 3.969×104 different models. The results, namely the
mean relative error up to 100%, for these two particular models
are summarised in Table 3.

The other ten models (numbered from 1 to 10 in Table 4)
have been used in order to get some quantitative (but limited)
information about how the uncertainties of the fitted parameters
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Fig. 3. Simulated VLTI/MIDI mid-IR object flux. The numerically generated data (left model a, right model b) are shown as circles with error
bars. The values of the fluxes for the best-fit models are represented as crosses.

evolve as a function of three disc characteristics: its optical depth
(τ by means of nin parameter), its inclination (i) and its open-
ing angle (Δθd, controlled by m). To perform this study we have
decided to limit the exploration of the space parameter in a rel-
ative range of 25% on both sides from the model parameters.
In order to reduce the computation time, the maps were not
generated around the best-fit parameters which would have re-
quired to compute several thousands models more but around the
true parameters themselves. This procedure has the supplemen-
tary advantage that we do not rely on any specific minimisation
algorithm. We checked that estimating the best-fit parameters
from the true ones is reasonable within a few percents using the
Levenberg-Marquardt algorithm with a stopping criterion corre-
sponding to a relative decrease in χ2

r of 10−3. The resolution of
the χ2

r maps have been reduced to 15 × 15. The total number of
models to be computed is as large as 1.0125 × 105.

5.3. Comparison with a Monte Carlo simulation

We generated synthetic data with the help of a Monte Carlo
(MC) radiative transfer code (Niccolini & Alcolea 2006) for
model b (see above) for the seven wavelengths considered in the
problem and the baselines of Table 1. Again, the adopted pro-
cedure to generate the mid-IR interferometric data follows the
considerations of Sect. 3.5. In the MC code, the source of pho-
tons is described by a blackbody sphere of radius Rs = 60 R
and an effective temperature of Teff = 8000 K. The temperature
of the CSE is not prescribed but computed from the Lucy (1999)
mean intensity estimator. This choice of Teff gives at the inner
radius of model b a dust temperature of �1150 K lower than the
sublimation temperature. In this way, we can test if in the fitting
process using FRACS, a spurious effect might not lead the min-
imisation algorithm to reach the upper limit for Tin of 1500 K,
corresponding to the adopted dust sublimation temperature.

We obtained the best fitting parameters for the CSE model
described in Sect. 4 with FRACS. For a comparison with the MC
code, α has been set and fixed to 4 corresponding to the value of

a blackbody. Depending of the disc optical depth, the tempera-
ture structure may show two separate regimes corresponding to
(1) the inner regions with the strongest temperature gradient, op-
tically thick to the stellar radiation and (2) the outer regions opti-
cally thin to the disc radiation with a flatter temperature gradient.
In order to determine if mid-IR interferometric data are sensitive
to two temperature regimes, we tested the effect of two parame-
terisations of the temperature structure: the unique power-law of
Eq. (35) and a generalisation to two power-laws with a transition
radius, RT, and a second exponent γ′

T (r) = Tin

(
Rin

RT

)γ
×

(RT

r

)γ′
, (37)

for r ≥ RT.
The best-fitting parameters for both parameterisations are

shown in Table 5. The images of the disc at 10 μm generated
with the MC code and their corresponding FRACS counterpart
(best-fitting model) are shown in Fig. 6 for comparison.

6. Discussion

We first discuss the uncertainties in the parameters derived for
the 12 models studied in Sect. 5.2. For each model we divided
the parameters into three groups associated to a given level of
constraints expressed by the relative errors: below 10%, between
10% and 25%, and above 25%. This information is summarised
in Table 4. The exact relative errors for the two models studied
in detail (models a and b) are shown in Table 3. Then, we anal-
yse the results of Sect. 5.3 obtained from the best-fit of the data
simulated with the MC radiative transfer code.

6.1. Central source

Table 4 shows that the central source parameters (Is
λ0

and α)
can only be constrained with relative uncertainties ≥10% for
all test models. A deeper and more quantitative investigation of
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Fig. 4. Visibilities of the artificial sgB[e] circumstellar environment (model a). The visibility variations with the wavelength are shown for each
baseline specified by the value of the projected baseline and the position angle on the sky. The circles represent the simulated observations, and
the solid curves represent the best-fit model.

these parameters can be obtained from models (a) and (b). From
Table 3 it can be seen that Is

λ0
and α are much better constrained

for model (a) (27% and 13%, resp.) than for model (b)(relative
errors �100%).

The key quantity for a good constraint for the central source
parameters (Is

λ0
and α) is simply the relative contribution of the

flux of the central source to the total flux of the object (source
and disc). Indeed, the models in Table 3 only differ by this
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Fig. 5. Visibilities of the artificial sgB[e] circumstellar environment (model b).

relative flux contribution of 5.3% in model (a) (τ = 0.1), while
it is only 0.7% in model (b) (τ = 1).

Our analysis thus shows that interferometric data can con-
strain Is

λ0
and α with a relative precision of �15%−30% even

when the central source contributes to (only) a few percent of
the total mid-IR flux.

6.2. Geometrical parameters

The parameters PAd, i, and Rin are those usually estimated from
simple geometrical models (e.g. ellipses, Gaussians). However,
their determination from geometrical models is quite limited,
in particular for i, for which only an estimate can be derived
from the axis-ratio of an ellipse, for example. In addition, the
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Table 5. best-fitting FRACS parameters from artificial data generated with a Monte Carlo code.

Parameters Units True values Two power-law One power-law
A2 – –0.8 –0.791 –0.782
m – 4.86 5.59 4.74
Rin Rs 30 29.8 29.9
nin m−3 0.15 0.189 0.169
Tin K 1150(a) 1090 1070
γ/γ′ – 0.725/0.478(a) 0.719/0.613 0.676
RT Rin 5.24(a) 2.87 –
Is
λ0

W m−2 μm−1 str−1 6.62 × 103 6.48 × 103 5.04 × 103

PAd deg 125 125 124
i deg 50.0 50.6 50.2

Notes. The column “true values” refers to the MC input parameters, except for Tin, γ, and γ′ which are determined from the results of the MC
simulation. The columns “two power-law” and “one power-law” list the best-fit parameters obtained with FRACS assuming two and one power-
law for the temperature respectively. The χ2

r,min values are respectively 0.73 and 0.79 for two and one power-law.
a These values are not prescribed parameters, but are determined from the results of the Monte Carlo simulation. The values reported here are
best-fit parameters of the mean disc temperature (see text for more details).

Fig. 6. Disc images at 10 μm. a) Image computed with the help of the Monte Carlo radiative transfer code. b) Image of the best-fitting model with
two power-laws (parameters of the fourth column in Table 5) obtained with FRACS.

estimate of i from a simple analytical model such as a flat ellipse
is only valid for configurations far from the equator (interme-
diate to low i). The use of a more physical and geometrically
consistent model such as FRACS allows us to relax this con-
straint and makes the determination of i possible for all viewing
configurations.

As expected, PAd and i are better determined if the inclina-
tion of the disc with respect to the line of sight is away from
pole-on (high i). In Fig. 8 we can clearly see this behaviour from
the χ2

r maps involving PAd and i. Moreover, the uncertainties on
PAd and i do not seem to be strongly dependent on τ (equiva-
lently nin) and Δθd (equivalently m) for all models.

The inner dust radius Rin is not strongly dependent on any
parameter (τ, Δθd or i), being very well constrained (better
than 10%) for most tested models.

6.3. Temperature

The parameters related to the temperature structure of the CSE,
Tin and γ, are well constrained in most models, with relative

errors below 20% and 12% for both models (a) and (b). Indeed,
γ has a strong impact on the IR emission across the disc, and
consequently this parameter has a direct influence on the visibil-
ities (see Figs. 4, 5). Tin has a lower influence, compared to γ,
on the shape of the monochromatic image (radial dependence of
intensity) and can be mainly considered as a scaling factor to it.
On the other hand, the mid-IR flux imposes stronger constraints
on Tin. From Table 4 we see that the CSE’s temperature structure
is not highly dependent on τ (nin) and Δθd for tested models.

6.4. Number density of dust grains

The parameters related to the density law, that is to say m, nin
and A2, seems to be rather poorly constrained from the mid-IR
data alone. From the results of model (a) and (b) correspond-
ing to an intermediary inclination i = 50◦, we found that only
nin is constrained somewhat moderately with a mean relative er-
ror of 46%. For m and A2, according to the results of Table 3 it
seems that nevertheless, upper limits to their values can be deter-
mined. Note that because A2 is bounded (−1 ≤ A2 ≤ 0) the mean
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relative errors, 53% and 59% for model (a) and (b) respectively,
correspond approximatively to the limit values of A2, which is
consequently not constrained.

Table 4 confirms this trend for m, nin and A2 at least for the
situations explored via the models presented here. From all maps
computed within ±25% of the true value, we always found that
the mean relative error to these parameters is larger than 25%
with no hint that it could be close to these limits.

From Fig. 9, comparing the χ2
r maps for all pairs of nin, m and

A2, we can see that the Δχ2
r contours get sharper around the min-

imum value for model (a) (corresponding to lower optical depths
along the line of sight) than for model (b). Indeed, the constraints
on nin and m are improved for lower optical depths, or equiv-
alently for lower disc masses. Indeed, when the disc mass (or
optical depth) decreases, the flux (mid-IR flux, intensity maps)
emitted by the disc reflects the mass of the disc, while for high
optical depths we only probe the regions of the disc very close
to the projected surface revealed to the observer. A2, however,
is unaffected by the change in disc mass and remains undeter-
mined anyway. From Fig. 9 it can be seen that nin, m and A2 are
strongly correlated. This is expected from the expression of the
density (see Eq. (32)) depending on these parameters. However,
this dependence and the final correlation between these param-
eters are related through the computation of the visibilities and
the mid-IR flux, as well as the comparison to the data and is,
therefore, not straightforward.

To improve the situation concerning nin, m and A2, the mid-
IR data can be supplemented by other types of observations such
as for instance spectroscopic data, from which one can better de-
termine A2 (e.g. see Chesneau et al. 2005). We tested the effect
of fixing the value of A2, or equivalently of assuming that A2 is
fully determined, in the process of estimating the errors of the
other parameters. For model (a), the relative errors on nin and
m go down to 33% and 71% respectively while for model (b),
nin and m are determined with an accuracy reaching 95% and
78% respectively. The precision to which other parameters are
determined is not affected by the determination of A2.

We also tested the influence of the determination of nin, m
and A2 on other parameters by fixing their values and estimatng
the relative errors on the remaining parameters for model (a)
and (b). Only Is

λ0
and Tin are more strongly affected by the deter-

mination of nin, m and A2: for model (a) (resp. model b) Is
λ0

gets
determined down to 19% (resp. 80%) and Tin down to 9% (resp.
18%). The influence is stronger with lower disc mass (model a
compared to model b). This effect can be explained because if
we have a good determination of the disc mass because we know
nin, m, and A2, the determination of the parameters that scale the
source and disc fluxes is improved accordingly for the visibility
and the mid-IR flux.

nin, m and A2 shape the density structure of the circumstellar
medium. Though they are not well constrained, they certainly
have a strong influence on the temperature structure, which in
turn is very well constrained. For the particular case of sgB[e]
circumstellar discs, a natural evolution of FRACS is to include
the direct heating of the medium by the central source of radia-
tion assuming that the disc is optically thin to its own radiation.
The temperature structure would not be parameterised, and its
good determination would certainly put better constraints on nin,
m and A2, while keeping an affordable computation time for the
model-fitting procedure. This will be the purpose of a subsequent
work.

Finally, one can derive a ranking of the parameter constraints
according to two criteria: first the parameter must be constrained

Fig. 7. Temperature of the CSE. The solid line represents the best fit
(last column in Table 5) with a unique power-law, the dashed line the
best-fit with two power-laws (fourth column in Table 5) and the dot-
dashed line the MC results. The shaded region represents the possible
domain for a unique power-law by taking into account the errors esti-
mated in Table 3.

within the prescribed limits (100% for model a and b and 25%
for model 1 to 10) and second the mean relative error must be as
low as possible. The best-fitted parameters, most of the time ac-
cording to these criteraria are by decreasing order of best deter-
mination: Rin, PAd, γ, Tin, i, α, Is

λ0
, nin, m and A2. This tendency

can be seen in Table 4.

6.5. best-fit to the MC simulation

The χ2
r,min values obtained for the two types of temperature

parametrisations (one and two power-laws) are quite similar:
0.79 and 0.73 respectively. Regarding the data, both tempera-
ture parametrisations are indeed acceptable. In addition, these
results show that we can actually obtain very good fits from
data sets based on more physically consistent scenarios. A com-
plete error analysis and study of the parameter determination has
been presented in the previous sections for data generated from
FRACS and will not be repeated here. In particular, parameter
confidence intervals, from which errors were derived, have al-
ready been estimated. Here, we will instead focus on the true er-
rors, i.e. the differences between the true model parameters and
the best-fitting values for the parameters (see Table 5). The two
types of errors must not be confounded. The true errors reflect
the capability of FRACS to mimic the mid-IR interferometric
data regarding the information it provides. Of course, with the
sparse uv-plane coverage inherent to this kind of data as well as
the experimental noise, one should not expect a full agreement
of the fitted and the true parameters: they are indeed different.

From Table 5, we see that the geometrical parameters, PAd, i
and Rin, can be almost exactly recovered as expected. The source
specific intensity Is

λ0
, and the parameters related to the density,

A2, nin and m can be recovered fairly well and have best-fitting
values close to the true parameters.

The values of Tin, RT, γ and γ′ reported as “true” in Table 5
are indeed the values of a fit to the average (over the co-latitude
for a given r) computed temperature in the disc. The true rela-
tive differences for Tin do not exceed 7% independently of the
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Fig. 8. Evolution of m and PAd with the inclination i. Left: χ2
r maps for the couple m and PAd; right: χ2 maps for the couple m and i. Contours

are drawn for χ2
r,min + Δχ

2
r , with Δχ2

r = 0.3, 1, 3. From top to bottom the inclination i takes the value 20◦, 50◦ and 90◦. The results correspond to
model 4, 6, and 10. The limits of the maps have been set to ±25% of the true values of the parameters.

adopted parameterisation of the temperature (one or two power-
laws). The best-fitting values of γ, the inner temperature gradi-
ent, obtained with FRACS are very close to the true values with
two and one power-law with true relative error of 1% and 7%
respectively. This already suggests that the mid-IR data provide
information on the inner and hottest region of the CSE, in par-
ticular on the inner temperature gradient γ.

Fitting the temperature computed with the MC code with
a simple power-law, we obtain γ � 0.64. This value is close
to those of the best fitting models, especially with a unique
power-law (6% relative difference). For comparison, the actual
mean temperature gradient as derived from the MC simulation
is �0.60. For this particular data set, the values of γ′ and RT re-
covered by FRACS differ by 28% and 45% respectively from
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Fig. 9. χ2
r maps for the parameters nin, A2 and m. The results presented here are those of model (a) (τ = 0.1, left part) and model (b) (τ = 1, right

part). Contours are drawn for χ2
r,min + Δχ

2
r , with Δχ2

r = 0.3, 1, 3. The three possible maps corresponding to the combination of these parameters
are represented. These three parameters are better constrained in model (a).

the actual values. This again confirms the sensibility of the inter-
ferometric data to the temperature structure mostly in the inner
(r <∼ RT) regions of the disc. The best-fitting models (fourth and
last columns in Table 5) as well as the MC results are shown in
Fig. 7. Regarding the errors (estimated from the results given in
Table 3) shown as a shaded area, we can see that both tempera-
ture parameterisations are essentially the same and show a better

agreement with the MC results in the inner than in the outer re-
gions of the disc.

We considered a “truncated” model with two power-laws
(with parameter values listed in the third column of Table 5) in
which the CSEs emission for r ≥ RT, the “outer” regions, has
been set to 0. We then compared the visibilities and the fluxes
of this truncated model to the same model including the outer
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region emission. We obtained relative differences, averaged over
all considered wavelengths and baselines (Table 1), of 18% and
17% respectively. These relative differences are larger, but are
still close to the noise level. For this reason, one cannot expect
to obtain much information on the outer temperature gradient γ′,
at least for the particular configuration we considered.

7. Conclusion

We proposed and described here a new numerical tool to inter-
pret mid-IR interferometric data. Even though we focussed on
the special case of circumstellar disc observations, the numeri-
cal techniques have been developed with the aim to be as general
as possible. The methods we employ rely on both parameterised
physical models and the ray-tracing technique. The need for such
a tool is evident because the nature of interferometric data im-
poses an interpretation through a model of the object to obtain
any kind of information. On one hand, Monte-Carlo radiative
transfer methods require too much computation time to asso-
ciate the model-fitting to an automatic minimum search method.
On the other hand, purely geometrical function fitting (such as
ellipses or Gaussians) are too simple to envisage to obtain phys-
ical constraints on the observed disc. Hence, a tool like FRACS
fills a blank in the model fitting approach for mid-IR interfero-
metric data interpretation. The main advantages of FRACS are
its speed and its flexibility, allowing us to test different physical
models. Moreover, an exploration of the parameter space can be
performed in different manners and can lead to an estimate of
the sensitivity of the fit to the different model parameters, i.e. a
realistic error estimate.

We applied these techniques to the special astrophysical case
of B[e] star circumstellar environments by generating artificial
data in order to analyse beforehand what constraints can be ob-
tained on each parameter of the particular disc model in this
work. The techniques will then be applied to real interferometric
data of a sgB[e] CSE in a sequel to this paper.

We showed in our analysis that the “geometrical” parame-
ters such as Rin, PAd and i can be determined with an accuracy
<∼15%. Mid-IR interferometric data give access to a mean tem-
perature gradient: the temperature structure (Tin and γ) can be
very well determined (within <∼20% and <∼10% respectively). It
is possible to have access to the central source emission (with
an accuracy >∼30%) when it has a significant contribution to the
total flux of the object (a few % are sufficient). The remaining
parameters of our disc model, namely nin, m and A2 are not very
well constrained by MIDI data alone. nin is at best determined
with an accuracy of about >∼50% in some cases. If A2 can be
estimated through spectroscopic observations, then the picture
about the nin and m determination improves somewhat.

FRACS can be used mainly for two purposes. First, it can be
used by itself to try and determine physical quantities of the cir-
cumstellar matter. Admittedly, it is not a self-consistent model,
i.e. the radiative transfer is not solved because the temperature
structure is parameterised. From the usual habits in the interpre-
tation of interferometric data it is nevertheless a step beyond the
commonly use of toy models or very simple analytical models.

This approach has indeed been very successful in the millimetric
wavelength range (e.g. see Guilloteau & Dutrey 1998). Second,
it can be viewed as a mean to prepare the work of data fitting
with a more elaborate model (such as a Monte Carlo radiative
transfer code for instance) and to provide a good starting point.

FRACS is a tool that can help in the process of inter-
preting and/or preparing observations with second-generation
VLTI instruments such as the Multi-AperTure mid-Infrared
SpectroScopic Experiment (MATISSE) project (Lopez et al.
2006). In this respect, FRACS is not restricted to the mid-IR, and
sub-millimeter interferometric data obtained with the Atacama
Large Millimeter Array (ALMA) for instance can be tackled.
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