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Let M = (M t ) t 0 be any continuous real-valued stochastic process such that M 0 = 0. Chaumont and Vostrikova proved that if there exists a sequence (a n ) n 1 of positive real numbers converging to 0 such that M satisfies the reflection principle at levels 0, a n and 2a n , for each n 1, then M is an Ocone local martingale. They also asked whether the reflection principle at levels 0 and a n only (for each n 1) is sufficient to ensure that M is an Ocone local martingale.

We give a positive answer to this question, using a slightly different approach, which provides the following intermediate result. Let a and b be two positive real numbers such that a/(a + b) is not dyadic. If M satisfies the reflection principle at the level 0 and at the first passagetime in {-a, b}, then M is close to a local martingale in the following sense: |E[M S•M ]| a + b for every stopping time S in the canonical filtration of W = {w ∈ C(R + , R) : w(0) = 0} such that the stopped process M •∧(S•M) is uniformly bounded.

Introduction

Let (M t ) t 0 denote a continuous local martingale, defined on some probability space (Ω, A, P ), such that M 0 = 0. Let F M denote its natural filtration and H the set of all predictable processes with respect to F M with values in {-1, 1}. Then for every H ∈ H, the local martingale

H • M = • 0 H s dM s
has the same quadratic variation as M . In particular, if M is a Brownian motion, then H • M is still a Brownian motion.

A natural problem is to determine when H • M has the same law as M for every H ∈ H. Ocone proved in [START_REF] Ocone | A symmetry characterization of conditionally independent increment martingales[END_REF] that a necessary and sufficient condition is that M is a Gaussian martingale conditionally on its quadratic variation M . Such processes are called Ocone local martingales. Various characterisations of these processes have been given, by Ocone himself, by Dubins, Émery and Yor in [START_REF] Dubins | On the Lévy transformation of Brownian motions and continuous martingales[END_REF], by Vostrikova and Yor in [START_REF] Vostrikova | Some invariance properties (of the laws) of Ocone's martingales[END_REF]. We refer to [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF] for a more complete presentation.

The following characterisation, given by Dubins, Émery and Yor, is particularly illuminating: M is an Ocone local martingale if and only if there exists a Brownian motion β (possibly defined on a larger probability space) which is independent of M and such that M t = β M t for every t. Loosely speaking, Ocone local martingales are the processes obtained by the composition of a Brownian motion and an independant time-change.

Another characterisation of Ocone local martingales is based on their invariance with respect to reflections. For every positive real r, call h r the map from R + to {-1, 1} defined by

h r (t) = 1 [t r] -1 [t>r] .
Then h r • M = ̺ r • M , where ̺ r is the reflection at time r. Let W denote the set of all continuous functions w : R + → R such that w(0) = 0. The transformation ̺ r maps W into itself and is defined by ̺ r (w)(t) = w(t) if t r, 2w(r) -w(t) if t r.

The functions h r are sufficient to characterise Ocone local martingales: Theorem A of [START_REF] Ocone | A symmetry characterization of conditionally independent increment martingales[END_REF] states that if h r • M has the same law as M for every positive r, then H • M has the same law as M for every H ∈ H. In other words, if the law of M is invariant by the reflections at fixed times, then M is an Ocone local martingale. Note that it is not necessary to assume that M is a local martingale since the invariance by the reflections at fixed times implies that for every t s 0, the law of the increment M t -M s is symmetric conditionally on F M s . The celebrated reflection principle due to André [START_REF] André | Solution directe du problème résolu par M. Bertrand[END_REF] shows that it may be worthwhile to consider reflections at first-passage times, which we now define. For every real a and w ∈ W, note T a (w) the first-passage time of w at level a. The reflection at time T a transforms w into ̺ Ta (w) where

̺ Ta (w)(t) = w(t) if t T a (w), 2a -w(t) if t T a (w). Note that ̺ Ta (w) = w if T a (w) is infinite.
Chaumont and Vostrikova recently established in [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF] that any continuous process whose law is invariant by the reflections at first-passage times is an Ocone local martingale. Actually, their result is even stronger.

Theorem 1 (Theorem 1 of [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF]). Let M be any continuous stochastic process such that M 0 = 0. If there exists a sequence (a n ) n 1 of positive real numbers converging to 0 such that the law of M is invariant by the reflections at times T 0 = 0, T an and T 2an , then M is an Ocone local martingale. Moreover, if

T a 1 • M is almost surely finite, then M is almost surely divergent.
We note that the assumption that the law of M is invariant by the reflection ̺ 0 is missing in [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF] and that it cannot be omitted: consider for example the deterministic process defined by M t = -t. However, if inf{t 0 : M t > 0} is 0 almost surely, the invariance by ̺ 0 is a consequence of the invariance by the reflections ̺ Ta n .

To prove Theorem 1 above, Chaumont and Vostrikova establish a discrete version of the theorem and they apply it to some discrete approximations of M . The discrete version (Theorem 3 in [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF]) states that if (M n ) n 0 is a discrete time skip-free process (this means that M 0 = 0 and M n -M n-1 ∈ {-1, 0, 1} for every n 1) whose law is invariant by the reflections at times T 0 , T 1 and T 2 , then (M n ) n 0 is a discrete Ocone martingale (this means that (M n ) n 0 is obtained by the composition of a symmetric Bernoulli random walk with an independent skip-free time change).

The fact that the three invariances by the reflections at times T 0 , T 1 , and T 2 are actually useful (two of them would not be sufficient) explains the surprising requirement that the law of (M t ) t 0 is invariant by reflections at times T an and T 2an in Theorem 1 of [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF]. Chaumont and Vostrikova ask whether the assumption on T 2an can be removed. Their study of the discrete case could lead to believe that it cannot. Yet, we give in this paper a positive answer to this question. Here is our main result. Theorem 2. Let M be any continuous stochastic process such that M 0 = 0. If there exists a sequence (a n ) n 1 of positive real numbers converging to 0 such that the law of M is invariant by the reflections at times T 0 = 0 and T an , then M is an Ocone local martingale. Moreover, if T a 1 • M is almost surely finite, then M is almost surely divergent.

We provide a simpler proof of this stronger statement (the final steps in the approximation method of [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF] were rather technical). Let us now indicate the steps of the proof and the plan of the paper.

Our proof first uses some stability properties of the set of all stopping times T such that ̺ T preserves the law of M . These properties are established in section 2.

In section 3, we show that for any positive real numbers a and b such that a/(a + b) is not dyadic, if the reflections ̺ 0 and ̺ T -a ∧T b preserve the law of M , then M is close to a local martingale in the following sense: for every stopping time S in the canonical filtration of W such that the stopped process

M •∧(S•M ) is uniformly bounded, |E[M S•M ]| a + b.
To prove this, we build a nondecreasing sequence (τ n ) n 0 of stopping times, increasing while finite (τ n < τ n+1 if τ n < +∞), starting with τ 0 = 0, such that the reflections ̺ τn preserve the law of M and such that the increments of M on each interval [τ n , τ n+1 ] are bounded by a + b.

The proof that the reflections ̺ τn actually preserve the law of M is given in section 4. The final step of the proof of theorem 2 is in section 5.

To prove these results, it is more convenient to work in the canonical space. From now on, W denotes the σ-field on W generated by the canonical projections, X = (X t ) t 0 the coordinate process on (W, W), and F 0 its natural filtration of the space W (without any completion). Moreover, Q denotes the law of M and E Q is the expectation whith respect to Q.

Stability properties

Call T Q the set of all stopping times T of the filtration F 0 such that the reflection ̺ T preserves Q. In this section, we establish some stability properties of T Q . Let us begin with a preliminary lemma.

Lemma 1. Let S and T be F 0 -stopping times. If w 1 , w 2 ∈ W coincide on [0, T (w 1 ) ∧ T (w 2 )], then • T (w 1 ) = T (w 2 ); • either S(w 1 ) = S(w 2 ) or S(w 1 ) ∧ S(w 2 ) > T (w 1 ) = T (w 2 ).
Thus, the random times S and T are in the same order on w 1 as on w 2 .

Proof. The first point is an application of Galmarino's test (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], chapter I, exercise 4.21). The second follows by the same argument, since the inequality S(w 1 ) ∧ S(w 2 ) T (w 1 ) = T (w 2 ) would imply that w 1 , w 2 ∈ W coincide on [0, S(w 1 ) ∧ S(w 2 )].

Corollary 1. Let T be an F 0 -stopping time. Then

1. T • ̺ T = T 2. ̺ T is an involution. 3. for every A ∈ F 0 T , ̺ -1 T (A) = A.
In particular, if S is another stopping time, the events {S < T }, {S = T } and {S > T } are invariant by ̺ T .

Proof. The first point is a consequence of the application of the application of lemma 1 to the paths w and ̺ T (w). The secund point follows. The third point is another application of Galmarino's test (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], chapter I, exercise 4.21) since w and ̺ T (w) coincide on [0, T (w)].

The next lemma states that T Q is stable by the optional mixtures. Lemma 2. Let (S n ) be a (finite or infinite) sequence of F 0 -stopping times and (A n ) a measurable partition of (W, W) such that A n ∈ F Sn for every n.

Then T := n S n 1 An is an F 0 -stopping time. If S n ∈ T Q for every n, then T ∈ T Q .
Proof. Note that T is an F 0 -stopping time since for every t ∈ R + ,

{T t} = n (A n ∩ {S n t}) ∈ F t .
Fix any bounded measurable function φ from W to R. Since for each n, the event A n and the probability Q are invariant by ̺ Sn , one has

E Q [φ • ̺ T ] = n E Q [(φ • ̺ Sn )1 An ] = n E Q [(φ1 An ) • ̺ Sn ] = n E Q [φ1 An ] = E Q [φ].
Hence ̺ T preserves Q.

Corollary 2. For every S and T in T Q , S ∧ T and S ∨ T are in T Q .

Proof. As the events {S < T }, {S = T } and {S > T } belong to F S ∩ F T , the result is a direct application of lemma 2.

The following lemmas will be used to prove a subtler result: if S and T are in

T Q , then S • ̺ T is in T Q . Lemma 3.
Let S and T be F 0 -stopping times. Then the following holds.

• For every t 0, ̺ -1 T (F t ) = F t .

• S • ̺ T is an F 0 -stopping time.

Proof. Fix t 0. Then ̺ -1 T (F t ) is the σ-field generated by the random variables X s • ̺ T for s ∈ [0, t], and the equality

X s • ̺ T = (2X T -X s )1 [T s] + X s 1 [T >s]
shows that these random variables are measurable for F t . Thus ̺ -1 T (F t ) ⊂ F t . Since ̺ T is an involution, the reverse inclusion follows, which proves the first statement. 

For each t 0, {S • ̺ T t} = ̺ -1 T ({S t}) ∈ F t ,
̺ S•̺ T (w) = ̺ S (w). If S(w) T (w), then T (̺ S (̺ T (w))) = T (w) and ̺ S•̺ T (w) = ̺ T (̺ S (̺ T (w))).
Proof. If S(w) T (w), then w and ̺ T (w) coincide on [0, S(w)], thus S(̺ T (w)) = S(w) and ̺ S•̺ T (w) = ̺ S (w).

If S(w) T (w), then S(̺ T (w)) T (̺ T (w)) = T (w) by corollary 1, thus ̺ S (̺ T (w)), ̺ T (w) and w coincide on [0, T (w)], thus T (̺ S (̺ T (w))) = T (w). But, to get ̺ T • ̺ S • ̺ T (w) from w, one must successively:

• multiply by -1 the increments after T (w);

• multiply by -1 the increments after S(̺ T (w));

• multiply by -1 the increments after T (̺ S (̺ T (w))).

Since T (̺ S (̺ T (w))) = T (w), one gets ̺ S•̺ T (w) = ̺ T • ̺ S • ̺ T (w).
Lemma 5. For every S and T in T Q , S • ̺ T belongs to T Q .

Proof. By lemma 4 and corollary 1, one has, for every B ∈ W,

Q[̺ -1 S•̺ T (B)] = Q[̺ -1 S•̺ T (B) ; S T ] + Q[̺ -1 S•̺ T (B) ; S > T ] = Q[̺ -1 S (B ∩ {S T })] + Q[(̺ T • ̺ S • ̺ T ) -1 (B ∩ {S > T })] = Q[B ∩ {S T }] + Q[B ∩ {S > T }] = Q[B]. Thus S • ̺ T belongs to T Q .
Here is a simple application of our last lemmas.

Corollary 3. For every a ∈ R, T -a = T a • ̺ 0 and ̺ T -a = ̺ 0 • ̺ Ta • ̺ 0 . Thus, if 0 ∈ T Q and T a ∈ T Q , then T -a ∈ T Q .
Proof. The first equality is obvious and the second equality follows from lemma 4. One can deduce the last point either from the first equality by lemma 5 or directly from the second equality.

3 Reflections at 0 and at the hitting time of {-a, b}

We keep the notations of the previous section and we fix two positive real numbers a, b such that a/(a + b) is not dyadic. Note that T = T -a ∧ T b is the hitting time of {-a, b}. This section is devoted to the proof of the following result.

Proposition 1. Let Q be a probabiliy measure on (W, W). If 0 ∈ T Q and T ∈ T Q , then, for every finite stopping time S in the canonical filtration of W such that the stopped process X •∧S is uniformly bounded, one has

|E Q [X S ]| a + b.
Note that the process X may not be a local martingale. The law of any process which stops when its absolute value hits min(a, b) fulfills the assumptions provided it is invariant by T 0 .

The requirement that a/(a + b) is not dyadic may seem surprising, and one could think that it is just a technicality provided by the method used to prove the result. In fact, proposition 1 becomes false if this assumption is removed. A simple counterexample is given by the continuous stochastic process (M t ) t 0 defined by

M t = tξ if t 1, ξ + (t -1)η if t > 1,
where ξ and η are independent symmetric Bernoulli random variables. Indeed, the law Q of M is invariant by reflections at times 0 and 

T -1 ∧ T 1 since T -1 ∧ T 1 = 1 Q-almost surely. Yet, for every c > 1, the random variable X T -2 ∧Tc is uniform on {-2,
d n = -a if c n-1 < (b -a)/2, b if c n-1 > (b -a)/2. Note that |c n -c n-1 | = d(c n-1 , {-a, b}).
We define a sequence (τ n ) n 0 of stopping times on W by setting τ 0 = 0, and for every n 1,

τ n (w) = inf{t τ n-1 (w) : |w(t) -w(τ n-1 (w))| = |c n -c n-1 |}.
Note that c n = c n-1 for every n 1, hence the sequence (τ n (w)) n 0 is increasing. Moreover, since (|c n -c n-1 |) n 1 does not converge to 0, the continuity of w forces the sequence (τ n (w)) n 0 to be unbounded. By convention, we set τ ∞ = +∞.

Note that if a = -1 and b = 2, then c n = 0 for every even n and c n = 1 for every odd n and the sequence (τ n ) n 0 is similar to the sequences used in [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF].

The proof of proposition 1 relies on the following key statement.

Proposition 2. If 0 ∈ T Q and T ∈ T Q , then τ n ∈ T Q for every n 0.
This statement, that will be proved in the next section, has a remarkable consequence.

Corollary 4. If 0 ∈ T Q and T ∈ T Q , then the sequence (Y n ) n 0 of random variables defined on the probability space (W, W, Q) by Y n (w) = X τ Dn (w) where D n (w) = max{k n : τ k (w) < +∞}.
is a martingale in the filtration (F 0 τn ) n 0 .

Proof. Fix n 0. The equality

Y n (w) = n-1 k=0 1 [τ k (w)<+∞ ; τ k+1 (w)=+∞] X τ k (w) + 1 [τn(w)<+∞] X τn (w),
shows that Y n is measurable for F 0 τn . Moreover, from the equality

Y n+1 (w) -Y n (w) = (X τ n+1 (w) -X τn (w))1 [τ n+1 (w)<+∞] ,
we deduce that

(Y n+1 -Y n ) • ̺ τn = -(Y n+1 -Y n ). Take A ∈ F 0 τn . Then ̺ -1 τn (A) = A, since every w ∈ W coincide with ̺ τn (w) on [0, τ n (w)]. Since the reflection ̺ τn preserves Q, we get E Q [(Y n+1 -Y n )1 A ] = E Q (Y n+1 -Y n )1 A • ̺ τn = -E Q [(Y n+1 -Y n )1 A ], which shows that E Q [Y n+1 -Y n |F 0 τn ] = 0.
We are now ready to prove proposition 1.

Proof. Fix C ∈ R + such that |X t∧S (w)| C for every t ∈ R + and w ∈ W.

For each w ∈ W, set N (w) = inf{n 1 : τ n (w) S(w)}. Since S(w) is finite and τ n (w) is unbounded as n → +∞, N (w) is finite.

For every n 0, {N n} = {τ n S} ∈ F 0 τn . Thus N is a stopping time and (Y n∧N ) n 0 is a martingale in the filtration (F 0 τn ) n 0 . Note that:

• for all n < N (w), one has τ Dn (w) < S(w

) hence |Y n (w)| = |X Dn(w) | C,
• and

|Y N (w)| |Y N -1 (w)| + |Y N (w) -Y N -1 (w)| C + (a + b)/2.
This shows that the martingale (Y n∧N ) n 0 is uniformly bounded, hence it converges in

L 1 (Q) to Y N and E Q [Y N ] = E Q [Y 0 ] = 0. Note that τ N -1 < S < +∞, hence Y N = X τ N or Y N = X τ N-1 . The inequalities τ N -1 < S
τ N and the fact that the increments of X are bounded by a

+ b on each interval [τ n-1 , τ n [ yield |X S -Y N | a + b. This completes the proof.

Proof of proposition 2

We keep the notations of the previous section, and we introduce for every n 1,

ε n = Y n -Y n-1 c n -c n-1 = X τn -X τ n-1 c n -c n-1 1 [τn<+∞] .
For every e = (e n ) n 1 ∈ {-1, 0, 1} ∞ , set m 0 (e) = inf{n 1 : e n = 0}, m(e) = inf{n 1 : e n = -1}.

Call Σ the set of all sequences e = (e n ) n 1 ∈ {-1, 0, 1} ∞ such that e n = 0 for all n m 0 (e). Then ε = (ε n ) n 1 can be seen as a random variable with values in Σ.

The first key point is that T is always one of the times (τ n ) n 1 .

Lemma 6. One has T = τ m•ε (remind the convention τ ∞ = +∞). Thus, for every n 1, {m • ε = n} = {T = τ n < +∞}.
Proof. Fix w ∈ W and set m = m(ε(w)) and m 0 = m 0 (ε(w)).

For every n 1, by definition of τ n and ε n , one has

ε n (w) = ±1 if τ n (w) < +∞, ε n (w) = 0 if τ n (w) = +∞.
In particular, τ n (w) = +∞ for every n m 0 since the sequence (τ n ) n 0 is non decreasing. Thus, whether m m 0 or m m 0 , one has τ m∧m 0 (w) = τ m (w).

For every k < m ∧ m 0 , ε k (w) = 1 hence w(τ k (w)) -w(τ k-1 (w)) = c k -c k-1 . A recursion then gives w(τ k (w)) = c k ∈] -a, b[. Moreover, for τ k (w) t < τ k+1 (w), |w(t) -c k | = |w(t) -w(τ k (w))| < |c k+1 -c k | = d(c k , {-a, b}).
Hence for every t ∈ [0, τ m (w)[, w(t) / ∈ {-a, b}. This proves that T (w)

τ m (w). If m is infinite, then T (w) is infinite. If m is finite, the equality w(τ m (w)) -w(τ m-1 (w)) = -(c m -c m-1 ) = d m -c m-1 implies w(τ m (w)) = d m ∈ {-a, b}, hence T (w) = τ m (w).
The proof of the first statement is complete. Since the sequence (τ n (w)) n 0 is increasing and unbounded, the second statement follows.

We can now describe the effect of the reflection ̺ T on the sequence

ε = (ε n ) n 1 . For every e = (e n ) n 1 ∈ Σ, define r(e) = (f n ) n 1 ∈ Σ by f n = e n if n m(e), -e n if n > m(e).
Set g(e) = r(-e) and γ = ̺ T • ̺ 0 . Note that g and γ are bijective maps.

Corollary 5. With the notation above, the following properties hold.

1. The reflections ̺ 0 , ̺ T and their composition γ = ̺ T • ̺ 0 preserve the stopping times τ n .

One has ε

• ̺ 0 = -ε, ε • ̺ T = r • ε and ε • γ = g • ε.
Proof. Let w ∈ W. The trajectories w and ̺ T (w) have the same increments on [0, T (w)] and have opposite increments on [T (w), +∞[. Since T (w) = τ m•ε (w), the results on ̺ T follow immediatly. The other statements are obvious.

For n ∈ N, note 1 n = (1, . . . , 1) ∈ {-1, 1} n . For (e 1 , . . . , e n ) ∈ {-1, 1} n and σ ∈ Σ, note (e 1 , . . . , e n , σ) ∈ Σ the sequence obtained by concatenation. The next formula will play the same role as lemma 1 of [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF].

Lemma 7. Let N = a 0 + 2a 1 + • • • + 2 n-1
a n-1 be a natural integer written in base 2 with n digits (the digit a n-1 may be 0). Then for every σ ∈ Σ,

g N (1 n , σ) = ((-1) a 0 , . . . , (-1) a n-1 , σ). Moreover, if n 1, g N -2 n-1 (1 n-1 , -1, σ) = ((-1) a 0 , . . . , (-1) a n-1 , σ).
Proof. The first formula will be proved by induction on the number of digits. If n = 0, then N = 0 and the formula is obvious.

Assume the formula holds for all integers written with n digits. Let N = a 0 + 2a 1 + • • • + 2 n a n be an integer written with n + 1 digits.

If a n = 0, then it suffices to write N with n digits and to apply the induction hypothesis to the sequence (1, σ).

If a n = 1, let us apply the induction hypothesis to the integer 2 n -1 = 1 + 2 + • • • + 2 n-1 and to the sequence (1, σ). We get

g 2 n -1 (1 n+1 , σ) = (-1 n , 1, σ).
Applying g once more yields

g 2 n (1 n+1 , σ) = (1 n , -1, σ).
Applying the induction hypothesis to the integer

N -2 n = a 0 + 2a 1 + • • • + 2 n-1 a n-1
and to the sequence (-1, σ) yields g N (1 n+1 , σ) = ((-1) a 0 , . . . , (-1) a n-1 , -1, σ), which achieves the proof of the first formula.

In particular, if n 1,

g 2 n-1 (1 n , σ) = (1 n-1 , -1, σ), hence g -2 n-1 (1 n-1 , -1, σ) = (1 n , σ).
The second formula follows.

Introduce Σ n ⊂ {-1, 0, 1} n the subset of n-uples such that each component after a 0 is 0. Define the map g from Σ n to itself as before. Corollary 6. For every n

1 and e = (e 1 , . . . , e n ) ∈ Σ n , there exists an integer M (e) such that the event A e = {(ε 1 , . . . , ε n ) = (e 1 , . . . , e n )} belongs to F 0 T •γ M (e) and τ n = T • γ M (e) on A e .

Proof. Set (e 1 , . . . , e n ) = ((-1) a 0 , . . . , (-1) a d-1 , 0, . . . , 0) with 0 d n and a 0 , . . . , a d-1 ∈ {0, 1}.

If d = n, set M (e) = 2 n-1 -a 0 -• • • -2 n-1 a n-1 .
Then by lemmas 7 and 6, 

A e = {g M (e) • (ε 1 , . . . , ε n ) = (1 n-1 , -1)} = {(ε 1 , . . . , ε n ) • γ M (e) = (1 n-1 , -1)} = {m • ε • γ M (e) = n} = {T • γ M (e) = τ n • γ M (e) < +∞}
A e = {g M (e) • (ε 1 , . . . , ε n ) = (1 d , 0, . . . , 0)} = {(ε 1 , . . . , ε n ) • γ M (e) = (1 d , 0, . . . , 0)} = {m 0 • ε • γ M (e) = d + 1 ; m • ε • γ M (e) = +∞} = {τ d • γ M (e) < +∞ ; T • γ M (e) = τ d+1 • γ M (e) = +∞} Thus A e ∈ F 0 T •γ M (e)
, and

τ n = τ n • γ M (e) = +∞ = T • γ M (e) on A e .
The last corollary and the stability properties given in lemmas 5 and 2 show that if 0 ∈ T Q and T ∈ T Q , then τ n ∈ T Q for all n 0 (recall that τ 0 = 0). This ends the proof of proposition 2.

Proof of the main theorem

Let us now prove theorem 2.

Proof. Call Q the law of M as before. The first step of the proof is the observation that for every integer n 1, T -an ∈ T Q by corollary 3. Hence for all integers m, n 1, T -an ∧ T am ∈ T Q by corollary 2. Lemma 8, which will be stated and proved below, ensures that the ratios a n /(a n + a m ) are not dyadic for arbitrarily large m and n. For such m and n, proposition 1 applies and yields E

Q [X S ]
a n + a m for every finite stopping time S (in the canonical filtration W) such that the stopped process X •∧S is uniformly bounded. Since (a n ) n 1 converges to 0, this proves that E Q [X S ] = 0, hence X is a local martingale under Q.

The next arguments are the same as in [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF] and we now summarize them.

Q-almost surely, the process X admits a quadratic variation X (defined as a limit in probability of sums of squared increments), which is preserved by the reflections ̺ 0 and ̺ Ta n . Consider a regular version of the conditional law of X with respect to X . For any continuous non-decreasing function f : R + → R + such that f (0) = 0, call Q f the law of X conditionally on X = f . Then for almost every f (for the law of X ), the probability Q f is invariant by the reflections ̺ 0 and ̺ Ta n .

By the part of the theorem which is already proven, X is a local martingale under Q f . But X = f almost surely under Q f . Calling φ the rightcontinuous inverse of f , one gets that the process B = (X φ(s) ) 0 s<f (+∞) is a Brownian motion with lifetime f (+∞).

Consider, in some suitable enlargement of the probability space (W, W, Q), a Brownian motion W , independent of X. For almost every f , the Brownian motion W is still independent of X under Q f . Since the local martingale X converges Q-almost surely to a random variable X ∞ on the event { X ∞ < +∞}, one gets a Brownian motion B defined on the whole interval [0, +∞[ and independent of X by setting

B s = X ∞ + W s-X ∞ on the event { X ∞ s}.
Since X t = B X t almost surely for all t 0, this shows that X is an Ocone local martingale under Q.

Assume now that X ∞ is finite with positive probability. Then for some s ∈ R + , X ∞ s with positive probability. But with positive probability, B does not visit a 1 before time s. By independence of B and X ,

Q[T a 1 = +∞] Q[T a 1 • B > s] Q[ X ∞ s] > 0.
This shows that if T a 1 is finite Q-almost surely, then X ∞ is infinite Qalmost surely, hence X is almost surely divergent.

Note that the proof of the last statement (if T a 1 is finite Q-almost surely, then X is almost surely divergent) given in the discrete case by Chaumont and Vostrikova (lemma 2 of [START_REF] Chaumont | Reflection principle and Ocone martingales[END_REF]) is not correct because they prove the implication T a (M ) ∨ T -a (M ) < +∞ a.s. =⇒ T a+2 (M ) ∧ T -a-2 (M ) < +∞ a.s., which is not sufficient to perform an induction. Yet, the same arguments that Chaumont and Vostrikova used to prove their lemma 1 are sufficient to prove their lemma 2. Our lemma 7 generalises these arguments, and the case in which some stopping time T a is infinite is covered by the possibility for the sequence of signs σ ∈ Σ to be eventually 0. where i, j and k are odd positive integers and p, q and r are integers greater or equal to 2. Thus

2 r -k k = c a = b a × c b = 2 p -i i × 2 q -j j , ij(2 r -k) = k(2 p -i)(2 q -j), 2 r ij + 2 q ik + 2 p jk -2 p+q k = 2ijk.
This is a contradiction since the left-hand side is a multiple of 4 whereas the right-hand side is not.

  which proves the second statement.

Lemma 4 .

 4 Let S and T be F 0 -stopping times and w ∈ W. If S(w) T (w), then S(̺ T (w)) = S(w) and

  c} and its expectation (c -2)/2 can be made as large as one wants.The proof of proposition 1 uses an increasing sequence of stopping times defined as follows. Call D the set of c ∈] -a, b[ such that (c + a)/(b + a) is not dyadic. For every x ∈ D, setf (x) = 2x + a if x < (b -a)/2, 2x -b if x > (b -a)/2.This defines a map f from D to D. Conjugating f by the affine map which sends -a on 0 and b on 1 gives the classical map x → 2x mod 1 restricted to the non-dyadic elements of ]0, 1[. By hypothesis, 0 ∈ D, so one can define an infinite sequence (c n ) n 0 of elements of D by c 0 = 0, and c n = f (c n-1 ) for n 1. By definition, c n-1 is the middle point of the subinterval [c n , d n ] of [-a, b], where

  Thus A e ∈ F 0 T •γ M (e) , andτ n = τ n • γ M (e) = T • γ M (e) on A e . If d n -1, set M (e) = -a 0 -• • • -2 d-1 a d-1 .Then by lemmas 7 and 6,

Lemma 8 .

 8 If c > b > a > 0, then at least one of the three following ratios a/(a + b), b/(b + c) and a/(a + c) is not dyadic.Proof. The three ratios above belong to ]0, 1/2[. Assume that they are dyadic.

Acknowledgements The authors thank Loïc Chaumont who aroused our interest in this topic, and the referee for a careful reading and for a simplified proof of lemma 2.