
HAL Id: hal-00722033
https://hal.science/hal-00722033

Submitted on 31 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dedicated language for distributed intelligence based
fuzzy sensors

Eric Benoit, Eric Chotin, Gilles Mauris

To cite this version:
Eric Benoit, Eric Chotin, Gilles Mauris. A dedicated language for distributed intelligence based fuzzy
sensors. IEEE instrumentation & Measurement Technology Conference, May 1998, St Paul, United
States. pp.843-847. �hal-00722033�

https://hal.science/hal-00722033
https://hal.archives-ouvertes.fr

Abstract This paper presents a concept of

distribution of the computational activity over a

networked set of fuzzy sensors. This concept is

based on the separation of the concept of

intelligence and the computational capability. The

PLICAS language specially created to apply this

concept and its fuzzy processing capabilities are

presented. This concept is applied to the fuzzy

descript ion of comfort measurement from

temperature and humidity measurements.

I. INTRODUCTION

Since the eighties, the concept of smart cells

communicating over a field bus network in order to

drive an industrial process has been developed [1][2].

It is commonly admitted that smart cells (i.e. smart

sensors or smart actuators) include functionalities such

as measurement, communication, configuration and

validation [3]. These functionalities are more and more

complex. They now inc lude d iagnosis, auto-

configuration, fuzzy processing, decision making.

Usually, smart sensors include a processing unit whose

computing power is able to perform these software

functions. From our point of view, we consider that the

definit ion of intell igence is independent of the

computing power.

In the proposed approach, smart sensors own the

definition of the software functionalities but are not

always able to execute them locally. Thanks to the

network, these software functionalities are sent to a

smart sensor, to a smart actuator or to a common

resource that has higher computation facilities. Due to

the wide range of possible processing units, the

exchange of software functionalities takes place at the

source level. A dedicated language, called PLICAS,

has been especially developed to design smart

sensors integrating fuzzy functionalities [4][5]. In order

to perform the remote execution of the PLICAS code,

each unit owns a PLICAS compiler with computing

capabilities. The presence of this compiler insures the

interchangeability of smart cells and allows a good

base for interoperability.

II. DISTRIBUTION OF COMPUTATIONAL ACTIVITY

The way we choose to improve the distribution of

computational activity is to implement a compiler into

each smart cell, i.e. sensor or actuator. Each smart cell

possesses a general behavioural description which is a

state machine describing the different functionalities to

be executed by the cell according to the events which

occur. In our approach, the general behavioural

description is coded with a PLICAS language source

code.

Some smart cells do not have enough computational

capabilities to perform their intelligent functionalities,

for example if the cell has a small processor or no

processor at all. In this case, our approach is to let

another cell compile the source code of the small cell.

The smart cell with a small processor has its PLICAS

source code and sends it over the network at the

initialization. Then, a server cell gets the PLICAS code,

performs the compilation and executes it.

For example, imagine a car with an indicator which

performs auto-diagnostic in order to know if its light is

in good or not. If not it can then use the stop light

instead of its own light. The solution we propose for

making that, is to use a processorless indicator with a

network communication interface and a read only

memory which contains the definit ion of these

functionnalities. The indicator can then send definitions

to an other system with processor, like the car radio,

which performs them.

In our approach, we consider that the intelligence of a

smart cell is defined by its general behavioural

description an not by its computational capacity. This

firstly implies that each smart cell owns its general

A Dedicated Language for Distributed Intelligence-Based Fuzzy Sensors

E. Benoit, E. Chotin and G. Mauris
LAMII/CESALP, Université de Savoie

41 Avenue de la Plaine, BP 806,74016 Annecy, France

Ph : +33 450 66 60 44 Fax : +33 450 66 60 63 E-Mail : benoit@univ-savoie.fr WWW: http: //ava.univ-savoie.fr/

behavioural description in a source code, secondly that

at least one cell on the network provides computational

service.

Fig. 1. Example of smart cell without processor

III. FUZZY SENSORS

A. Fundamentals

Fuzzy symbolic sensors are based on the translation of

information from a numerical representation to a

symbolic one. To perform a symbolic measurement, it

is necessary to clearly specify the relation between

symbols and numbers. Let X be the universe of

discourse associated with the measurement of a

particular physical quantity. Denote x any element of X.

In order to symbolically characterize any measurement

over X, let L be a set of words, representative of the

physical phenomenon. For example, the set L={cold,

mild, hot} could be used to represent a temperature.

Denote F(E) the set of the fuzzy subsets of a set E.

Introduce an injective mapping M : L → F(X), called the

fuzzy meaning of a symbol (see Zadeh [6]). It

associates any symbol L of L with a fuzzy subset of X.

The fuzzy meaning of a symbol L is characterized, for

all x ∈ X, by its membership function denoted μM(L) (x).

Fig. 2. Fuzzy meanings of symbols cold, mild and hot

transducers

processorless cell

network interface

functions
ROM

management
unit

FPGA

Network

PLICAS
code

1

0
0 10 20 30 40 50

temperature (oC)

m
e

m
b

e
rs

h
ip

 μ M(cold) M(mild) M(hot)

25

0.625

0.375

Fig. 3. Fuzzy meanings of symbols low, medium and high

Another mapping D : X → F(L), called the fuzzy

description of a measurement over L associates any

measurement of X with a fuzzy subset of symbols of L.

The fuzzy descr ip t ion o f a measurement i s

characterized, for all L ∈ L(X), by its membership

function μD(x) (L). Any measurement that belongs to the

meaning of a symbol, can obviously be symbolically

described at least by this symbol. Therefore, the

description of a measurement is linked to the meaning

of a symbol by the following relation:

 μD(x) (L) = μM(L) (x) (1)

It means that if a symbol belongs to the description of

a measurement at a grade of membership μD(x) (L),

then the measurement belongs to the meaning of the

symbol at the same grade of membership. Let X = [-10,

60] be the universe of discourse for the measurement

of temperatures expressed in Celsius. The fuzzy

meanings of cold, mild, and hot are represented by

the membership functions (plotted Fig. 2.). The fuzzy

description of the measurement x = 25 oC is obtained

according to Eq. (1).

Fig. 4. Fuzzy description of 25 oC

In order to make easier the construction of a partition ,

a fuzzy meaning can be defined relatively to another

0 20 50 60 100

M(low) M(medium) M(high)
1

0

m
e
m

b
e
rs

h
ip

 μ

humidity (%)

1

0

m
e

m
b
e

rs
h
ip

 μ

c
o
ld

m
ild h
o
t

D(25oC)

0.625

0.375

one by the use of linguistic modifiers. For example the

meaning of cold can be defined relatively to the

meaning of mild by the use of the linguistic modifier

"under" which moves down the considered meaning.

And hot can be defined relatively to the meaning of

mild by the use of the linguistic modifier "over" which

moves up the considered meaning.

M(cold) = under(M(mild)) (2)

M(hot) = over(M(mild)) (3)

The aggregation of two measurements can be

performed with a set of rules [7]; such as: "if the

temperature is hot and the humidity is low then

ambiant is uncomfortable". The set of all rules needed

for an aggregation can be represented by a table as

follow.

__

__

IV. THE PLICAS LANGUAGE

PLICAS is a language created to manage the

sequencing of predefined functions. It includes basic

arithmetic and logical functions needed to perform this

sequencing. Specialized functions like FFT or rule

based controller can be added to the language during

a technological configuration. Added functions are then

used as primitive functions of the language. In order to

minimize the size of the compiler code, the language

uses only global variables and does not allow new

function definitions. In its present version the compiler

is 32Kbytes large and can be implemented with small

processors.

A PLICAS source code is partitioned into 3 sections

which are the declaration block, the initialisation block

and the main bloc. In the declarations bloc, types of all

variables used in the program are defined. Specific

types for the management of fuzzy variables and the

management of networked variables are used. At the

TABLE I

TABLE USED FOR THE EXAMPLE OF COMFORT AGGREGATION

T \ H low medium high

hot uncomfortable uncomfortable uncomfortable

mild uncomfortable comfortable uncomfortable

cold uncomfortable uncomfortable uncomfortable

beginning of the execution of a PLICAS code, the

initialisation block is executed one time. Then the main

block is executed periodically.

A. Fuzzy specific types and instructions

The variable type partition is a type of variable which

contains the universe of discourse and a set of symbols

and their fuzzy meanings. If the partition is the

aggregation of 2 other partitions, it contains only a set

of symbols.

A variable of type fuzzy is a fuzzy description, i.e. a set

of symbols and their membership degrees. Before it is

used, it has to be associated with a partition. Indeed,

fuzzy meanings of symbols are included in a partition.

The aim of the function def_partition() is to initialize a

partition with a symbol and its fuzzy meaning and the

universe of d iscourse. The fuzzy meaning is

characterized by 4 parameters. The universe of

discourse is characterized by its lower and upper

bounds.

For example the instruction : def_partition(humidi-

ty,"medium",20,50,60,100,10,100) initializes the

partition humidity with the meaning of the symbol

"medium" and the universe of discourse [10,100].

Meanings of other symbols are defined with the

functions under() and over().

Fig. 5. Meaning of the symbol "medium"

A function fuzz() perform a fuzzy description of a

numeric variable. For example i f T is a fuzzy

description (type fuzzy) , then T=fuzz(25) compute the

result shown in Fig. 4. T is then the fuzzy set {0/cold,

0.375/mild, 0.625/hot}.

B. Network specific types and instructions

0 20 50 60 100

M(medium)
1

0

m
e

m
b
e

rs
h
ip

 μ

humidity (%)

For our applications, we use a network which supports

communica t ion by d i f fus ion . In th i s k ind o f

communication, no recipient information is needed.

Each data packet is identified by a number which

describes the content of the packet. All smart cells

listen the network, and choose to get the packet or not

depending on the identifier. In our applications, we

choose to associate each variable with an identifier.

This identifier is chosen by the compiler.

For variables which have to be imported from or

exported to the network, PLICAS proposes 2 modifier

types: extern and public. The extern modifier indicates

to the compiler that the declared variable will be

received through the network. The public modifier

indicates to the compiler the declared variable will be

sent to the network.

The reception of an extern variable is performed by the

function import(variable). If this variable has not been

received since the beginning of the current cycle, the

function waits for the variable.

The emission of a public variable is performed when

this variable is affected. For example if y is a public

variable, then the instruction "y = 4" sends the variable

y with the value 4 on the network.

Fig. 6. Management of network variables

V. APPLICATION TO THE AGGREGATION OF

INFORMATION TROUGH THE NETWORK

A. Presentation

The application chosen to illustrate the concept of a

weak cell is a description of comfort by aggregation by

means of a set of rules of temperature and humidity

measurements. These values are sent through the

network to a computer which has a PLICAS compiler.

The program needed to compute the fuzzy description

public y;

y=4;

...
extern y;

import(y);

...

...

y (value=4)

of humidity and temperature and also to aggregate by

means of a set of rules, has been sent through the

network by the sensor. The resulting fuzzy description

of comfort is then put back on the network in order to

be used by an actuator or other computers.

Fig. 7. Schema of the application

B. Main program

In the main program, we have the declarations of the

network variables: sync for the synchronization by

another cell or process dedicated to time management

and h and t which are produced by the smart sensor.

We have also the three partitions and three variables

H,T,C for the handling of fuzzy descriptions of

temperature, humidity and comfort.

The main block sequences the general behaviour. The

result shown on the computer screen is for example:

H= 0.2/low, 0.8/medium

T= 0.4/mild, 0.6/hot

C= 0.32/comfortable, 0.68/uncomfortable

Here is the main code:

declarations

extern double sync;

extern double h,t;

public fuzzy Co;

double cpt;

partition humidity,temperature,comfort;

fuzzy H,T,C;

bloc initialisation

...

bloc inference

...

bloc main

import(sync);

PLICAS

INSIDE

t h

PLICAS
CODE

ht
Co

import(h);

H=fuzz(h);

import(t);

T=fuzz(t);

show(H);

show(T);

execute(inference);

show(C);

Co=C;

if sync !=0 then stop(0);

C. Initialization bloc

In the initialization bloc, we find the partition definitions

bloc initialization

def_partition(humidity,"medium",20,50,60,100,

10,100);

under(humidity,"medium","low");

over(humidity,"medium","high");

def_partition(temperature,"mild",14,18,22,30,10,60);

over(temperature,"mild","hot");

under(temperature,"mild","cold");

def_termes(comfort,2,"comfortable",

"uncomfortable");

H in humidity;

T in temperature;

C in comfort;

Co in comfort;

cpt=0;

D. Inference bloc

The PLICAS language is specially designed to allow a

simple coding and inferencing of a set of rules:

bloc inference

if T is "hot" and H is "low"

then C is "uncomfortable";

if T is "hot" and H is "medium"

then C is "uncomfortable";

if T is "hot" and H is "high"

then C is "uncomfortable";

if T is "cold" and H is "low"

then C is "uncomfortable";

if T is "cold" and H is "medium"

then C is "uncomfortable";

if T is "cold" and H is "high"

then C is "uncomfortable";

if T is "mild" and H is "low"

then C is "uncomfortable";

if H is "mild" and T is "mild"

then C is "comfortable";

if T is "mild" and H is "high"

then C is "uncomfortable";

This set of rules is inferred according to Zadeh's

compositional rule of inference using for the fuzzy

intersection operator the product, and for the fuzzy

union operator the bounded sum. If desired, other fuzzy

operators can be selected by the user.

VI. CONCLUSION

In this paper, we have shown that it is possible to

implement complex functionnalities in a smart sensor

or smart actuator even if its computational capacity is

too weak for these functionnalities. This concept can be

an interesting solution for the implementation of smart

functionnalities in processorless sensors. The use of a

un ique language fo r the desc r ip t ion o f the

functionnalities of each smart cell improves the

interchangeability.

REFERENCES

[1] Ren C. Luo, M.H. Lin, R.S. Scherp, “Dynamic multisensor data

fusion system for intelligent robots”, IEEE Journal of robotics

and automation, Vol. 4, No 4, Aug. 1988, pp. 386-396.

[2] Yagsu T.,“Support system to construct distributed

communication networks - Implementation”, Proc. of the 1st

European Congress on Fuzzy and Intelligent Technologies

(EUFIT 93), Aachen, Germany, Sept. 93, pp. 532-536.

[3] M. Staroswiecki, M. Bayart “Models and Languages for the

Interoperability of Smart Instruments“, Proc. of the 2nd IFAC

Symposium on Intelligent Components and Instruments for

Control Applications, SICICA 94, Budapest, Hungary, june 94,

pp 1-12.

[4] Josserand J.F. and Foulloy L., “Fuzzy components network for

intelligent measurement and control”, IEEE trans. on Fuzzy

Systems, Vol 4, No 4, Nov 1996, pp 476-487.

[5] Benoit E., Chotin E., Foulloy L., "Processorless smart sensors

with distributed intelligence", XIV IMEKO world congress, New

measurements chalenges and visions, Tampere-Finland, June

1997,Vol. 5, pp.60-65.

[6] Zadeh L.A., “Quantitative fuzzy semantics”, Information

Sciences, Vol. 3, 1971, pp. 159-176.

[7] Mauris G., Benoit, E. and Foulloy L., "The aggregation of

complementary information via fuzzy sensors" , Measurement,

Vol 17, No 4, 1996, pp. 235-249.

	A Dedicated Language for Distributed Intelligence-Based Fuzzy Sensors
	I. INTRODUCTION
	II. distribution of computational activity
	III. fuzzy sensors
	IV. The plicas language
	V. Application to the aggregation of information trough the network
	VI. CONCLUSION

