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Abstract

In this paper, some new generalized Newton’s methods for the resolution of elastostatic
frictional contact problem approximated by finite elements are presented and compared to
existing ones. A numerical experimentation is performed to compare the different methods,
especially with respect to the sensitivity to the method parameter. Two different strategies to
approximate the contact and friction condition are considered: a nodal and an integral one.
Existence and uniqueness results of the solution to the discretized problem are also discussed.

Keywords: Contact, friction, augmented Lagrangian, generalized Newton’s method, Nitsche’s
method.

1 Introduction

The numerical resolution of elastostatic or elastodynamic contact problems is already the subject
of an important literature. The algorithms proposed to solve the approximated problem are quite
varied. It includes interior points methods [32, 38], specific methods for linear complementarity
problems such as the Lemke algorithm [27, 8], projected conjugate gradient [35], SSOR with
projection [8, 25] and finally generalized Newton’s methods. This paper focuses on generalized
Newton’s methods which are widely used, especially in commercial software, and proved their
efficiency and robustness in the framework of large scale elasticity problems with contact and
friction.

The pioneering work in this area is the one of P. Alart and A. Curnier [2, 3]. The Newton’s
method is applied to the optimality system of an augmented Lagrangian whose saddle point is
the solution to the contact problem with Tresca friction. The optimality system can be easily
extended to Coulomb friction. The term “generalized Newton’s method” comes from the fact
that the optimality system is not continuously differentiable but only Lipschitz-continuous and
piecewise continuously differentiable. However, no special treatment is really needed by this non-
differentiable character mainly because from a numerical viewpoint, it is quite improbable to
come across a non-differentiable point. Note that in these references, the augmented Lagrangian
is written on a nodal discretization of the contact problem, not on the continuous problem.

A second important work is the one of T.A. Laursen and J.C. Simo [40, 31]. It is based on the
optimality system of the same augmented Lagrangian. The main difference is that the proposed
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algorithm is an Uzawa algorithm on the contact stress, with a descent parameter equal to the
augmentation parameter of the Lagrangian. The generalized Newton’s method is only applied on
the optimization step of the Uzawa algorithm which only concerns the displacement. This method
is widely used, especially in commercial software. This might be due to the fact that it does not
require a coupled resolution of the displacement and contact stress. Another characteristic is the
fact that the first iteration, if the initial contact stress is set to zero, corresponds to the solving of
a penalized contact problem with a penalization coefficient equal to the augmentation parameter
of the Lagrangian. It allows to optionally stop after the first iteration if a penalization approach
is chosen or to perform the Uzawa iterations to converge toward the non-penalized problem.
Moreover, when the augmentation parameter is large enough, the Uzawa algorithm is converging
in a few iterations.

P. Alart in [1] gives a global convergence result for a generalized Newton’s method applied
on a simplified non-symmetric version of the optimality system of the augmented Lagrangian.
This global convergence occurs only on a model problem (membrane with obstacle) without the
addition of any line search strategy. He also gives and analyzes some examples of instabilities for
the case of a two-dimensional elasticity problem with contact on the boundary.

P.W. Christensen and J.S. Pang in [11] prove that the optimality system of the problem
approximated by finite elements and extended to Coulomb friction is semi-smooth. A Lipschitz-
continuous map f is said to be semi-smooth at a point y when it satisfies supM∈∂f(y+s) ‖f(y +
s) − f(y) −Ms‖ = o(‖s‖) where ∂f is its generalized gradient. The Newton method applied to
a semi-smooth map converges super-linearly for a starting point sufficiently close to the solution
(see [34, 42]).

S. Hber and B. Wohlmuth in [22] present an active set strategy. The set of active constraints
is updated at each iteration. This algorithm can be re-interpreted as a generalized Newton’s
method for Alart-Curnier augmented Lagrangian.

K. Kunish and G. Stadler in [41, 29] state that the optimality system of Alart-Curnier aug-
mented Lagrangian is not semi-smooth in the continuous framework. They deduce that the
scalability of Newton’s method cannot be guarantied. They also prove that the Uzawa algorithm
introduced by Simo and Laursen converges whatever the value of the augmentation parameter
for the contact with Tresca friction (in a continuous framework, which prove its scalability) and
with a number of iterations which decreases when the augmentation parameter increases.

Recently, several attempts have been made to adapt Nitche’s method, initially proposed to
prescribe a Dirichlet boundary condition, to contact with or without friction (see [18, 43, 9]). The
advantage of Nitsche-based methods is to prevent the use of a multiplier while being consistent.

In this paper, some generalized Newton’s methods based on new formulations of the contact
problem are presented. These formulations do not derive from some augmented Lagrangians.
The goal of the paper is to compare these new strategies to the existing ones from a numerical
experiment viewpoint, especially to test the sensitivity to the augmentation parameter, to the
applied load and the efficiency to solve two and three-dimensional problems.

The outline of the paper is the following. The so-called Signorini with Coulomb friction
problem is recalled in Section 2, in strong and weak formulations. In Section 3, two versions
of the finite element discretization are presented: one with a nodal discretization of the contact
condition and another one with an integral one. Additionaly, the numerical tests performed in the
next sections are described. Section 4 is devoted to Alart-Curnier generalized Newton’s method,
Section 5 to the Simo-Laursen method, Section 6 to some new Nitsche-based methods for contact
with friction and Section 7 to some other new methods based on augmented multipliers. Finally
some conclusions are given in Section 8.
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2 Signorini’s problem with Coulomb friction

For the sake of simplicity, we consider the classical simple situation of the equilibrium of a linearly
elastic body in contact with (static) Coulomb friction with a rigid foundation. Note that the main
interest of this problem is to be similar to the one obtained by applying a time integration scheme
on a quasi-static problem.

Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded regular domain which represents the reference configu-
ration of a linearly elastic body submitted to a Neumann condition on ΓN , a Dirichlet condition
on ΓD and a unilateral contact condition with friction on ΓC with a rigid foundation, where ΓN ,
ΓD and ΓC are non-overlapping open parts of ∂Ω, the boundary of Ω (see Fig. 1). The part ΓD

is supposed of non-zero measure in ∂Ω.

.
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Figure 1: Linearly elastic body Ω in contact with a rigid foundation.

The displacement u(t, x) of the body obeys the following equations:

− div σ(u) = f, in Ω, σ(u) = A ε(u), in Ω, σ(u)n = k, on ΓN , u = 0, on ΓD , (1)

where σ(u) is the stress tensor, ε(u) = (∇u+∇uT )/2 is the linearized strain tensor, A is the fourth
order elasticity tensor which satisfies usual conditions of symmetry, coercivity and boundedness,
n is the outward unit normal to Ω on ∂Ω and f , k are given force densities. On ΓC , it is usual
to decompose the displacement and the stress in normal and tangential components as follows,
assuming the shape of the rigid foundation to have the C 1 regularity:

uN = −u.n0, uT = u+ uNn0, σN (u) = −(σ(u)n).n0, σT (u) = σ(u)n+ σN (u)n0,

where n0 is the unit outward normal to the obstacle (see Fig. 1). Denoting by g the initial normal
gap between the solid and the rigid obstacle, the unilateral contact condition is expressed by the
following complementary condition:

uN − g ≤ 0, σN (u) ≤ 0, (uN − g)σN (u) = 0, (2)

while the static Coulomb friction condition is expressed as follows for F the friction coefficient:

|σT | ≤ −FσN , if uT 6= 0 then σT = −FσN

uT

|uT |
. (3)

A classical weak formulation (see [14]) can be obtained introducing

V =
{
v ∈ H1(Ω;Rd) : v = 0 on ΓD

}
, K = {v ∈ V : vN − g ≤ 0 on ΓC} ,
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a(u, v) =

∫
Ω

A ε(u) : ε(v)dx, l(v) =

∫
Ω
f.vdx+

∫
Γ
N

k.vdΓ.

WN =
{
v ∈ L2(ΓC ) : ∃w ∈ V, v = wN

}
, WT =

{
v ∈ L2(ΓC ;R

d−1) : ∃w ∈ V, v = wT

}
,

W = WN ×WT , j(s, v) = 〈s, |vT |〉W ′
N
,W

N
.

The space WN (resp. WT ) is the space of the normal (resp. tangential) traces and W ′
N

(resp.
W ′

T
) will denote its topological dual space. Note that the duality pairing 〈·, ·〉W ′

N
,W

N
reduces to

the integral on ΓC when the contact stress σN (u) is sufficiently regular. Problem (1) - (3) is then
formally equivalent to the variational inequality (see [14]){

Find u ∈ K satisfying
a(u, v − u) + j(−FσN (u), u)− j(−FσN (u), v) ≥ l(v − u), ∀ v ∈ K.

(4)

A generalized Newton’s method cannot be directly applied to this formulation. Classically,
one introduces some multipliers representing the contact and friction stresses and obtains the
following hybrid formulation (see [4] for instance):

Find u ∈ V, λN ∈ ΛN satisfying
a(u, v)− 〈λN , vN 〉W ′

N
,W

N
− 〈λT , vT 〉W ′

N
,W

N
= l(v), ∀ v ∈ V,

〈µN − λN , uN − g〉W ′
N
,W

N
≥ 0, ∀µN ∈ ΛN ,

〈µT − λT , uT 〉W ′
T
,W

T
≥ 0, ∀µT ∈ ΛT (−FλN ),

(5)

with ΛN the cone of non-positive contact stresses

ΛN =
{
λN ∈ W ′

N
: 〈λN , vN 〉W ′

N
,W

N
≥ 0 ∀v ∈ K

}
,

and ΛT (s) the set of admissible friction stresses defined by

ΛT (s) =
{
λT ∈ W ′

T
: −〈λT , vT 〉W ′

T
,W

T
+ 〈s, |vT |〉W ′

N
,W

N
≥ 0 ∀vT ∈ WT

}
.

In the case of Tresca friction, the (weakly) non-negative threshold s ∈ W ′
N

is given and one
considers the problem

Find u ∈ V, λN ∈ ΛN satisfying
a(u, v)− 〈λN , vN 〉W ′

N
,W

N
− 〈λT , vT 〉W ′

N
,W

N
= l(v), ∀ v ∈ V,

〈µN − λN , uN − g〉W ′
N
,W

N
≥ 0, ∀µN ∈ ΛN ,

〈µT − λT , uT 〉W ′
T
,W

T
≥ 0, ∀µT ∈ ΛT (s),

(6)

The formulation (6) is the optimality system of the Lagrangian

L (u, λ) =
1

2
a(u, u)− l(u)− j(s, u)− 〈λ, uN − g〉W ′,W − IΛ

N
(λN )− IΛ

T
(s)(λT ), (7)

where IΛ
N

(resp. IΛ
T
(s)) is the indicator function of ΛN (resp. ΛT (s)) (see for instance [30] for

more details). This last term means that the saddle point has to be chosen with the constraints
λN ∈ ΛN and λT ∈ ΛT (s). The fact that the Lagrangian L (u, λ) is under constraint poses
practical difficulties for the numerical resolution. This is one of the reason why augmented
Lagrangian are considered.

4



The existence and uniqueness of the solution to Problem (6) is obtained by standard techniques
(see [26] for instance). Unfortunately, as it is well known, the problem with Coulomb friction (5)
is not a variational problem and thus do not derive from a Lagrangian. Some existence results
for the problem with Coulomb friction have been proved in [23] and [15] with some reasonable
assumptions on the regularity of the boundary and for a sufficiently small friction coefficient. The
uniqueness of the solution for a small friction coefficient is an open problem. A criterion has been
given in [36] which states that the uniqueness is reached under a kind of regularity condition on
the solution and for a small enough friction coefficient. Examples of non-uniqueness has been
exhibited in [19, 20] for a large friction coefficient.

3 Finite element approximation

In the framework of the finite element method, different principles can be used to approximate
a contact condition with or without friction (see [26, 25] for instance). The contact condition
can be applied on each finite element node of the contact boundary (or alternatively on the
Gauss points of a quadrature method defined on the contact boundary). In that case, generally,
the non-interpenetration condition is prescribed on each node. The contact condition can also
be weakened by the use of a multiplier of lower degree and a contact condition on each finite
element node of the multiplier. In that case, this is generally the non-positivity on each node
of the multiplier which is considered. A third possibility, used more or less implicitly is some
references (for instance in [30, 39]) is to use directly a non constrained integral weak formulation
of the contact condition. From the resolution with a Newton algorithm point of view, the two
first alternatives are very close. Thus, the choice is made to test only the first and the third
alternatives. In the following, we will denote by V h a family of finite dimensional vector spaces
(see [7]) indexed by h coming from a family T h of meshes of the domain Ω (h = max

T∈T h
hT where

hT is the diameter of T ).

3.1 Nodal discretization of the contact condition

This is probably the most commonly used method to approximate the contact condition. It
consists to prescribe the non-penetration and friction conditions on each finite element node of
a Lagrange finite element method. This a priori restricts V h to be built from a Lagrange finite
element method. This means that denoting φi(x), i = 1..Nd the (scalar) shapes functions of
V h and ai ∈ Rd the corresponding finite element nodes, one has φi(aj) = δij and the following
Lagrange interpolation principle:

uh(x) =

Nd∑
i=1

uh(ai)ϕi(x).

Let us denote NΓC
the set of node indices on the contact boundary. The approximation of

Problem (5) with a nodal contact condition reads as:

Find uh ∈ V h, λi
N
∈ R, λi

T
∈ Rd−1, i ∈ NΓC

, satisfying

a(uh, vh)−
∑

i∈NΓC

λi
N
vh
N
(ai)−

∑
i∈NΓC

λi
T
· vh

T
(ai) = l(vh), ∀ v ∈ V h,

λi
N
≤ 0, uh

N
(ai)− g(ai) ≤ 0, λi

N
(uh

N
(ai)− g(ai)) = 0 ∀i ∈ NΓC

,

|λi
T
| ≤ −Fλi

N
, if uh

T
(ai) 6= 0 then λi

T
= Fλi

N

uh
T
(ai)

|uh
T
(ai)|

∀i ∈ NΓC
.

(8)
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An algebraic formulation can be obtained by defining the stiffness matrix K and the right-
hand side L as

K(i−1)d+j,(k−1)d+l = a(ϕiej , ϕkel), L(i−1)d+j = `(ϕiej), 1 ≤ i, k ≤ Nd, 1 ≤ j, l ≤ d,

where e0, · · · , ed−1 is the canonical basis of Rd. Let also U be the vector of degrees of freedom
such that

U(i−1)d+j = uh(ai) · ej ,

and Ni ∈ RdNd , Ti ∈ MdNd,(d−1)(R) for i ∈ NΓC
be defined such that

NT
i U = uh

N
(ai), T T

i U = uh
T
(ai).

Let also BN be the matrix whose lines are the vectors Ni, BT be the matrix whose lines are the
columns of Ti, ΛN the vector of all λi

N
and ΛT the vector of all λi

T
. Then the algebraic formulation

of Problem (8) read as

Find U ∈ RdNd , λi
N
∈ R, λi

T
∈ Rd−1, i ∈ NΓC

, satisfying

KU −BT
NΛN −BT

TΛT = L,

λi
N
≤ 0, NT

i U − g(ai) ≤ 0, λi
N
(NT

i U − g(ai)) = 0, ∀i ∈ NΓC
,

|λi
T
| ≤ −Fλi

N
, if T T

i U 6= 0 then λi
T
= Fλi

N

T T
i U

|T T
i U |

∀i ∈ NΓC
.

(9)

This is a classical result that Problem (8) admits a solution whatever the value of the friction
coefficient F ≥ 0 and that this solution is unique for F small enough of order O(

√
h) (see [17]).

It is also well known that in the two-dimensional case, Problem (9) is equivalent to a linear
complementarity problem (LCP, see [12]). The three dimensional frictional problem cannot be ex-
pressed as a linear complementarity problem without a polyhedral approximation of the Coulomb
friction cone [28]. However, it can be expressed as a second order cone linear complementarity
problem (SOCLCP, see [24]).

3.2 Integral approximation of the contact condition

In that case, V h is an arbitrary finite element space and, additionally, we denote byW h
N
⊂ L2(ΓD),

W h
T
⊂ L2(ΓD ;Rd−1), W h = W h

N
×W h

T
some finite element spaces for the approximation of contact

forces. We use the following equivalent expression of contact and friction condition (other choices
are presented in the next sections):

λh
N

= −(λh
N
− r(uh

N
− g))−, (10)

λh
T

= PB(0,F (λh
N
−r(uh

N
−g))−)(λ

h
T
− ruh

T
), (11)

where r > 0 is an augmentation parameter, PB(0, ρ) is the orthogonal projection on the closed
ball of center 0 and radius ρ and (·)− is the negative part ((x)− = 0 for x ≥ 0 and (x)− = −x for
x ≤ 0). In particular, these expressions can be derived from Alart-Curnier Augmented Lagrangian
which will be described later on.
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This allows to give the following approximation of Problem (5) with an unconstrained integral
contact condition:

Find uh ∈ V h, λh
N
∈ W h

N
and λh

T
∈ W h

T
satisfying

a(uh, vh)−
∫
Γ
C

λh
N
vh
N
dΓ−

∫
Γ
C

λh
T
· vh

T
dΓ = l(vh), ∀ v ∈ V h,

−1

r

∫
Γ
C

(λh
N
+ (λh

N
− r(uh

N
− g))−)µ

h
N
dΓ

−1

r

∫
Γ
C
(λh

T
− PB(0,F (λh

N
−r(uh

N
−g))−)(λ

h
T
− ruh

T
)) · µh

T
dΓ = 0 ∀µh ∈ W h.

(12)

The existence and uniqueness of a solution to Problem (12) is discussed in [30]. The inf-sup
(or LBB) condition

inf
µh∈Wh

sup
vh∈V h

∫
Γ
C
µh · vhdΓ

‖vh‖V ‖µh‖W
≥ γ > 0, (13)

is necessary to ensure the uniqueness of the multiplier. A constant γ > 0 independent of h is
necessary to obtain an optimal numerical convergence. Note that, unlike Problem (8), Problem
(12) is not equivalent to a LCP or a SOCLCP problem.

3.3 Description of the numerical experiments

The aim of the numerical experiments presented in the next sections is to compare the efficiency
of the different generalized Newton’s method on a small set of simple contact situations in two
and three dimensions. Three different two-dimensional situations are considered: an elastic punch
clamped on its top submitted to two different prescribed vertical compressions and in contact
with a flat rigid obstacle at the bottom (see the mesh in Fig. 2 and the two deformations in Fig.
3) and a disk with no Dirichlet condition (ΓD = ∅) submitted to a vertical volumic load and also
in contact with a flat rigid obstacle at the bottom (mesh and deformation are also in Fig. 2 and
Fig. 3, respectively). Both are in plane stress approximation. The deformations, especially for
the second case, are obviously non-physical since they are too important for the linear elasticity
model to remain valid. This is done intentionally here to test the algorithms both with a small
and a large real contact area and to test the influence of the size of the load.

In 3D, we consider the counterpart situations for a 3D punch and a sphere (see Fig. 4 and
Fig. 5 for the meshes and the deformations, respectively).

For all the experiment a quadratic isoparametric finite element is considered. The number of
displacement degrees of freedom for the different meshes used in the numerical experiments are
summarized in Table 1.

2D punch

h = 4 424

h = 1 6226

h = 0.25 97390

Disc

h = 8 150

h = 2 2782

h = 0.5 45706

3D punch

h = 5 1182

h = 3 4305

h = 1.7 24375

Sphere

h = 20 75

h = 6 2232

h = 2.3 26259

Table 1: Number of displacement degrees of freedom for the different meshes used.

Note that the two cases corresponding to the disc and the sphere are semi-coercive cases in
the sense that the bilinear form a(·, ·) is not strictly coercive due to free rigid body motions.
Nevertheless, there exists a unique solution because the load is chosen compatible.
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The different parameters used for the model are a Poisson ratio ν = 0.25, a Young modulus
E = 2660MPa in 2D cases and E = 2500MPa in 3D cases and a uniform (excessive) volumic
load of 20× 106N/m3 for the disc and the sphere.

The initial iteration for the different (generalized Newton or Uzawa) algorithms is the reference
configuration (zero displacement). A very basic line search is considered for generalized Newton’s
method which can be summarized as follows :

• Test a full Newton step. Since the norm of the residual is greater than the one of the
previous iteration, divide the step by a factor 2, with a minimal step of 10−10.

• If there is more than three Newton iterations with a decreasing of the residual less than 1%
then allow a step with an increase of the residual of a factor 2.

Figure 2: 2D meshes.

Figure 3: 2D deformed configurations with color plot of the Von Mises stress (and with friction,
F = 1).

Let us recall that generalized Newton’s method means that Newton’s method is applied on
a discrete system like (12) which is not C 1-regular but only Lipschitz-continuous and piecewise
C 1-regular. No special treatment is applied when a point of non-differentiability is reached by
Newton’s method. Such a point is on the frontier between two or more zones of differentiability
and the tangent matrix corresponding to one of these zones is selected arbitrarily.
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In the sections that follow, the graphs represent the number of iterations of Newton’s method
to achieve convergence. Each of the six graphs of a set corresponds to one of the six situations
described previously. The number of iterations is limited to 100. A number of iteration of 100
means that the algorithm has been stopped.

Figure 4: 3D meshes.

Figure 5: 3D deformed configurations with color plot of the Von Mises stress (and with friction,
F = 1).

4 Alart-Curnier generalized Newton’s method

Most of generalized Newton’s methods used to solve contact problem in elasticity are based on the
augmented Lagrangian formulation presented in [2, 3] on the finite element approximation of the
contact problem with a nodal contact with friction condition. This formulation can be interpreted
as a proximal Lagrangian in the sense of R.T. Rockafellar for the problem with Tresca friction
(see [30, 37] for more details). In this section, the presentation is made for a contact condition
with Coulomb friction for both a nodal and an integral approximation.

First, let us recall that an augmented Lagrangian formulation is only possible for the friction-
less case or for the case with Tresca friction since the Coulomb friction law do not derive from a
potential. However, the optimality system of the augmented Lagrangian is classically extended
to the Coulomb friction law.

In the continuous framework, the augmented Lagrangian has the following expression for the

9



problem with Tresca friction:

Lr(u, λ) =
1

2
a(u, u)− `(u)− 1

2r

∫
ΓC

|λ|2dΓ

+
1

2r

∫
ΓC

(λN − r(uN − g))2−dΓ +
1

2r

∫
ΓC

|PB(0,s)(λT − ruT )|
2dΓ.

where s is the Tresca threshold. Note that this expression is only valid for sufficiently regular
Tresca threshold and friction stresses in L2(ΓC ). The advantage compared to (7) is that there
is no constraint on the augmented Lagrangian variables. With H = L2(ΓC ;Rd), the optimality
system (still for Tresca friction) read as:

a(u, v) = `(v) +

∫
ΓC

(λN − r(uN − g))−vNdΓ +

∫
ΓC

PB(0,s)(λT − ruT ) · vT dΓ ∀v ∈ V,

−1

r

∫
ΓC

(λN + (λN − r(uN − g))−)µNdΓ− 1

r

∫
ΓC

(λT − PB(0,s)(λT − ruT )) · µT dΓ = 0 ∀µ ∈ H.

This optimality system can be adapted to the Coulomb friction law simply by replacing the
threshold s by −FλN . It is in fact more usual to replace it by the so called augmented multiplier
−F (λN − r(uN − g))− (see [3]). It is also possible, as for instance in [1], to simplify the first
line of the optimality system by using the two other lines and then to obtain the less symmetric
following formulation of the problem:

a(u, v) = `(v) +

∫
ΓC

λN vNdΓ +

∫
ΓC

λT · vT dΓ ∀v ∈ V,

−1

r

∫
ΓC

(λN + (λN − r(uN − g))−)µNdΓ

−1

r

∫
ΓC

(λT − PB(0,F (λ
N
−r(u

N
−g))−)(λT − ruT )) · µT dΓ = 0 ∀µ ∈ H.

(14)

It is easy to check that this formulation is equivalent to Problem (5) when the solution is assumed
to be regular enough (λN and λT in H).

4.1 Nodal approximation of the contact condition, unsymmetric version

The first numerical experiment concerns the approximation of the less symmetric system (14)
with a nodal approximation of the contact and friction conditions. The generalized Newton’s
method is applied on the following system:

a(uh, vh) = `(vh) +
∑

a∈NΓC

λa
N
vh
N
(a) +

∑
a∈NΓC

λa
T
· vh

T
(a) ∀vh ∈ V h,

−1

r

(
λa

N
+ (λa

N
− r(uh

N
(a)− g(a)))−

)
= 0, ∀a ∈ NΓC

,

−1

r

(
λa

T
− PB(0,F (λa

N
−r(uh

N
(a)−g(a)))−)(λ

a
T
− ruh

T
(a))

)
= 0, ∀a ∈ NΓC

.

The results are shown in Fig. 6 for the frictionless case (F = 0) and in Fig. 7 for the frictional
one (F = 1). Concerning the frictionless case (Fig. 6), in the coercive cases (2D and 3D punches)
the number of iterations is less than 20 regardless the value of the augmentation parameter r,
except for one experiment corresponding to the finest mesh of the 3D punch with large deflection.
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Note that there is a slight increase of the number of iterations when the mesh becomes finer which
is probably due to the deterioration of the conditioning of the system. Conversely, there is no
dependence of the iterations number on the size of the load. Nevertheless, in the non-coercive
cases, the method is performing poorly, especially in the case of coarse meshes.
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Figure 6: Number of iterations for Alart-Curnier generalized Newton’s method with nodal fric-
tionless contact approximation. Unsymmetric version.
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Figure 7: Number of iterations for Alart-Curnier generalized Newton’s method with nodal contact
with friction approximation. Unsymmetric version.
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Concerning now the coercive cases with friction (Fig. 7), the convergence is less uniform with
respect to the augmentation parameter than for the frictionless cases. However, the convergence
occurs in less than 20 iterations for a value of the augmentation parameter close to the value of
the Young modulus. In the non-coercive cases, the convergence occurs only for a few experiments.

4.2 Nodal approximation of the contact condition, symmetric version

In this section, instead of using the less symmetric system, we test the system without the
simplification of the first line. This leads to the following formulation of the nodal approximation:



a(uh, vh) = `(vh) +
∑

a∈NΓC

(λa
N
− r(uh

N
(a)− g(a)))−v

h
N
(a)

+
∑

a∈NΓC
PB(0,F (λa

N
−r(uh

N
(a)−g(a)))−)(λ

a
T
− ruh

T
(a)) · vh

T
(a) ∀vh ∈ V h,

−1

r

(
λa

N
+ (λa

N
− r(uh

N
(a)− g(a)))−

)
= 0, ∀a ∈ NΓC

,

−1

r

(
λa

T
− PB(0,F (λa

N
−r(uh

N
(a)−g(a)))−)(λ

a
T
− ruh

T
(a))

)
= 0, ∀a ∈ NΓC

.

The corresponding numerical experiments are presented in Fig. 8 and Fig. 9. There is a clear
deterioration of the convergence for the frictionless case (Fig. 8) compared to the less symmetric
system except for the non-coercive case. In the frictional case, shown in Fig. 9 the deterioration
is less important but is still present especially in 3D. We did not made further investigation to
identify the reasons for this deterioration. The fact that there is twice as much projections in the
symmetric formulation can be a reason of this deterioration.
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Figure 8: Number of iterations for Alart-Curnier generalized Newton’s method with nodal fric-
tionless contact approximation. Symmetric version.
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Figure 9: Number of iterations for Alart-Curnier generalized Newton’s method with nodal contact
with friction approximation. Symmetric version.

10
−6

10
−3

10
0

10
3

10
6

0

20

40

60

80

100

r/E

N
e

w
to

n
 i
te

ra
ti
o

n
s

2D punch

 

 

h=4

h=1

h=0.25

10
−6

10
−3

10
0

10
3

10
6

0

20

40

60

80

100

r/E

N
e

w
to

n
 i
te

ra
ti
o

n
s

2D punch (large deflection)

 

 

h=4

h=1

h=0.25

10
−6

10
−3

10
0

10
3

10
6

0

20

40

60

80

100

r/E

N
e

w
to

n
 i
te

ra
ti
o

n
s

2D disk

 

 

h=8

h=2

h=0.5

10
−6

10
−3

10
0

10
3

10
6

0

20

40

60

80

100

r/E

N
e

w
to

n
 i
te

ra
ti
o

n
s

3D punch

 

 

h=5

h=3

h=1.7

10
−6

10
−3

10
0

10
3

10
6

0

20

40

60

80

100

r/E

N
e

w
to

n
 i
te

ra
ti
o

n
s

3D punch (large deflection)

 

 

h=5

h=3

h=1.7

10
−6

10
−3

10
0

10
3

10
6

0

20

40

60

80

100

r/E

N
e

w
to

n
 i
te

ra
ti
o

n
s

3D sphere

 

 

h=20

h=6

h=2.3

Figure 10: Number of iterations for Alart-Curnier generalized Newton’s method with integral
frictionless contact approximation. Unsymmetric version.

13



4.3 Integral approximation of the contact condition

We turns now to the integral approximation of the contact with friction condition. The approxi-
mation of the less symmetric system (14) leads to the following system:

a(uh, vh) = `(vh) +

∫
ΓC

λh
N
vh
N
dΓ +

∫
ΓC

λh
T
· vh

T
dΓ ∀vh ∈ V h,

−1

r

∫
ΓC

(λh
N
+ (λh

N
− r(uh

N
− g))−)µ

h
N
dΓ = 0 ∀µh ∈ W h,

−1

r

∫
ΓC

(λh
T
− PB(0,F (λh

N
−r(uh

N
−g))−(λ

h
T
− ruh

T
)) · µh

T
dΓ = 0 ∀µh ∈ W h.

(15)

An existence result of a solution to Problem (15) for arbitrary r > 0 and F ≥ 0 and a
uniqueness result for both r and F small enough can be found in [30].

The corresponding numerical experiments are presented in Fig. 10 and Fig. 11 for the cases
without or with friction, respectively. The method is more sensitive to the value of the augmen-
tation parameter in the frictionless case if one compare with Fig. 6 for the nodal approximation,
except for the non-coercive case which behaves slightly better. For the case with friction, re-
sults are more similar. However, one may conclude that globally, Newton’s method on the nodal
discretization is more robust.
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Figure 11: Number of iterations for Alart-Curnier generalized Newton’s method with integral
contact with friction approximation. Unsymmetric version.

Now, still with an integral approximation of the contact with friction condition, it is also
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possible to consider the more symmetric system:

a(uh, vh) = `(vh) +

∫
ΓC

(λh
N
− r(uh

N
− g))−v

h
N
dΓ

+

∫
ΓC

PB(0,−F (λh
N
−r(uh

N
−g))−)(λ

h
T
− ruh

T
) · vh

T
dΓ ∀vh ∈ V h,

−1

r

∫
ΓC

(λh
N
+ (λh

N
− r(uh

N
− g))−)µ

h
N
dΓ = 0 ∀µh ∈ W h,

−1

r

∫
ΓC

(λh
T
− PB(0,F (λh

N
−r(uh

N
−g))−)(λ

h
T
− ruh

T
)) · µh

T
dΓ = 0 ∀µh ∈ W h.

The number of Newton iterations are shown in Fig. 12 for the frictional case. The convergence
is very similar to the one of the unsymmetric version with only a slight degradation in 3D cases.
The frictionless case being similar, the graphs are not shown for shortness.
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Figure 12: Number of iterations for Alart-Curnier generalized Newton’s method with integral
contact with friction approximation. Symmetric version.

5 Simo-Laursen method

5.1 The original method

The Simo-Laursen method corresponds to an Uzawa algorithm (in the case of Tresca friction). Still
for shortness, only the integral approximation of contact is considered. The nodal approximation
give similar results. The first step, for a contact stress λh,i given is to find uh,i+1 solution to

a(uh,i+1, vh) = `(vh) +

∫
ΓC

(λh,i
N

− r(uh,i+1
N

− g))−v
h
N
dΓ

+

∫
ΓC

P
B(0,−F (λh,i

N −r(uh,i+1
N −g))−)

(λh,i
T

− ruh,i+1
T

) · vh
T
dΓ ∀vh ∈ V h.
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Figure 13: Cumulative number of Newton iterations for the Simo-Laursen method with integral
frictionless contact approximation.
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Figure 14: Number of Uzawa iterations for the Simo-Laursen method with integral frictionless
contact approximation.

This first step is solved with a generalized Newton’s method. Then, the second step consists
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in computing λh,i+1 thanks to∫
ΓC

(λh,i+1
N

+ (λh,i
N

− r(uh,i+1
N

− g))−)µ
h
N
dΓ = 0 ∀µh ∈ W h,∫

ΓC

(λh,i+1
T

− P
B(0,−F (λh,i

N −r(uh,i+1
N −g))−)

(λh,i
T

− ruh,i+1
T

)) · µh,i
T
dΓ = 0 ∀µh ∈ W h.

In the frictionless case, Fig. 13 and Fig. 14 present the total number of Newton iterations
(summed over the Uzawa iterations) and the number of Uzawa iterations, respectively. The
analysis of the two series of graphs indicates that the number of Newton iterations inside an Uzawa
iteration increases with the augmentation parameter r. This is a classical result when the contact
condition is approached by penalization which is found here certainly because of the similarity
between this formulation and the penalized one. Conversely, the largest is the augmentation
parameter, the fastest the Uzawa method converges (on the graphs, remember that the algorithm
is stopped after 100 cumulated Newton iterations, whatever the number of Uzawa iterations).
The main difficulty of the Simo-Laursen method is to find the good compromise to allow both a
reasonable number of iterations for Newton’s method and for the Uzawa algorithm. Fig. 13 and
Fig. 14 shows that this may not be easy. The difficulty of the convergence of Newton’s method
for the penalized problem is addressed in some works such as [44] where the contact condition is
modified in the first Newton iterations in order to facilitate the convergence. These techniques
can also be applied to the Simo-Laursen method. However, this difficulty is a drawback of the
method. The same conclusion can be applied to the case with friction on analyzing Fig. 15. Note
also the significant sensitivity to the size of the load and the shift of the optimal augmentation
parameter when the mesh is refined which have not been observed for Alart-Curnier method.
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Figure 15: Cumulative number of Newton iterations for the Simo-Laursen method with integral
contact with friction approximation.
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5.2 Using De Saxcé’s projection

Another possibility, coming from De Saxcé bipotential theory (see [13, 30]) is to replace the two
separate projections (10) and (11) for the contact and friction conditions by the following single
one:

λh = PΛF
(λh − r((uh

N
− g)− F |uh

T
|)n0 + uh

T
)), (16)

where ΛF is the friction cone defined by

ΛF = {λ ∈ Rd : |λT | ≤ −FλN },

and PΛF
the orthogonal projection which reads

PΛF
(λ) =


0 if F |λT | ≤ λN ,
λ if |λT | ≤ −FλN ,
λN − F |λT |

F 2 + 1

(
n0 − F

λT

|λT |

)
otherwise.

Using this unique projection, the first step of Uzawa’s algorithm corresponds now to find uh,i+1

solution to

a(uh,i+1, vh) = `(vh) +

∫
ΓC

PΛF
(λh,i − r((uh,i+1

N
− g)− F |uh,i+1

T
|)n0 + uh,i+1

T
)) · vdΓ,

for a given λh,i, and the second step corresponds to compute λh,i+1 thanks to∫
ΓC

(λh,i+1 − PΛF
(λh,i − r((uh,i+1

N
− g)− F |uh,i+1

T
|)n0 + uh,i+1

T
)) · µdΓ = 0 ∀µh ∈ W h.
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Figure 16: Cumulative number of Newton iterations for the Simo-Laursen method using De Saxcé
projection and with integral contact with friction approximation.
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A significant aspect of this formulation is the non-differentiability of the term |uh,i+1
T

| occurring
for uh,i+1

T
= 0 which corresponds of course to non-improbable situations (since it corresponds to

a sticking solution). One may consider that this could affect the convergence of Newton’s method
since order two of convergence can be lost at non-differentiable points (see [34, 42]). Such a
degradation of the convergence is not clearly visible on graphs of Fig. 16 which represent the case
with friction (De Saxcé’s projection has of course no interest in the frictionless case). However,
we can conclude that the use of De Saxcé’s projection do not improve the convergence here.

Note also that the use of De Saxcé’s projection has also been tested on Alart-Curnier general-
ized Newton’s method with also very few differences on the number of iterations for convergence.
Numerical results are again not presented for shortness of the paper.

6 Nitsche’s method adapted to contact with friction

Original Nitsche’s method [33] allows to prescribe a Dirichlet condition on a boundary in a
consistent way without the use of a multiplier. The extension to the contact condition is a
recent concern. In [18] an extension to bilateral (persistent) contact is proposed. In [43] the
method is extended to large strain bilateral frictionless contact. In [9] the method is extended
to unilateral contact and a numerical analysis is performed which shows the optimality of the
method. An interesting result of [9] is the full optimality of the a priori error estimate without
any additional assumption on the solution than having the appropriate regularity. This is all the
more remarkable that this is the first approximation of contact condition in elasticity for wich an
optimal a priori error estimate has been proven. See for instance [21] and the references there in
for a priori error estimates of standard approximation of contact.

6.1 Symmetric version of Nitsche’s method

We present here the Nitsche-based method presented in [9] and extended to Coulomb friction.
For frictionless problem, the tangent system is symmetric (of course there is an unavoidable
unsymmetric term when Coulomb friction is considered). In the formalism of the rest of the
paper, the corresponding problem reads as

Find uh ∈ V h satisfying

a(uh, vh)− 1

r

∫
Γ
C

(σ(u)n) · (σ(v)n)dΓ− 1

r

∫
Γ
C

(σN (u
h)− r(uh

N
− g))−(σN (v)− rvN )dΓ

+
1

r

∫
Γ
C

PB(0,F (σ
N
(uh)−r(uh

N
−g))−)(σT (u

h)− ruh
T
) · (σT (v

h)− rvh
T
)dΓ = l(vh), ∀ v ∈ V h.

(17)

There is at least two main advantages of Nitsche’s method. It leads to a weak formulation which
consists in an equation (not an inequation) on which a generalized Newton’s method can be
directly applied. Similarly to a penalized formulation, the only unknown is the displacement
field. The method is consistent which means that the non-penetration condition holds for any
parameter r > 0. However, the parameter r should be chosen sufficiently large to keep the
coercivity of the tangent matrix (see [9]). In fact the resolution of Problem (17) is very similar
to the resolution of the first step of Simo-Laursen method presented in the previous section. A
main difference is that the terms λN and λT are replaced by σN (u

h) and σT (u
h), respectively,

and there is an additional term ensuring the consistency. Of course, the advantage compared
to Simo-Laursen method is that no Uzawa iteration is needed. A small disadvantage of the
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method is the need of the material constitutive law for the computation of σ(u)n which makes
the implementation dependent on it.
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Figure 17: Number of Newton iterations for symmetric Nitsche’s method adapted to frictionless
contact and an integral approximation.
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Figure 18: Number of Newton iterations for symmetric Nitsche’s method adapted to contact with
friction and an integral approximation.

The number of iterations of the corresponding generalized Newton’s method are presented in
Fig. 17 for the frictionless case and Fig. 18 for the case with friction. The result are very similar
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to the ones for the Simo-Laursen method with the same kind of difficulties. On may think that
a strategy like the one proposed in [44] may be applied to improve the convergence.

Additionally here, when the parameter r is too small and the coercivity is lost, the Newton
algorithm may converge toward a non-physical solution. This minimal parameter can be estimated
by the computation of the smallest eigenvalue of the tangent matrix. The minimal parameter r
was found to be about 15E for the largest meshes and 60E for the finest one in the presented
numerical results.

6.2 An unsymmetric version of Nitsche’s method

A rather simpler version can be obtained from (17) by remarking that the term σ(v)n is not
necessary for the consistency of the method. The following formulation is then obtained:

Find uh ∈ V h satisfying

a(uh, vh) +

∫
Γ
C

(σN (u
h)− r(uh

N
− g))−vNdΓ

−
∫
Γ
C

PB(0,F (σ
N
(uh)−r(uh

N
−g))−)(σT (u

h)− ruh
T
) · vh

T
dΓ = l(vh), ∀ v ∈ V h.

(18)

Compared to (17) this formulation is non-symmetric even in the frictionless case. The number
of iterations of the corresponding generalized Newton’s method are presented in Fig. 19 for the
frictionless case and Fig. 20 for the case with friction. The convergence of Newton’s method
is greatly improved in comparison to the symmetric version. Another significant advantage is
that the method seems to converges toward a physical solution for much smaller values of the
parameter r. As a conclusion, for contact with friction problems, unsymmetric Nitsche’s method
behave much better than the symmetric one. This method is also discussed in [10].
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Figure 19: Number of Newton iterations for unsymmetric Nitsche’s method adapted to frictionless
contact and an integral approximation.
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Figure 20: Number of Newton iterations for unsymmetric Nitsche’s method adapted to contact
with friction and an integral approximation.

7 A new generalized Newton’s method based on augmented mul-
tipliers

Unlike previously presented methods, the method proposed here does not derive from an aug-
mented Lagrangian. The principle is to consider an auxiliary variable instead of the multiplier
representing the contact forces. For the contact condition, let us consider ξN a real variable whose
negative part will store the normal gap and whose positive part will store the contact pressure:

(ξN )+ = r(g − uN ), (ξN )− = −λN ,

where r > 0 represent a scaling coefficient which allows the variable ξ to be described with an
homogeneous unit (N/m2). The advantage of this auxiliary variable, the so-called augmented
multiplier, is that the complementarity relation is automatically satisfied since ξN is either nega-
tive or positive. Similarly, for the friction condition, one can consider the augmented multiplier
ξT ∈ Rd−1 satisfying

PB(0,F (ξ
N
)−)(ξT ) = λT ,

ξT − PB(0,F (ξ
N
)−)(ξT ) = −ruT .

There is some similarities with the formulation of Ben Dhia and Zarroug [6, 5] which is
however rather different since, for instance, an additional discontinuous function with an active
set strategy is used.
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7.1 Nodal approximation of the contact condition

Introducing some augmented multipliers for each finite element nodes leads to the following
system:

a(uh, vh) = `(vh)−
∑

a∈NΓC

(ξa
N
)−v

h
N
(a) + PB(0,F (ξ

N
)−)(ξ

a
T
) · vh

T
(a) ∀vh ∈ V h,

−1

r
(r(uh

N
(a)− g(a)) + (ξa

N
)+) = 0, ∀a ∈ NΓC

,

−1

r
(ruh

T
(a) + ξa

T
− PB(0,−F (ξ

N
)−)(ξ

a
T
)) = 0, ∀a ∈ NΓC

.

(19)

The discrete problem (19) is still equivalent to the standard nodal contact approximation (8).
Thus, problems (8) and (19) share the same properties for existence and uniqueness of the solution.

The numerical experiments are presented in Fig. 21 and Fig. 22 for the contact without
and with friction respectively. In the frictionless case, one sees that the number of iterations is
nearly independent of the parameter r (except for the 3D cases and a large r). The novelty is
that the method works also without difficulty for the non-coercive case. The situation is less
favorable in the frictional case, especially for the 3D cases where the range of parameter r over
which the number of Newton iterations is less than 20 is rather narrower compared to Fig. 7 for
the Alart-Curnier approach (except for the non-coercive cases).
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Figure 21: Number of iterations for the new Newton’s method with nodal frictionless contact
approximation.
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Figure 22: Number of iterations for the new Newton’s method with nodal contact with friction
approximation.
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Figure 23: Number of iterations for the new Newton’s method using De Saxcé projection and
with nodal contact with friction approximation.
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7.2 Nodal approximation of the contact condition with De Saxcé’s projection

The same principle can be applied to De Saxcé’s formulation of contact with friction (16) intro-
ducing ξ ∈ Rd an augmented multiplier satisfying

PΛF
(ξ) = λ,

PΛF
(ξ)− ξ = −(r(uN − g)− F |uT |)n0 − ruT .

The numerical experiments made on the corresponding discrete problem with nodal approxima-
tion of contact and friction condition is shown in Fig. 23. This method is the less sensitive to
the parameter r compared to all other tested methods when friction is considered, especially for
2D cases. The results are also very satisfactory for 3D and non-coercive cases.

7.3 Integral approximation of the contact condition

The counterpart of the nodal formulation (19) in term of integral approximation of the contact
condition reads as follows:

a(uh, vh) = `(vh)−
∫
ΓC

(ξh
N
)−v

h
N
dΓ +

∫
ΓC

PB(0,F (ξh
N
)−)(ξ

h
T
) · vh

T
dΓ ∀vh ∈ V h,

−
∫
ΓC

((uh
N
− g) +

1

r
(ξh

N
)+)µ

h
N
dΓ = 0 ∀µh ∈ W h,

−
∫
ΓC

(uh
T
+

1

r
ξh
T
− 1

r
PB(0,F (ξh

N
)−)(ξ

h
T
)) · µh

T
dΓ = 0 ∀µh ∈ W h.

(20)

The existence of a solution to Problem (20) for any value of r > 0 and F ≥ 0 can be obtained
classically with Brouwer’s fixed point theorem applied on P : W h → W h defined by

P(ξh) = PWh

(
(ξh

N
)− − r(uh

N
− g))n0 + PB(0,F (ξh

N
)−)(ξ

h
T
)− ruh

T

)
,

where u is the solution to the first equation of (20) and PWh is the orthogonal projection on W h

(the technique of proof can be found for instance in [30]). The uniqueness for both r > 0 and
F ≥ 0 small enough can be obtained as follows:

Proposition 7.1 The solution (uh, ξh) to Problem (20) is unique provided that a(·, ·) is coercive,
the inf-sup condition (13) is satisfied and for r > 0 and F ≥ 0 small enough.

Proof. Let (uh,1, ξh,1) and (uh,2, ξh,2) be two solutions to Problem (20). Denoting λh,1
N

= (ξh,1
N

)−,
λh,2

N
= (ξh,2

N
)−, λ

h,1
T

= PB(0,F (ξh
N
)−)(ξ

h,1
T

) and λh,2
T

= PB(0,F (ξh
N
)−)(ξ

h,2
T

), Problem (20) implies for

i = 1, 2:

a(uh,i, vh) = l(vh) +

∫
ΓC

λh,i
N
vh
N
dΓ +

∫
ΓC

λh,i
T

· vh
T
dΓ ∀vh ∈ V h,∫

ΓC

(
ξh,i + ruh,i − λh,i

)
· µhdΓ = 0 ∀µh ∈ W h.

In particular, this leads to ξh,i = PWh(λh,i − ruh,i) and thus the following estimate holds:

‖ξh,1 − ξh,2‖20,Γ
C

= ‖PWh(λh,1 − ruh,1)− PWh(λh,1 − ruh,1)‖20,Γ
C

≤ ‖λh,1 − ruh,1 − λh,2 + ruh,2‖20,Γ
C

= ‖λh,1 − λh,2‖20,Γ
C
− 2r

∫
ΓC

(λh,1 − λh,2)(uh,1 − uh,2)dΓ + r2‖uh,1 − uh,2‖20,Γ
C

= ‖λh,1 − λh,2‖20,Γ
C
− 2ra(uh,1 − uh,2, uh,1 − uh,2) + r2‖uh,1 − uh,2‖20,Γ

C
.
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Figure 24: Number of iterations for the new Newton’s method with integral frictionless contact
approximation.

Due to the coercivity of a(·, ·) there exist α > 0 such that for r > 0 sufficiently small one has

−2ra(uh,1 − uh,2, uh,1 − uh,2) + r2‖uh,1 − uh,2‖20,Γ
C
≤ −α‖uh,1 − uh,2‖20,Γ

C
,

which together with the inf-sup condition (13) leads to the existence of β > 0 such that

−2ra(uh,1 − uh,2, uh,1 − uh,2) + r2‖uh,1 − uh,2‖20,Γ
C
≤ −β‖λh,1 − λh,2‖20,Γ

C
.

Moreover one has

‖λh,1 − λh,2‖0,Γ
C
≤ ‖ξh,1 − ξh,2‖0,Γ

C
+ ‖P

B(0,F (ξh,1N )−)
(ξh,2

T
)− P

B(0,F (ξh,2N )−)
(ξh,2

T
)‖0,Γ

C
,

and
‖P

B(0,F (ξh,1N )−)
(ξh,2

T
)− P

B(0,F (ξh,2N )−)
(ξh,2

T
)‖0,Γ

C
≤ F‖ξh,1

N
− ξh,2

N
‖0,Γ

C
.

Thus, the following estimate holds for r > 0 small enough:

‖ξh,1 − ξh,2‖0,Γ
C
≤

√
1− β(1 + F )‖ξh,1 − ξh,2‖0,Γ

C
,

which leads to ξh,1 = ξh,2 for F sufficiently small.

Note that since the solution to Problem (20) do depend on the parameter r, the uniqueness
of the solution for an arbitrary r > 0 is an open question.
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Figure 25: Number of iterations for the new Newton’s method with integral contact with friction
approximation.

The corresponding numerical experiments are presented in Fig. 24 and Fig. 25 for the contact
without and with friction, respectively. Similarly to the Alart-Curnier approach, generalized
Newton’s method on the integral approximation leads to a less robust method with respect to
the parameter r. When considering additionally De Saxcé’s projection for the case with friction,
the graphs of Fig. 26 show also an improvement of the convergence similarly to what was noted
for the nodal approximation.

8 Concluding remarks

In this paper, some new generalized Newton’s method for contact with friction problems are
introduced and compared to existing strategies on some basic 2D and 3D situations. Two kinds
of approximations of the contact and friction conditions are considered: a nodal and an integral
one. The advantage of the integral approximation is the fact that it is without constraints.
Consequently, the set of admissible stress is not to be described. This may be a crucial advantage
for instance in the framework of fictitious domain or Xfem methods. However, this approximation
leads to Newton’s methods a little bit more sensitive to the value of the augmentation parameter
compared to the ones build on a nodal approximation.

The new generalized Newton’s methods based on augmented multipliers have a better behavior
than the other tested methods, especially when using De Saxcé’s projection. In particular it solves
correctly the non-coercive cases. Of course, the method can be adapted to more complex contact
situations such as two-body contact and large deformations. Despite the fact that it does not
solves the non-coercive cases every time, non-symmetric Nitsche’s method is also very promising
and prevent the use of a multiplier which can be an advantage in some situations.

For all the methods, it is observed a slight increase of the number of Newton iterations
when the mesh is refined. This variation indicates the non-scalability of the Newton’s methods.
However, this increase is quite small and, a priori, does not require a specific treatment.
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Figure 26: Number of iterations for the new Newton’s method using De Saxcé projection and
with integral contact with friction approximation.
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