
HAL Id: hal-00721985
https://hal.science/hal-00721985

Preprint submitted on 31 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Normal Approximations for Wavelet Coefficients on
Spherical Poisson Fields

Claudio Durastanti, Domenico Marinucci, Giovanni Peccati

To cite this version:
Claudio Durastanti, Domenico Marinucci, Giovanni Peccati. Normal Approximations for Wavelet
Coefficients on Spherical Poisson Fields. 2012. �hal-00721985�

https://hal.science/hal-00721985
https://hal.archives-ouvertes.fr


Normal Approximations for Wavelet Coefficients on

Spherical Poisson Fields

Claudio Durastanti
Department of Mathematics, University of Rome Tor Vergata

Domenico Marinucci∗

Department of Mathematics, University of Rome Tor Vergata

Giovanni Peccati
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Abstract

We compute explicit upper bounds on the distance between the law of a multivari-
ate Gaussian distribution and the joint law of wavelets/needlets coefficients based on
a homogeneous spherical Poisson field. In particular, we develop some results from
Peccati and Zheng (2011), based on Malliavin calculus and Stein’s methods, to assess
the rate of convergence to Gaussianity for a triangular array of needlet coefficients
with growing dimensions. Our results are motivated by astrophysical and cosmolog-
ical applications, in particular related to the search for point sources in Cosmic Rays
data.
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1 Introduction

The aim of this paper is to establish multidimensional normal approximation results for
vectors of random variables having the form of wavelet coefficients integrated with respect
to a Poisson measure on the unit sphere. The specificity of our analysis is that we require
the dimension of such vectors to grow to infinity. Our techniques are based on recently
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obtained bounds for the normal approximation of functionals of general Poisson measures
(see [42, 43]), as well as on the use of the localization properties of wavelets systems on
the sphere (see [35], as well as the recent monograph [30]). A large part of the paper is
devoted to the explicit determination of the above quoted bounds in terms of dimension.

1.1 Motivation and overview

A classical problem in asymptotic statistics is the assessment of the speed of convergence
to Gaussianity (that is, the computation of explicit Berry-Esseen bounds) for parametric
and nonparametric estimation procedures – for recent references connected to the main
topic of the present paper, see for instance [17, 29, 55]. In this area, an important novel
development is given by the derivation of effective Berry-Esseen bounds by means of the
combination of two probabilistic techniques, namely the Malliavin calculus of variations
and the Stein’s method for probabilistic approximations. The monograph [8] is the standard
modern reference for Stein’s method, whereas [38] provides an exhaustive discussion of the
use of Malliavin calculus for proving normal approximation results on a Gaussian space.
The fact that one can use Malliavin calculus to deduce normal approximation bounds (in
total variation) for functionals of Gaussian fields was first exploited in [37] – where one
can find several quantitative versions of the “fourth moment theorem” for chaotic random
variables proved in [39]. Lower bounds can also be computed, entailing that the rates of
convergence provided by these techniques are sharp in many instances – see again [38].

In a recent series of contributions, the interaction between Stein’s method and Malliavin
calculus has been further exploited for dealing with the normal approximation of functionals
of a general Poisson random measure. The most general abstract results appear in [42] (for
one-dimensional normal approximations) and [43] (for normal approximations in arbitrary
dimensions). These findings have recently found a wide range of applications in the field
of stochastic geometry – see [25, 26, 33, 27, 48] for a sample of geometric applications, as
well as the webpage

http://www.iecn.u-nancy.fr/∼nourdin/steinmalliavin.htm

for a constantly updated resource on the subject.

The purpose of this paper is to apply and extend the main findings of [42, 43] in order to
study the multidimensional normal approximation of the elements of the first Wiener chaos
of a given Poisson measure. Our main goal is to deduce bounds that are well-adapted to
deal with applications where the dimension of a given statistic increases with the number of
observations. This is a framework which arises naturally in many relevant fields of modern
statistical analysis; in particular, our principal motivation originates from the implemen-
tation of wavelet systems on the sphere. In these circumstances, when more and more data
become available, a higher number of wavelet coefficients is evaluated, as it is customarily
the case when considering, for instance, thresholding nonparametric estimators. We shall
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hence be concerned with sequences of Poisson fields, whose intensity grows monotonically.
We then exploit the wavelets localization properties to establish bounds that grow linearly
with the number of functionals considered; we are then able to provide explicit recipes, for
instance, for the number of joint testing procedures that can be simultaneously entertained
ensuring that the Gaussian approximation may still be shown to hold, in a suitable sense.

1.2 Main contributions

Consider a sequence {Xi : i ≥ 1} with values in the unit sphere S
2, and define {ψjk}

to be the collection of the spherical needlets associated with a certain constant B > 1,
see Section 3.1 below for more details and discussion. Write also σ2

jk = E[ψjk(X1)
2] and

bjk = E[ψjk(X1)], and consider an independent (possibly inhomogeneous) Poisson process
{Nt : t ≥ 0} on the real line such that E[Nt] = R(t) → ∞, as t → ∞. Formally, our
principal aim is to establish conditions on the sequences {j(n) : n ≥ 1}, {R(n) : n ≥ 1}
and {d(n) : n ≥ 1} ensuring that the distribution of the centered d(n)-dimensional vector

Yn = (Yn,1, ..., Yn,d(n)) (1.1)

=
1√
R(n)



N(n)∑

i=1

ψj(n)k1(Xi)

σj(n)k1
− R(n)bj(n)k1

σj(n)k1
, ...,

N(n)∑

i=1

ψj(n)kd(n)
(Xi)

σj(n)k1
−
R(n)bj(n)kd(n)

σj(n)kd(n)




is asymptotically close, in the sense of some smooth distance denoted d2 (see Definition
2.6), to the law of a d(n)-dimensional Gaussian vector, say Zn, with centered and indepen-
dent components having unit variance. The use of a smooth distance allows one to deduce
minimal conditions for this kind of asymptotic Gaussianity. The crucial point is that we
allow the dimension d(n) to grow to infinity, so that our results require to explicitly assess
the dependence of each bound on the dimension. We shall perform our tasks through
the following main steps: (i) Proposition 4.1 deals with one-dimensional normal approxi-
mations, (ii) Proposition 5.4 deals with normal approximations in a fixed dimension, and
finally (iii) in Theorem 5.5 we deduce a bound that is well-adapted to the case d(n) → ∞.
More precisely, Theorem 5.5 contains an upper bound linear in d(n), that is, an estimate
of the type

d2(Yn, Zn) ≤ C(n)× d(n) . (1.2)

It will be shown in Corollary 5.6, that the sequence C(n) can be chosen to be

O

(
1/
√
R(n)B−2j(n)

)
;

as discussed below in Remark 4.3, R(n) × B−2j(n) can be viewed as a measure of the
“effective sample size” for the components of Yn.
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1.3 About de-Poissonization

Our results can be used in order to deduce the asymptotic normality of de-Poissonized
linear statistics with growing dimension. To illustrate this point, assume that the random
variables Xi are uniformly distributed on the sphere. Then, it is well known that bjk = 0,
whenever j > 1. In this framework, when j(n) > 1 for every n, R(n) = n and d(n)/n1/4 →
0, the conditions implying that Yn is asymptotically close to Gaussian, automatically ensure
that the law of the de-Poissonized vector

Y ′
n = (Y ′

n,1, ..., Y
′
n,d(n)) =

1√
n

(
n∑

k=1

ψj(n)k1(Xi)

σj(n)k1
, ...,

n∑

k=1

ψj(n)kd(n)
(Xi)

σj(n)kd(n)

)
(1.3)

is also asymptotically close to Gaussian. The reason for this phenomenon is nested in the
statement of the forthcoming (elementary) Lemma 1.1.

Lemma 1.1 Assume that R(n) = n, that the Xi’s are uniformly distributed on the sphere,
and that j(n) > 1 for every n. Then, there exists a universal constant M such that, for
every n and every Lipschitz function ϕ : Rd(n) → R, the following estimate holds:

∣∣∣E[ϕ(Y ′
n)]−E[ϕ(Yn)]

∣∣∣ ≤M‖ϕ‖Lip
d(n)

n1/4
.

Proof. Fix l = 1, ..., d(n), and write βl(x) =
ψj(n)kl

(x)

σj(n)kl

, in such a way that E[βl(X1)
2] =

1. One has that

E[(Y ′
n,l − Yn,l)

2] = 2(1− αn),

where

αn =
1

n

n∑

m=0

e−nnm

m!
(n ∧m) = 1− e−nnn

n!
.

This gives the estimate

E[|Y ′
n,l − Yn,l|] ≤

√
E[(Y ′

n,l − Yn,l)2] ≤
√

2
e−nnn

n!
,

so that the conclusion follows from an application of Stirling’s formula and of the Lipschitz
property of ϕ.

Remark 1.2 (i) Lemma 1.1 implies that one can obtain an inequality similar to (1.2)
for Y ′

n, that is:

d2(Y
′
n, Zn) ≤

(
C(n) +

M

n1/4

)
× d(n).
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(ii) With some extra work, one can obtain estimates similar to those in Lemma 1.1 also
when the constants bj(n)kl are possibly different from zero. This point, that requires
some lenghty technical considerations, falls slightly outside the scope of this paper and
will be pursued in full generality elsewhere.

(iii) In [6], Bentkus proved the following (yet unsurpassed) bound. Assume that {Xi : i ≥
1} is a collection of i.i.d. d-dimensional vectors, such that X1 is centered and with
covariance equal to the identity matrix. Set Sn = n−1/2(X1 + · · ·Xn), n ≥ 1 and let
Z be a d-dimensional centered Gaussian vector with i.i.d. components having unit
variance. Then, for every convex set C ⊂ R

d

∣∣∣E[1C(Sn)]− E[1C(Z)]
∣∣∣ ≤ d1/4

400β√
n
,

where β = E[‖X1‖3Rd]. It is unclear whether one can effectively use this bound in
order to investigate the asymptotic Gaussianity of sequences of random vectors of
the type (1.1)–(1.3), in particular because, for a fixed n, the components of Yn, Y

′
n

have in general a non trivial correlation. Note also that a simple application of
Jensen inequality shows that βd1/4n−1/2 ≥ d7/4n−1/2. However, a direct comparison
of Bentkus’ estimates with our “linear” rate in d (see (1.2), as well as Theorem 5.5
below) is unfeasible, due to the differences with our setting, namely concerning the
choice of distance, the structure of the considered covariance matrices, the Poissonized
environment, and the role of Bj(n) discussed in Remark 4.3 .

(iv) A careful inspection of the proofs of our main results reveals that the findings of this
paper have a much more general validity, and in particular can be extended to kernel
estimators on compact spaces satisfying mild concentration and equispacing properties
(see also [20, 21]). In this paper, however, we decided to stick to the presentation
on the sphere for definiteness, and to make the connection with applications clearer.
Some more general frameworks are discussed briefly at the end of Section 5.

(v) For notational simplicity, throughout this paper we will stick to the case where all the
components in our vector statistics are evaluated at the same scale j(n) (see below for
more precise definitions and detailed discussion). The relaxation of this assumption
to cover multiple scales (j1(n), ...jd(n)) does not require any new ideas and is not
considered here for brevity’s sake.

1.4 Plan

The plan of the paper is as follows: in Section 2 we provide some background material on
Stein-Malliavin bounds in the case of Poisson random fields, and we describe a suitable
setting for the current paper, entailing sequences of fields with monotonically increasing
governing measures. We provide also some new results, ensuring that the Central Limit
Theorems we are going to establish are stable, in the classical sense. In Section 3 we recall
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some background material on the construction of tight wavelet systems on the sphere (see
[35, 36] for the original references, as well as [30, Chapter 10]) and we explain how to express
the corresponding wavelet coefficients in terms of stochastic integrals with respect to a
Poisson random measure. We also illustrate shortly some possible statistical applications.
In Section 4 we provide our bounds in the one-dimensional case; these are simple results
which could have been established by many alternative techniques, but still they provide
some interesting insights into the “effective area of influence” of a single component of the
wavelet system. The core of the paper is in Section 5, where the bound is provided in the
multidimensional case, allowing in particular for the number of coefficients to be evaluated
to grow with the number of observations. This result requires a careful evaluation of the
upper bound, which is made possible by the localization properties in real space of the
wavelet construction.

2 Poisson Random Measures and Stein-Malliavin

Bounds

In order to study the asymptotic behaviour of linear functionals of Poisson measures on
the sphere S

2, we start by recalling the definition of a Poisson random measure – for more
details, see for instance [41, 47, 50]. We work on a probability space (Ω,F , P ).

Definition 2.1 Let (Θ,A, µ) be a σ-finite measure space, and assume that µ has no atoms
(that is, µ({x}) = 0, for every x ∈ Θ). A collection of random variables {N (A) : A ∈ A} ,
taking values in Z+∪{+∞} , is called a Poisson random measure (PRM) on Θ with
intensity measure (or control measure) µ if the following two properties hold:

1. For every A ∈ A, N (A) has Poisson distribution with mean µ (A);

2. If A1, . . . An ∈ A are pairwise disjoint, then N (A1) , . . . , N (An) are independent.

Remark 2.2 (i) In Definition 2.1, a Poisson random variable with parameter λ = ∞
is implicitly set to be equal to ∞.

(ii) Points 1 and 2 in Definition 2.1 imply that, for every ω ∈ Ω, the mapping A 7→
N (A, ω) is a measure on Θ. Moreover, since µ is non atomic, one has that

P
[
N({x}) = 0 or 1, ∀x ∈ Θ

]
= 1. (2.4)

Assumption 2.3 Our framework for the rest of the paper will be the following special case
of Definition 2.1:

(a) We take Θ = R+ × S
2, with A = B(Θ), the class of Borel subsets of Θ.
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(b) The symbol N indicates a Poisson random measure on Θ, with homogeneous intensity
given by µ = ρ × ν, where ρ is some measure on R+ and ν is a probability on S

2 of
the form ν(dx) = f(x)dx, where f is a density on the sphere. We shall assume that
ρ({0}) = 0 and that the mapping ρ 7→ ρ([0, t]) is strictly increasing and diverging to
infinity as t→ ∞. We also adopt the notation

Rt := ρ([0, t]), t ≥ 0, (2.5)

that is, t 7→ Rt is the distribution function of ρ.

Remark 2.4

(i) For a fixed t > 0, the mapping

A 7→ Nt(A) := N([0, t]× A) (2.6)

defines a Poisson random measure on S
2, with non-atomic intensity

µt(dx) = Rt · ν(dx) = Rt · f(x)dx. (2.7)

Throughout this paper, we shall assume f(x) to be bounded and bounded away from
zero, e.g.

ζ1 ≤ f(x) ≤ ζ2 , some ζ1, ζ2 > 0 , for all x ∈ S
2 . (2.8)

(ii) Let {Xi = i ≥ 1} be a sequence of i.i.d. random variables with values in S
2 and

common distribution equal to ν. Then, for a fixed t > 0, the random measure
A 7→ Nt(A) = N([0, t] × A) has the same distribution as A 7→ ∑N

i=1 δXi
(A), were

δx indicates a Dirac mass at x, and N is an independent Poisson random variable
with parameter Rt. This holds because: (a) since ν is a probability measure, the
support of the random measure Nt (written supp(Nt)) is almost surely a finite set,
and (b) conditionally on the event {Nt(S

2) = n} (which is the same as the event
{ |supp(Nt)| = n} – recall (2.4)), the points in the support of Nt are distributed as n
i.i.d. random variables with common distribution ν.

(iii) By definition, for every t1 < t2 one has that a random variable of the type Nt2(A)−
Nt1(A), A ⊂ S

2, is independent of the random measure Nt1 , as defined in (2.6).

(iv) To simplify the discussion, one can assume that ρ(ds) = R · ℓ(ds), where ℓ is the
Lebesgue measure and R > 0, in such a way that Rt = R · t.

We will now introduce two distances between laws of random variables taking values
in R

d. Both distances define topologies, over the class of probability distributions on R
d,

that are strictly stronger than convergence in law. One should observe that, in this paper,
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the first one (Wasserstein distance) will be only used for random elements with values in
R. Given a function g ∈ C1(Rd), we write ‖g‖Lip = sup

x∈Rd

‖∇g(x)‖Rd. If g ∈ C2(Rd), we set

M2(g) = sup
x∈Rd

‖Hess g(x)‖op,

where ‖ · ‖op indicates the operator norm.

Definition 2.5 The Wasserstein distance dW , between the laws of two random vectors
X, Y with values in R

d (d ≥ 1) and such that E ‖X‖
Rd , E ‖Y ‖

Rd <∞, is given by:

dW (X, Y ) = sup
g:‖g‖Lip≤1

|E [g (X)]−E [g (Y )]| ,

Definition 2.6 The distance d2 between the laws of two random vectors X, Y with values
in R

d (d ≥ 1), such that E ‖X‖
Rd , E ‖Y ‖

Rd <∞, is given by:

d2 (X, Y ) = sup
g∈H

|E [g (X)]−E [g (Y )]| ,

where H denotes the collection of all functions g ∈ C2
(
R
d
)
such that ‖g‖Lip ≤ 1 and

M2(g) ≤ 1.

We now present, in a form adapted to our goals, two upper bounds involving random
variables living in the so-called first Wiener chaos of N . The first bound was proved in
[42], and concerns normal approximations in dimension 1 with respect to the Wasserstein
distance. The second bound appears in [43], and provides estimates for multidimensional
normal approximations with respect to the distance d2. Both bounds are obtained by
means of a combination of the Malliavin calculus of variations and the Stein’s method for
probabilistic approximations.

Remark 2.7 (i) Let f ∈ L2(Θ, µ)∩L1(Θ, µ). In what follows, we shall use the symbols
N(f) and N̂(f), respectively, to denote the Wiener-Itô integrals of f with respect to
N and with respect to the compensated Poisson measure

N̂(A) = N(A)− µ(A), A ∈ B(Θ), (2.9)

where one uses the convention N(A) − µ(A) = ∞ whenever µ(A) = ∞ (recall that
µ is σ-finite). Note that, for N(f) to be well-defined, one needs that f ∈ L1(Θ, µ),
whereas for N̂(f) to be well-defined one needs that f ∈ L2(Θ, µ). We will also make
use of the following isometric property: for every f, g ∈L2(Θ, µ),

E[N̂(f)N̂(g)] =

∫

Θ

f(x)g(x)µ(dx). (2.10)

The reader is referred e.g. to [41, Chapter 5] for an introduction to Wiener-Itô
integrals.
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(ii) For most of this paper, we shall consider Wiener-Itô integrals of functions f having
the form f = [0, t]× h, where t > 0 and h ∈ L2(S2, ν) ∩ L1(S2, ν). For a function f
of this type one simply writes

N(f) = N([0, t]× h) := Nt(h), and N̂(f) = N̂([0, t]× h) := N̂t(h). (2.11)

Observe that this notation is consistent with the one introduced in (2.6). Indeed, it
is easily seen that Nt(h) (resp. N̂t(h)) coincide with the Wiener-Itô integral of h
with respect to Nt (resp. with respect to the compensated measure N̂t = Nt − µt =
Nt −Rt · ν).

(iii) In view of Remark 2.4-(ii), one also has that, for h ∈ L2(S2, ν) ∩ L1(S2, ν),

Nt(h) =
∑

x∈supp(Nt)

h(x), and N̂t(h) =
∑

x∈supp(Nt)

h(x)−
∫

S2

h(x)µt(dx), (2.12)

with µt defined as in (2.7).

Theorem 2.8 Let the notation and assumptions of this section prevail.

1. Let h ∈ L2(S2, ν) := L2(ν), let Z ∼ N (0, 1) and fix t > 0. Then, the following bound
holds (remember the definition (2.7)):

dW (N̂t(h), Z) ≤
∣∣∣1− ‖h‖2L2(S2,µt)

∣∣∣+
∫

S2

|h(z)|3µt(dz). (2.13)

As a consequence, if {ht} ⊂ L2(ν) ∩ L3(ν) is a collection of kernels verifying, as
t→ ∞,

‖ht‖L2(S2,µt) → 1 and ‖ht‖L3(S2,µt) → 0, (2.14)

one has the CLT

N̂(ht)
Law−→ Z, (2.15)

and the inequality (2.13) provides an explicit upper bound in the Wasserstein distance.

2. For a fixed integer d ≥ 1, let Y ∼ Nd (0, C), with C positive definite and let

Ft = (Ft,1, . . . , Ft,d) =
(
N̂t (ht,1) , . . . N̂t (ht,d)

)

be a collection of d-dimensional random vectors such that ht,a ∈ L2(ν). If we call Γt
the covariance matrix of Ft, that is,

Γt (a, b) = E
[
N̂t (ht,a) N̂t (ht,b)

]
= 〈ht,a, ht,b〉L2(S2,µt)

, a, b = 1, ..., d,
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then:

d2 (Ft, Y ) ≤
∥∥C−1

∥∥
op
‖C‖ 1

2
op ‖C − Γt‖H.S. (2.16)

+

√
2π

8

∥∥C−1
∥∥ 3

2

op
‖C‖op

d∑

i,j,k=1

∫

S2

|ht,i (x)| |ht,j (x)| |ht,k (x)|µt (dx) ,

≤
∥∥C−1

∥∥
op
‖C‖ 1

2
op ‖C − Γt‖H.S. (2.17)

+
d2
√
2π

8

∥∥C−1
∥∥ 3

2

op
‖C‖op

d∑

i=1

∫

S2

|ht,i (x)|3 µt (dx) ,

where ‖ · ‖op and ‖ · ‖H.S. stand, respectively, for the operator and Hilbert-Schmidt
norms. In particular, if Γt (a, b) −→ C (a, b) and

∫
S2
|ht,a (x)|3 µt (dx) −→ 0 as t −→

∞, for a, b = 1, . . . d, then d2 (Ft, Y ) −→ 0 and Ft converges in distribution to Y .

Remark 2.9 The estimate (2.16) will be used to deduce one of the main multidimensional
bounds in the present paper. It is a direct consequence of Theorem 3.3 in [43], where the
following relation is proved: for every vector (F1, ..., Fd) of sufficiently regular centered
functionals of N̂t,

d2(F,X) ≤
∥∥C−1

∥∥
op
‖C‖1/2op

√√√√
d∑

i,j

E

[
C(i, j)− 〈DFi,−DL−1Fj〉L2(µt)

]2

+

√
2π

8

∥∥C−1
∥∥3/2
op

‖C‖op
∫

S2

µt(dz)E



(

d∑

i=1

|DzFi|
)2( d∑

j=1

∣∣DzL
−1Fj

∣∣
)
 ,

where

DzF (ω) = Fz(ω)− F (ω) , a.e.− µ(dz)P (dω) ,

and

Fz(N) = Fz(N + δz),

that is, the random variable Fz is obtained by adding to the argument of F (which is a
function of the point measure N), a Dirac mass at z, and L−1 is the so-called pseudo-inverse
of the Ornstein-Uhlenbeck operator. The estimate (2.16) is then obtained by observing that,
when Fi = Ft,i = N̂t(ht,i), then DzFi = −DzL

−1F = ht,i(z), in such a way that

√√√√
d∑

i,j

E

[
C(i, j)− 〈DFi,−DL−1Fj〉L2(µ)

]2
= ‖C −Kt‖H.S. ,
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and

∫

S2

µt(dz)E



(

d∑

i=1

|DzFi|
)2( d∑

j=1

∣∣DzL
−1Fj

∣∣
)


=
d∑

i,j,k=1

∫

S2

|ht,i (x)| |ht,j (x)| |ht,k (x)|µt (dx) .

The next statement deals with the interesting fact that the convergence in law implied
by Theorem 2.8 is indeed stable, as defined e.g. in the classic reference [19, Chapter 4].

Proposition 2.10 The central limit theorem described at the end of Point 2 of Theorem
2.8 (and a fortiori the CLT at Point 1 of the same theorem) is stable with respect to σ(N)
(the σ-field generated by N) in the following sense: for every random variable X that is
σ(N)-measurable, one has that

(X,Ft)
Law−→ (X, Y ),

where Y ∼ Nd(0, C) is independent of N .

Proof. We just deal with the case d = 1, the extension to a general d following
from elementary considerations. A density argument shows that it is enough to prove the
following claim: if N̂(hn) (hn ∈ L2(µ), n ≥ 1) is a sequence of random variables verifying
E[N̂(hn)

2] = ‖hn‖2L2(µ) → 1 and
∫
Θ
|hn|3dµ → 0, then for every fixed f ∈ L2(µ), the pair

(N̂(f), N̂(hn)) converges in distribution, as n → ∞, to (N̂(f), Z), where Z ∼ N (0, 1) is
independent of N . To see this, we start with the explicit formula (see e.g. [41, formula
(5.3.31)]): for every λ, γ ∈ R

ψn(λ, γ) := E[exp(iλN̂(f) + γN̂(hn))]

= exp

[∫

Θ

[
eiλf(x)+iγhn(x)−1−i(λf(x) + γhn(x))

]
µ(dx)

]
.

Our aim is to prove that, under the stated assumptions,

lim
n→∞

log(ψn(λ, γ)) =

∫

Θ

[
eiλf(x) − 1− iλf(x)

]
µ(dx)− γ2

2
.

Standard computations show that
∣∣∣ log(ψn(λ, γ))−

{∫

Θ

[
eiλf(x) − 1− iλf(x)

]
µ(dx)− γ2

2

}∣∣∣

≤
∣∣∣γ

2

2
− γ2

2

∫

Θ

hn(x)
2µ(dx)

∣∣∣+ |γλ| |〈hn, f〉L2(µ)|+
|γ|3
6

∫

Θ

|hn(x)|3µ(dx) .

Since
∫
Θ
|hn(x)|3µ(dx) → 0 and the mapping n 7→ ‖hn‖2L2(µ) is bounded, one has that

〈hn, f〉L2(µ) → 0, and the conclusion follows by using the fact that ‖hn‖2L2(µ) → 1 by
assumption.
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3 Needlet coefficients

3.1 Background: the needlet construction

We now provide an overview of the construction of the set of needlets on the unit sphere.
The reader is referred to [30, Chapter 10] for an introduction to this topic. Relevant
references on this subject are: the seminal papers [35, 36], where needlets have been
first defined; [13, 14, 12, 15], among others, for generalizations to homogeneous spaces of
compact groups and spin fiber bundles; [3, 4, 28, 32] for the analysis of needlets on spherical
Gaussian fields, and [31, 46, 9, 11] for some (among many) applications to cosmological and
astrophysical issues; see also [34, 49] for other approaches to spherical wavelets construction.

(Spherical harmonics) In Fourier analysis, the set of spherical harmonics

{Ylm : l ≥ 0, m = −l, ..., l}

provides an orthonormal basis for the space of square-integrable functions on the unit
sphere L2 (S2, dx) := L2 (S2), where dx stands for the Lebesgue measure on S

2 (see for
instance [2, 23, 30, 51]). Spherical harmonics are defined as the eigenfunctions of the
spherical Laplacian ∆S2 corresponding to eigenvalues −l (l + 1), e.g. ∆S2Ylm = −l(l +
1)Ylm, see again [30, 51, 54] for analytic expressions and more details and properties. For
every l ≥ 0, we define Kl as the linear space given by the restriction to the sphere of the
polynomials with degree at most l. Plainly, one has that

Kl =
l⊕

k=0

span {Ykm : m = −k, ..., k} ,

where the direct sum is in the sense of L2 (S2).

(Cubature points) It is well-known that for every integer l = 1, 2, ... there exists a finite set
of cubature points Ql ⊂ S

2, as well as a collection of weights {λη}, indexed by the elements
of Ql, such that

∀f ∈ Kl,

∫

S2

f(x)dx =
∑

η∈Ql

ληf(η).

Now fix B > 1, and write [x] to indicate the integer part of a given real x. In what follows,
we shall denote by Xj = {ξjk} and {λjk}, respectively, the set Q[2Bj+1] and the associated
class of weights. We also write Kj = card{Xj}. As proved in [35, 36], cubature points and
weights can be chosen to satisfy

λjk ≈ B−2j , Kj ≈ B2j , (3.18)

where by a ≈ b, we mean that there exists c1, c2 > 0 such that c1a ≤ b ≤ c2a (see also e.g.
[5, 44, 45] and [30, Chapter 10]).
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(Spherical needlets) Fix B > 1 as before, as well as a real-valued mapping b on (0,∞).
We assume that b verifies the following properties: (i) the function b (·) has compact
support in [B−1, B] (in such a way that the mapping l 7→ b

(
l
Bj

)
has compact support in

l ∈ [Bj−1, Bj+1]) (ii) for every ξ ≥ 1,
∑∞

j=0 b
2(ξB−j) = 1 (partition of unit property), and

(iii) b (·) ∈ C∞ (0,∞). The collection of spherical needlets {ψjk}, associated with B and
b(·), are then defined as a weighted convolution of the projection operator Ll(〈x, y〉) =∑l

m=−l Y lm (x) Ylm (y), that is

ψjk (x) :=
√
λjk
∑

l

b

(
l

Bj

)
Ll(〈x, ξjk〉) , (3.19)

(Localization) The properties of b entail the following quasi-exponential localization prop-
erty (see [35] or [30, Section 13.3]): for any τ = 1, 2, ... there exists κτ > 0 such that for
any x ∈ S

2,

|ψjk(x)| ≤
κτB

j

(1 +Bj arccos (〈x, ξjk〉))τ
, (3.20)

where d(x, y) := arccos (〈x, y〉) is the spherical distance. From localization, the following
bound can be established on the Lp (S

2) norms: for all 1 ≤ p ≤ +∞, there exist two
positive constants qp and q

′
p such that

qpB
j(1− 2

p) ≤ ‖ψjk‖Lp(S2)
≤ q′pB

j(1− 2
p). (3.21)

(Needlets as frames) Finally, the fact that b is a partition of unit, allows on to deduce the
following reconstruction formula (see again [35]): for f ∈ L2 (S2):

f(x) =
∑

j,k

βjkψjk(x) ,

where the convergence of the series is in L2(S2), and

βjk := 〈f, ψjk〉L2(S2)
=

∫

S2

f (x)ψjk (x) dx , (3.22)

represents the so-called needlet coefficient of index j, k.

3.2 Two motivations: density estimates and point sources

The principal aim of this paper is to establish multidimensional asymptotic results for some
possibly randomized version of random variables of the type

β̂jk = β̂
(n)
jk =

1

n

n∑

i=1

ψjk (Xi) , j = 1, 2, ..., k = 1, ..., Kj, (3.23)

13



where the function ψjk is defined according to (3.19), and {Xi : i ≥ 1} is some adequate
sequence of i.i.d. random variables. We may also study the asymptotic behaviour, as

t→ ∞, of multi-dimensional object of the type
{
β̂jk, k = 1, 2, ..., Kj(t)

}
, where t 7→ Kj(t)

is a non-decreasing mapping possibly diverging to infinity, and j may change with t. In
other words, as happens in realistic experimental circumstances, we may decide to focus on
a growing number of coefficients as the number of (expected) events increase. Two strong
motivations for this analysis, both coming from statistical applications, are detailed below.

(Density estimates) Consider a density function f on the sphere S
2, that is: f is a

mapping from S
2 into R+, verifying

∫
S2
f(x)dx = 1, where dx indicates the Lebesgue

measure on S
2. Let {Xi : i = 1, ..., n} be a collection of i.i.d. observations with values in

S
2 with common distribution given by f(x)dx. A classical statistical problem, considered

for instance by [5, 22, 24], concerns the estimation of f by wavelets/needlets thresholding
techniques. To this aim, keeping in mind the notation (3.23), one uses ([10], [16]) the
following estimator of f :

f̂(x) =
∑

jk

β̂Hjkψjk (x) , β̂Hjk := β̂jkI{|β̂jk|≥ctn},

where tn =
√
log n/n and c is a constant to be determined. Finite-sample approximations

on the distributions of β̂jk can then be instrumental for the exact determination of the
thresholding value ctn, see e.g. [10, 16].

(Searching for point sources) The joint distribution of the coefficients {β̂jk} (as defined
in (3.23)) is required in statistical procedures devised for the research of so-called point
sources, again for instance in an astrophysical context (see for instance [53]). The physical
issue can be formalized as follows:

– Under the null hypothesis, we are observing a background of cosmic rays governed
by a Poisson measure on the sphere S2, with the form of the measure Nt(·) defined in
(2.6) for some t > 0. In particular, Nt is built from a measure N verifying Assumption
(2.3), and the intensity of µt(dx) = E[Nt(dx)] is given by the absolutely continuous
measure Rt · f(x)dx, where Rt > 0 and f is a density on the sphere. This situation
corresponds, for instance, to the presence of a diffuse background of cosmological
emissions.

– Under the alternative hypothesis, the background of cosmic rays is generated by a
Poisson point measure of the type:

N∗
t (A) = Nt(A) +

P∑

p=1

N
(p)
t

∫

A

δξp(x)dx ,

where {ξ1, ..., ξP} ⊂ S
2, each mapping t 7→ N

(p)
t is an independent Poisson process

over [0,∞) with intensity λp, and
{∫

A

δξp(x)dx = 1

}
⇐⇒ {ξp ∈ A} .
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In this case, one has that N∗
t is a Poisson measure with atomic intensity

µ∗
t (A) := E[N∗

t (A)] = Rt

∫

A

f(x)dx+

P∑

p=1

λpt ·
∫

A

δξp(x)dx .

In this context, the informal expression “searching for point sources” can then be trans-
lated into “testing for P = 0” or “jointly testing for λp > 0 at p = 1, ..., P”. The number
P and the locations {ξ1, ...ξP} can be in general known or unknown. We refer to [18, 52]
for astrophysical applications of these ideas.

Remark 3.1 In order to directly apply the findings of [42, 43], in what follows we shall
focus on a randomized version of (3.23), where n is replaced by an independent Poisson
number whose parameter diverges to infinity. Also, we will prefer a deterministic normal-
ization over a random one. As formally shown in the discussion to follow, the resulting
randomized coefficients can be neatly put into the framework of Section 2.

3.3 Needlet coefficients as Wiener-Itô integrals

Let N be a Poisson measure on R+ × S
2 satisfying the requirements of Assumption 2.3

(in particular, the intensity of N has the form ρ × ν, where ν(dx) = f(x)dx, for some
probability density f on the sphere, and one writes Rt = ρ([0, t]), t > 0). For every
t > 0, let the Poisson measure Nt on S

2 be defined as in (2.6). For every j ≥ 1 and every
k = 1, ..., Nj, consider the function ψjk defined in (3.19), and observe that ψjk is trivially
an element of L3(S2, ν) ∩ L2(S2, ν) ∩ L1(S2, ν). We write

σ2
jk :=

∫

S2

ψ2
jk (x) f(x)dx , bjk :=

∫

S2

ψjk (x) f(x)dx .

Observe that, if f(x) = 1
4π

(that is, the uniform density on the sphere), then bjk = 0 for
every j > 1. On the other hand, under (2.8),

ζ1 ‖ψjk (.)‖2L2 ≤ σ2
jk ≤ ζ2 ‖ψjk (.)‖2L2 . (3.24)

Note that (see 3.21) the L2-norm of {ψjk} is uniformly bounded above and below, and
therefore the same is true for

{
σ2
jk

}
(indeed, there exists κ > 0, independent of j and k,

such that 0 < κ < ‖ψjk‖2L2(S2) < 1). For every t > 0 and every j, k, we introduce the kernel

h
(Rt)
jk (x) =

ψjk (x)√
Rtσjk

, x ∈ S
2 , (3.25)

and write

β̃
(Rt)
jk := N̂t

(
h
(Rt)
jk

)
=

∫

S2

h
(Rt)
jk (x) N̂t (dx) =

∑

x∈supp(Nt)

h
(Rt)
jk (x)−Rt ·

∫

S2

h
(Rt)
jk (x)ν(dx) , (3.26)
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In view of Remark 2.4-(ii), the random variable β̃
(Rt)
jk can always be represented in the form

β̃
(Rt)
jk =

(∑Nt(S2)
i=1 ψjk (Xi)−Rtbjk

)

√
Rtσjk

,

where {Xi : i ≥ 1} is a sequence of i.i.d. random variables with common distribution ν,
and independent of the Poisson random variable N̂t(S

2). Moreover, the following relations
are immediately checked:

Eβ̃
(Rt)
jk = 0, E[(β̃

(Rt)
jk )2] = 1 . (3.27)

Remark 3.2 Using the notation (3.23), we have that

β̃
(Rt)
jk =

(
Nt(S

2)× β̂
(Nt(S2))
jk − Rtbjk

)

√
Rtσjk

.

4 Bounds in dimension one

We are now going to apply the content of Theorem 2.8-(1) to the random variables β̃
(Rt)
jk

introduced in the previous section. In the next statement, we write Z ∼ N (0, 1) to indicate
a centered Gaussian random variable with unit variance. Recall that ζ2 := supx∈S2 |f (x)|,
p ≥ 1, and that the constants qp, q

′
p have been defined in (3.21).

Proposition 4.1 For every j, k and every t > 0, one has that

dW

(
β̃
(Rt)
jk , Z

)
≤ (q′3)

3ζ2B
j

√
Rtσ3

jk

.

It follows that for any sequence (j(n), k(n), t(n)), β̃
(Rt(n))
j(n)k(n) converges in distribution to Z,

as n → ∞, provided B2j(n) = o(Rt(n)). The convergence is σ(N)-stable, in the sense of
Proposition 2.10.

Proof. Using (3.25)–(3.26) together with (2.17) and (2.8),

dW

(
β̃
(Rt)
jk , Z

)
≤

∫

S2

∣∣∣h(Rt)
jk (x)

∣∣∣
3

µt (dx)

=
Rt√
R3
tσ

3
jk

∫

S2

|ψjk (x)|3 f (x) dx ≤ ζ2√
Rtσ

3
jk

‖ψjk‖3L3(S2)

≤ (q′3)
3ζ2B

j

√
Rtσ3

jk

,

where in the last inequality we use the property (3.21) with p = 3 to have:

‖ψjk‖3L3(S2) ≤ (q′3)
3B3j(1− 2

3) = (q′3)
3Bj .
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The last part of the statement follows from the fact that the topology induced by the
Wasserstein distance (on the class of probability distributions on the real line) is strictly
stronger than the topology of convergence in law.

Remark 4.2 For f(x) ≡ {4π}−1 we have

σ2
jk =

1

4π

∫

S2

ψ2
jk (x) dx = ‖ψjk‖2L2(S2) ,

and more generally, under (2.8),

dW

(
β̃
(Rt)
jk , Z

)
≤ Bj

√
Rt

(q′3)
3ζ2

ζ
3/2
1 ‖ψjk‖3/2L2(S2)

:= γ(j, k, t) . (4.28)

Remark 4.3 The previous result can be given the following heuristic interpretation. The
factor B−j can be viewed as the “effective scale” of the wavelet, i.e. it is the radius of
the region centred at ξjk where the value of the wavelet function is not negligible. Because
needlets are isotropic, the “effective area” is of order B−2j . For governing measures with
density which is bounded and bounded away from zero, the expected number of observations
on a spherical cap of radius B−j around ξjk is hence given by

E
[
card

{
Xi : d(Xi, ξjk) ≤ B−j

}]
≃ Rt

∫

d(x,ξjk)≤B−j

f(x)dx ,

ζ1B
−2jRt ≤ Rt

∫

d(x,ξjk)≤B−j

f(x)dx ≤ ζ2B
−2jRt ,

using [4, equation (8)]. Because the Central Limit Theorem can hold only when the effective
number of observations grows to infinity, the condition B−2jRt → ∞ is quite expected. In
the thresholding literature, coefficients are usually considered up to the frequency JR such
that B2JR ≃ Rt/ logRt, see for instance [16] and [5]; under these circumstances, we have

d2

(
β̃
(Rt)
JRk

, Z
)
= O

(
1√

logRt

)
−→ 0 for Rt −→ +∞ .

Therefore β̃
(Rt)
JRk

does converge in law to Z.

5 Multidimensional bounds

We are now going to apply Part 2 of Theorem (2.8) to the computation of multidimensional
Berry-Esseen bounds involving vectors of needlet coefficients of the type (3.26). After
having proved some technical estimates in Section 5.1, we will consider two bounds. One
is proved in Section 5.2 by means of (2.17), and it is well adapted to the case where the
number of needlet coefficients, say d, is fixed. In Section 5.3, we shall focus on (2.16), and
deduce a bound which is adapted to the case where the number d is possibly growing to
infinity.
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5.1 A technical result

The following estimate, allowing one to bound the covariance between any two needlet
coefficients, will be used throughout this section. We let the notation and assumptions of
the previous section prevail.

Lemma 5.1 For any j ≥ 1 and k1 6= k2 ≤ Kj = card{Xj} and every τ > 0, there exists

a constant C̃τ > 0, solely depending on τ, and such that

∣∣ΓRt
(k1, k2)

∣∣ :=
∣∣Eβ̃(Rt)

jk1
β̃
(Rt)
jk2

∣∣ ≤ C̃τζ2
σjk1σjk2 (1 +Bjd (ξjk1, ξjk2))

τ .

Proof. We focus on τ > 2; note that the inequality for any fixed value of τ immediately
implies the result for all τ ′ < τ. For k1 6= k2 we have:

|ΓRt
(k1, k2)| =

∣∣∣∣
1

Rtσjk1σjk2

∫

S2

ψjk1 (x)ψjk2 (x)µt(dx)

∣∣∣∣

=
Rt

Rtσjk1σjk2

∣∣∣∣
∫

S2

ψjk1 (x)ψjk2 (x) f(x)dx

∣∣∣∣

≤ ζ2
σjk1σjk2

∫

S2

|ψjk1 (x)| |ψjk2 (x)| dx.

Now we can use a classical argument ([35],[36][4]) to show that, for any τ > 2, there exists
Cτ > 0 such that:

〈|ψjk1|, |ψjk2|〉L2(S2) =

∫

S2

|ψjk1 (x) ||ψjk2| (x) dx

≤ κτB
2j

∫

S2

1

(1 +Bjd (x, ξjk1))
τ

1

(1 +Bjd (x, ξjk2))
τ dx .

In order to evaluate this integral, we can for instance follow ([35]), by splitting the sphere
S
2 into two regions:

S1 =
{
x ∈ S

2 : d (x, ξjk1) > d (ξjk1, ξjk2) /2
}

S2 =
{
x ∈ S

2 : d (x, ξjk2) > d (ξjk1, ξjk2) /2
}
.

For what concerns the integral on S1, we obtain:
∫

S1

1

(1 +Bjd (x, ξjk1))
τ

1

(1 +Bjd (x, ξjk2))
τ dx ≤ 2τ

(1 +Bjd (ξjk1, ξjk2))
τ

∫

S1

dx

(1 +Bjd (x, ξjk2))
τ .

One also has that∫

S1

dx

(1 +Bjd (x, ξjk2))
τ ≤

∫

S2

dx

(1 +Bjd (x, ξjk2))
τ = 2π

∫ π

0

sinϑ

(1 +Bjϑ)τ
dϑ ≤

≤ 2π

B2j

∫ ∞

0

y

(1 + y)τ
dy ≤ 2π

B2j

[∫ 1

0

ydy +

∫ ∞

1

y1−τdy

]
≤

≤ 2πC

B2j
.
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Because calculations on the region S2 are exactly the same and because S
2 ⊂ S1 ∪ S2, we

have that, for some constant C̃τ depending on τ ,

〈|ψjk1|, |ψjk2|〉L2(S2) ≤
C̃τ

(1 +Bjd (ξjk1, ξjk2))
τ ,

yielding the desired conclusion.

Remark 5.2 Assuming that d (ξjk1, ξjk2) > δ uniformly for all j, we have immediately

∣∣Eβ̃(Rt)
jk1

β̃
(Rt)
jk2

∣∣ ≤ κ′τ,ζ2 × B−jτ ,

where the constant κ′τ,ζ2 only depend on τ, ζ2.

Remark 5.3 The previous Lemma provides a tight bound, of some independent interest,
on the high frequency behaviour of covariances among wavelet coefficients for Poisson ran-
dom fields. For Gaussian isotropic random fields, analogous results were provided by [3],
in the case of standard needlets (bounded support), and by [28]–[32], in the “Mexican” case
where support may be unbounded in multipole space. It should be noted how asymptotic un-
correlation holds in much greater generality for Poisson random fields than for Gaussian
field: indeed in the latter case a regular variation condition had to be imposed on the tail
behaviour of the angular power spectrum, and in the Mexican case this condition had to be
strengthened imposing an upper bound on the decay of the spectrum itself. The reason for
such discrepancy is easily understood: for Poisson random fields, non overlapping regions
are independent, whence (heuristically) localization in pixel space is sufficient to ensure
asymptotic uncorrelation; on the contrary, in the Gaussian isotropic case different regions
of the field are correlated at any angular distance, and asymptotic uncorrelation for the
coefficients requires a much more delicate cancellation argument.

5.2 Fixed dimension

Fix d ≥ 2 and j ≥ 1, consider a fixed number of sampling points {ξjk1, ..., ξjkd}, and define
the associated d-dimensional vector

β̃
(Rt)
j· :=

(
β̃
(Rt)
jk1

, ..., β̃
(Rt)
jkd

)
,

whose covariance matrix will be denoted by Γt (note that, by construction, Γt(i, i) = 1 for
every i = 1, ..., d). Our aim is to apply the rough bound (2.17) in order to estimate the

distance between the law of β̃
(Rt)
j· and the law of a random Gaussian vector Z ∼ Nd(0, Id),

where C = Id stands for the identity d×d matrix. Using Lemma 5.1, one has the following
basic estimates:
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∥∥C−1
∥∥
op

= ‖C‖ 1
2
op = 1 ,

‖C − Γt‖H.S. ≤

√√√√
d∑

k1 6=k2=1

{
E
[
β̃
(Rt)
jk1

β̃
(Rt)
jk2

]}2

≤ d sup
k1 6=k2=1,...,d

1

σjk1σjk2

C̃τζ2
(1 +Bjd (ξjk1, ξjk2))

τ

≤ d

ζ1q
2
2

× C̃τζ2
(1 +Bj infk1 6=k2=1,...,d d (ξjk1, ξjk2))

τ = A(t) . (5.29)

Applying (2.17) yields therefore that

d2

(
β̃
(Rt)
j , Z

)
≤ A(t) + d2

√
2π

8

d∑

k=1

Rt

∫

S2

∣∣∣h(Rt)
jk (x)

∣∣∣
3

f (x) dx

= A(t) + d2
√
2π

8

ζ2Rt√
R3
t

d∑

k=1

∫

S2

|ψjk (x)|3
σ3
jk

dx

≤ A(t) +
d3ζ2√
Rtζ

3/2
1 q32

√
2π

8
‖ψjk‖3L3(S2)

≤ A(t) +
(q′3)

3d3ζ2√
Rtζ

3/2
1 q32

√
2π

8
Bj,

where we used (3.21) and (3.24) to yield σ3
jk ≥ ζ

3/2
1 q32. We write this result as a separate

statement.

Proposition 5.4 Under the above notation and assumptions,

d2

(
β̃
(Rt)
j , Z

)
≤ dC̃τζ2B

−jτ

ζ1q22 (1 + infk1 6=k2=1,...,d d (ξjk1, ξjk2))
τ +

(q′3)
3d3ζ2√

Rtζ
3/2
1 q32

√
2π

8
Bj .

Because τ can be chosen arbitrarily large, it is immediately seen that the leading term
in the d2 distance is decaying with the same rate as in the univariate case, e.g. Bj/

√
Rt.

Assuming however that d = dt, i.e. the case where the number of coefficients is itself
growing with t, the previous bound may become too large to be applicable. We shall hence
try to establish a tighter bound, as detailed in the next section.
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5.3 Growing dimension

In this section we allow for a growing number of coefficients to be evaluated simultaneously,
and investigate the bounds that can be obtained under these circumstances. More precisely,
we are now focussing on

β̃
(Rt)
j(t)· :=

(
β̃
(Rt)
j(t)k1

, ..., β̃
(Rt)
j(t)kdt

)
,

where dt → ∞, as t → ∞. Throughout the sequel, we shall assume that the points at
which these coefficients are evaluated satisfy the condition:

inf
k1 6=k2=1,...,dt

d
(
ξj(t)k1 , ξj(t)k2

)
≈ 1√

dt
. (5.30)

Condition (5.30) is rather minimal; in fact, the cubature points for a standard needlet/wavelet
construction can be taken to form a maximal (dt)

−1/2-net (see [4, 13, 35, 44] for more details
and discussion). The following result is the main achievement of the paper.

Theorem 5.5 Let the previous assumptions and notation prevail. Then for all τ = 2, 3...,
there exist positive constants c and c′, (depending on τ, ζ1, ζ2 but not from t, j(t), d(t)) such
that we have

d2

(
β̃
(Rt)
j(t). , Z

)
≤ cdt(

1 +Bj(t) infk1 6=k2=1,...,dt d
(
ξj(t)k1, ξj(t)k2

))τ +
√
2π

8

c′dtB
j(t)

ζ
3/2
1 q32

√
Rt

. (5.31)

Proof. In view of (2.16) and (5.29), we just have to prove that the quantity

√
2π

8

Rt

ζ
3/2
1 q32

√
R3
t

dt∑

k1k2k3

∫

S2

∣∣ψj(t)k1 (z)
∣∣ ∣∣ψj(t)k2 (z)

∣∣ ∣∣ψj(t)k3 (z)
∣∣ f(z)dz

is smaller than the second summand on the RHS of (5.31). Now note that

dt∑

k1k2k3

∫

S2

∣∣ψj(t)k1 (z)
∣∣ ∣∣ψj(t)k2 (z)

∣∣ ∣∣ψj(t)k3 (z)
∣∣ dz ≤

∑

λ

∫

B(ξj(t)λ,B
−j(t))

{
dt∑

k

∣∣ψj(t)k (z)
∣∣
}3

dz ,

where, for any z ∈ B(ξj(t)λ, B−j(t))

dt∑

k

∣∣ψj(t)k (z)
∣∣ ≤

dt∑

k

CτB
j(t)

{
1 +Bj(t)d(ξj(t)k, z)

}τ

≤ CτB
j(t) +

dt∑

k:ξj(t)k /∈B(ξj(t)λ,B
−j(t))

CτB
j(t)

{
1 +Bj(t)

[
d(ξj(t)k, ξj(t)λ)− d(z, ξj(t)λ)

]}τ

≤ CτB
j(t) +

dt∑

k:ξj(t)k /∈B(ξj(t)λ,B
−j(t))

CτB
j(t)

{
Bj(t)d(ξj(t)k, ξj(t)λ)

}τ .
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Now for ξj(t)k /∈ B(ξj(t)λ, B−j(t)), x ∈ B(ξj(t)k, B−j(t)), we have by triangle inequality

d(ξj(t)k, ξj(t)λ) + d(ξj(t)k, x) ≥ d(ξj(t)λ, x),

and because

d(ξj(t)k, ξj(t)λ) ≥ d(ξj(t)k, x), and 2d(ξj(t)k, ξj(t)λ) ≥ d(ξj(t)λ, x) ,

we obtain
dt∑

k:ξj(t)k /∈B(ξj(t)λ,B−j(t))

CτB
j(t)

{
Bj(t)d(ξj(t)k, ξj(t)λ)

}τ

=
dt∑

k:ξj(t)k /∈B(ξj(t)λ,B−j(t))

1

meas(B(ξj(t)k, B−j(t)))

∫

B(ξj(t)k ,B
−j(t))

κτB
j(t)

{
Bj(t)d(ξj(t)k, ξj(t)λ)

}τ dx

≤
dt∑

k:ξj(t)k /∈B(ξj(t)λ,B−j(t))

1

meas(B(ξj(t)k, B−j(t)))

∫

B(ξj(t)k ,B
−j(t))

κτ2
τBj(t)

{
Bj(t)d(ξj(t)λ, x)

}τ dx ≤ κ′τB
j(t) ,

arguing as in [3], Lemma 6. Hence

dt∑

k

∣∣ψj(t)k (z)
∣∣ ≤ κ′′τB

j(t) , (5.32)

uniformly over z ∈ S2, which immediately provides the bound.

∑

λ

∫

B(ξj(t)λ,B−j)

{
dt∑

k

∣∣ψj(t)k (z)
∣∣
}3

dz ≤ (κ′′τB
j)3
∑

λ

∫

B(ξj(t)λ,B
−j(t))

dz = (κ′′′Bj(t))3 .

Finally, to establish the sharper constraint

∫

S2

{
dt∑

k

∣∣ψj(t)k (z)
∣∣
}3

dz ≤ κ̃τdtB
j(t),

it is sufficient to note that, exploiting (5.32)
∑

k1

∫

S2

∣∣ψj(t)k1 (z)
∣∣∑

k2

∣∣ψj(t)k2 (z)
∣∣∑

k3

∣∣ψj(t)k3 (z)
∣∣ dz

≤ κ2B2j(t)
dt∑

k1

∫

S2

∣∣ψj(t)k1 (z)
∣∣ dz = κ2B2j(t)dj(t)

∥∥ψj(t)k
∥∥
L1(S2)

≤ dtκ
2B2j(t)B−j(t) = dtκ

2Bj(t) ,

where we have used again
∥∥ψj(t)k

∥∥p
Lp(S2)

= O(B2j(t)( 1
2
− 1

p
)p) = O(Bj(t)(p−2)), for p = 1. Thus

(5.31) is established.
For definiteness, we shall also impose tighter conditions on the rate of growth of dt, B

j(t)

with respect to Rt, so that we can obtain a much more explicit bound, as follows:
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Corollary 5.6 Let the previous assumptions and notation prevail, and assume moreover
that there exists α, β such that, as t→ ∞

B2j(t) ≈ Rα
t , 0 < α < 1 , dt ≈ Rβ

t , 0 < β < α .

There exists a constant κ (depending on ζ1, ζ2, but not on j, dj, B) such that

d2

(
β̃
(Rt)
j(t). , Z

)
≤ κ

dtB
j(t)

√
Rt

, (5.33)

for all vectors
(
β̃
(Rt)
jk1

, ..., β̃
(Rt)
jkdt

)
, such that (5.30) holds.

Proof. It suffices to note that

dtκ
′
τ,ζ2

(1 +Bj(t) infk1 6=k2=1,...,dt d (ξjk1, ξjk2))
τ = O(B−τj(t)d

1+τ/2
t )

= O

(
dtB

j(t)

√
Rt

(
Rtd

τ
t

B(τ+1)2j(t)

)1/2
)

and

Rtd
τ
t

B(τ+1)2j(t)
=

R1+βτ
t

R
(τ+1)α
t

= R
−α+τ(β−α)+1
t = o(1) , for τ >

1− α

α− β
.

Remark 5.7 From (5.33), it follows that for Rt ≃ 1012 we can establish asymptotic joint

Gaussianity for all sequences of coefficients
(
β̃
(Rt)
j(t)k1(t)

, ..., β̃
(Rt)
j(t)kd(t)

) of dimensions such that

dtB
j(t)

√
Rt

= o(1) ,

e.g. we can take dt ≃ o(
√
Rt/B

j(t)) ≃ o(106/Bj(t)), so that even at multipoles in the order
of Bj(t) = O(103) we might take around 103 coefficients with the multivariate Gaussian
approximation still holding. These arrays would not be sufficient for the map reconstruction
at this scale, but would indeed provide a basis for joint multiple testing procedures as those
described earlier.

Remark 5.8 Assume that dt scales as B
2j(t); loosely speaking, this corresponds to the sit-

uation when one focusses on the whole set of coefficients corresponding to scale j, so that
exact reconstruction for bandlimited functions with l = O(Bj) is feasible. Under this re-
quirement, however, the ”covariance” term A(t), i.e. the first element on the right-hand
side of (5.31), is no longer asymptotically negligible and the approximation with Gaus-
sian independent variables cannot be expected to hold. The approximation may however
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be implemented in terms of a Gaussian vector with dependent components. For the sec-
ond term, convergence to zero when dj(t) ≈ B2j(t) requires B3j(t) = o(

√
Rt). In terms of

astrophysical applications, for Rt ≃ 1012 this implies that one can focus on scales until
180◦/Bj ≃ 180◦/102 ≃ 2◦; this is close to the resolution level considered for ground-based
Cosmic Rays experiments such as ARGO-YBJ ([18]). Of course, this value is much lower
than the factor Bj = o(

√
Rt) = o(106) required for the Gaussian approximation to hold

in the one-dimensional case (e.g., on a univariate sequence of coefficients, for instance
corresponding to a single location on the sphere).

Remark 5.9 As mentioned in the introduction, in this paper we decided to focus on a spe-
cific framework (spherical Poisson fields), which we believe of interest from the theoretical
and the applied point of view. It is readily verified, however, how our results continue to
hold with trivial modifications in a much greater span of circumstances, indeed in some
cases with simpler proofs. Assume for instance we observe a sample of i.i.d. random vari-
ables {Xt} , with probability density function f(.) which is bounded and has support in
[a, b] ⊂ R. Consider the kernel estimates

f̂n(xnk) :=
1

nB−j

n∑

t=1

K(
Xt − xnk
B−j

) , (5.34)

where K(.) denotes a compactly supported and bounded kernel satisfying standard regularity
conditions, and for each j the evaluation points (xn0, ..., xnBj ) form a B−j-net; for instance

a = xn0 < xn1... < xnBj = b , xnk = a + k
b− a

Bj
, k = 0, 1, ..., Bj .

As argued earlier, conditionally on Nt([a, b]) = n, (5.34) has the same distribution as

f̂Nt
(xnk) :=

1

Nt[a, b]B−j

∫ b

a

K(
u− xnk
B−j

)dNt(u) ,

where Nt is a Poisson measure governed by Rt ×
∫
A
f(x)dx for all A ⊂ [a, b]. Considering

that Nt

Rt
→a.s. 1, a bound analogous to 5.33 can be established with little efforts for the vec-

tor f̂n(xn.) :=
{
f̂n(xn1), ..., f̂n(xnBj )

}
. We leave this and related developments for further

research.
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Lasenby, A. N., Mart́ınez-González, E., Sanz, J. L. (2007) Cosmological applications
of a wavelet analysis on the sphere, Journal of Fourier Analysis and its Applications,
13, no. 4, 495–510

[35] Narcowich, F.J., Petrushev, P. and Ward, J.D. (2006a), Localized Tight Frames on
Spheres, SIAM Journal of Mathematical Analysis Vol. 38, pp. 574–594

[36] Narcowich, F.J., Petrushev, P. and Ward, J.D. (2006b), Decomposition of Besov and
Triebel-Lizorkin Spaces on the Sphere, Journal of Functional Analysis, Vol. 238, 2,
530–564

[37] Nourdin, I. and Peccati, G. (2009), Stein’s method on Wiener chaos, Probability The-
ory Related Fields 145, no. 1-2, 75–118.

[38] Nourdin, I. and Peccati, G. (2012), Normal approximations using Malliavin calculus:
from Stein’s method to universality. Cambridge University Press, Cambridge.

[39] Nualart, D. and Peccati, G. (2005), Central limit theorems for sequences of multiple
stochastic integrals, Annals of Probability 33, no. 1, 177–193.

[40] Nualart, D. and Vives, J. (1990), Anticipative calculus for the Poisson process based
on the Fock space. In: Sem. de Proba. XXIV, LNM , 1426, pp. 154-165. Springer-
Verlag.

[41] Peccati, G. and Taqqu, M.S. (2010), Wiener chaos: moments, cumulants and dia-
grams. Springer-Verlag.
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