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Abstract—The paper provides a spatio-temporal

change detection framework for the analysis of image

time series. In this framework, the detection of changes

in time is addressed at the image level by using a

matrix of cross-dissimilarities computed upon wavelet

and curvelet image features. This makes possible identi-

fying the acquisitions-of-interest: the acquisitions that

exhibit singular behavior with respect to their neigh-

borhood in the time series and those that are represen-

tatives of some stationary behavior. These acquisitions-

of-interest are compared at the pixel level in order to

detect spatial changes characterizing the evolution of

the time series. Experiments carried out over ERS and

TerraSAR-X time series highlight the relevancy of the

approach for analyzing SAR image time series.

Index Terms—Image Time Series ; Wavelets ; Curvelets
; Parametric modeling ; Kullback-Leibler Divergence ;

Change Detection.

I. Introduction

IMAGE analysis from remote sensing time series plays

an essential role in many applications involving mon-

itoring of regions that are di�cult to access, all over the

world.

The analysis of remote sensing time series has been

addressed in the literature by exploiting some speci�c

(class dependent) image features and the signal coherency

in time. For instance, the Synthetic Aperture Radar

(SAR) image features proposed in [1] consist of long-term

coherence and backscattering temporal variability learned

from di�erent land-cover classes, for a classi�cation pur-

pose. For ground deformation monitoring, [2] has proposed

estimating some linear and nonlinear deformation fea-

tures from neighborhood networking of temporally coher-

ent radar targets (permanent-scatterer) in interferometric

SAR time series. For the detection of buildings destroyed

in an earthquake, [3] has constructed some building fea-

tures consisting in non-overlapping rectangular footprints
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and has proposed a post-event building feature predictor

as a benchmark relating building states (destroyed or non-

destroyed) over time.

The analysis of remote sensing time series has also

been addressed by transforming the observed data in some

appropriate representation spaces. As a matter of example,

the detection of spatial similarities has been addressed in

the spectral domain in [4] and [5]. This detection has been

performed upon a compressed representation of the change

information in [6]. This detection has also been addressed

by focusing on a low frequency representation of the SAR

signal from some iterative �ltering of the observed data to

remove speckle in [7].

In addition, the selection of suitable similarity measures

with respect to the remote sensing data distribution has

deserved much interest in the literature on multi-temporal

change detection. In particular, we have:

• the time warping distance associated with a disk-

based su�x tree indexing is a accurate in comparing

sequences of di�erent lengths and/or di�erent sam-

pling rates, see [8],

• the Bhattacharyya distance between the probability

density functions is e�cient for measuring contrast

similarity, see [9],

• the mutual information between Wishart processes

over time is suitable for characterizing temporal po-

larimetric and interferometric informations in SAR

data, see [10].

Exploiting new generation remote sensing images is

actually facing three major challenges: high resolution,

large database (long acquisition sequence) and speckle

e�ect. The conjunction of these facts makes the pursuit

of a temporal event intricate on a long time series, when

no a priori is available concerning i) the spatial location

of changing areas and ii) the change information. Indeed,

local analysis from overlapped sliding windows all over

the scene and all along the whole time series is not

thinkable due to computational complexity. This analysis

is however necessary for the concerns of early detection of

some physical phenomenon such as ground displacement

or melting cycle of glaciers that can be evaluated through

long image time series.

The approach proposed in this work for simplifying the

analysis of image time series relates to the description
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Fig. 1. Block diagram representing temporal and spatial image similarity measurements. In this diagram, transform T designates either
the SWT or the FDCT. Speci�cally, the term KL(T X/T Y) designates KL based similarity measurements from the SWT or the FDCT
decompositions of X and Y, see for instance (3) and (4). Temporal analysis involves large size image (or subimage) comparison whereas
spatial analysis applies only for speci�c images at the pixel level. The MDDM shown in the center of the �gure has been computed upon a
multi-date Gaussian random �eld composed with 3 stationary subsequences.

of any image/subimage by a set of essential description

parameters obtained from representations having suitable

statistical and geometrical properties. These representa-

tions are the discrete Stationary Wavelet Transform,

SWT, [11] and the Fast Discrete Curvelet Transform,

FDCT, [12] [13], [14].

The SWT and FDCT coe�cients of the SAR images

exhibit stochastic nature because of the presence of speckle

in radar images. In this respect, we consider parameter

extraction from stochastic modeling of the coe�cients

of these representations. The modeling is achieved by

using 1) Edgeworth expansions for the SWT and FDCT

approximations and 2) Generalized Gaussian, Log-Normal

and Weibull distributions for the details and orientations

of these transforms. These distributions are used in a joint

framework requiring similarity evaluation from distribu-

tion models pertained to di�erent parametric families:

the closed-form expressions for inter-family parameter
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Fig. 2. Block diagram representing image feature extraction. Parameters (κ`[X]), ` = 1, 2, 3, 4 designate the �rst four cumulants of X: κ1
and κ2 are the mean and variance of X, κ3 and κ4 relate to the skewness and kurtuosis of X, respectively. These cumulants are associated
with an Edgeworth expansion of X. Notation ρ1[X] and ρ2[X] designate the scale and shape parameters of the best model among the GG,
LOGN and WBL distributions associated with |X| and issued from a model selection step.

comparison are then derived in the paper.

The proposed similarity measurements are based on

the Kullback-Leibler (KL) divergences and applied in a

two stage approach illustrated in Fig. 1. In the �rst

stage, a global temporal analysis is performed at the

image/subimage level, i.e between any pair of image

description parameters. These KL based similarity mea-

surements are gathered to form a Multi-Date Divergence

Matrix (MDDM). The analysis of the MDDM eases the

selection of the acquisitions-of-interest: these acquisitions

are either change-images, i.e images relating the tran-

sitions between the stationary subsequences composing

the image time series or image-outliers, i.e acquisitions

that exhibit a suspicious behavior with respect to their

neighborhood in time.

In the second stage, a local spatial analysis is performed

at the pixel level between acquisitions-of-interest derived

from the MDDM analysis. Pixelwise similarity measure-

ments are computed within a sliding window in order to

build change maps and detect the changing areas.

The presentation of the paper is as follows. Section II ad-

dresses the extraction of image description parameters and

the similarity measurements in the wavelet and curvelet

domains. Section III presents the MDDM and provides

an interpretation of this matrix in term of abrupt and

progressive changes, as well as multiple change-images

in time. Section IV is dedicated to experimental results

on multi-temporal change detection in SAR time series

from TerraSAR-X (TS-X) images. Section V addresses

spatial change detection from MDDM critical acquisitions.

Section VI concludes the work.

II. Feature extraction from SWT and FDCT

parametric modeling - Similarity measurements

A. Motivation

Let I = {Im,m = 1, 2, . . . ,M} be a sequence of M

images of a given scene acquired at di�erent dates: Im =

I[tm] where tm is the acquisition time.

The method proposed below for analyzing I relates

to a parsimonious description of every Im by a set of

P essential description parameters extracted from the

image features. This set is required to be parsimonious

in the sense that it consists of an accurate modeling

with P � N elements, where N is the number of pixels

of Im (images are assumed to have the same sample

size). In this respect, the set of parameters used hereafter

derives from parametric modeling of the statistical dis-

tributions of wavelet and curvelet contributions. Indeed,

in presence of non-stationarities (the modeling concerns

an image/subimage and not a stationary region from this

image), wavelet frames are relevant for building parsimo-

nious models by reducing several types of lower and higher

order dependencies (some statistical properties of wavelet

transforms for analyzing non-stationary random processes

are given in [15]).

The main steps of this modeling are described in the

block diagram given by Fig. 2 and are developed below.

B. SWT coe�cients - FDCT subimages

Among the variants of wavelet frames, we consider the

SWT because of its suitable statistical properties [11], [16],

[17] and the FDCT for its sensitivity to image geometry:

the transform is a quasi-optimal representation for 2 di-
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TABLE I
Average retrieval rates of some distribution families over the SWT and FDCT contributions for two TS-X time series over
the Argenti�ere glacier. A retrieval rate per family indicates the percentage of occurrence of the distributions pertaining
to this family as those with the smallest Kolmogorov stochasticity parameter, among the distribution families considered.

The sequences of TS-X images considered are 13 images in ascending orbit and 10 images in descending orbit.

Transform Acquisition mode GG LOGN WBL GAM GEV EXP

SWT Ascending 60.90 37.82 1.28 0 0 0
Descending 62.50 21.17 14.33 0 0 0

FDCT Ascending 63.25 35.04 1.71 0 0 0
Descending 63.33 35.5556 0 0 1.11 0

mensional regular signals admitting some singularities like

edges and contours for natural images [12], [13], [14].

The J-level SWT and FDCT representations of an image

I have the following form:

I =
∑
k1,k2

〈I, ΦJ,[k1,k2]〉ΦJ,[k1,k2]

+

J∑
j=1

∑
n1,n2
k1,k2

〈I, Ψj,[n1,n2],[k1,k2]〉Ψj,[n1,n2],[k1,k2]. (1)

In this expansion, ΦJ,[k1,k2] denotes translated versions of

a scaling function ΦJ and the wavelet/curvelet waveforms

Ψj,[n1,n2],[k1,k2] are generated at decomposition level j

from the scaled, translated/oriented versions of a wave-

form Ψ.

When the SWT is concerned, I will be denoted by IW
and the SWT approximation coe�cients are denoted by

cJ,0[k1, k2] = 〈I, ΦJ,[k1,k2]〉

whereas the SWT detail coe�cients are obtained from

cj,n[k1, k2] = 〈I, Ψj,n,[k1,k2]〉.

In the above notations, n ∈ {0, 1, 2, 3} is a capital pa-

rameter associated with indices n1, n2 ∈ {0, 1}. We will

use the standard terminology subband wavelet coe�-

cients to designate the subimage of coe�cients cj,n =

(cj,n[k1, k2])(k1,k2)∈Z×Z.

Parametric modeling of this SWT representation con-

cerns subband coe�cients cj,n. In the experimental re-

sults, we consider an SWT with decomposition level is

J = 4 and the \Symlet" wavelet of order 8 (a wavelet with

high order have more stringent statistical properties with

respect to the parametric modeling concerned, see [15],

[16]).

When the FDCT is concerned, I will be denoted by IC .
In FDCT implementation [14], detail subbands located at

a given decomposition level j are generated from scaled

and oriented versions of the curvelet waveform Ψ, where

orientations are associated with a rotation by an angle

θn = 2π2−bj/2cn, with n ∈
{
0, 1, . . . , 2bj/2c − 1

}
(with

the correspondence n1, n2 → n, as above).

FDCT coe�cients form a huge number of subbands,

many of these subbands having a small number of coef-

�cients when the decomposition level and the number of

orientations are large. Thus, we need to pre-process FDCT

in order to make suitable, the curvelet based parametric

modeling. In this respect, we consider synthesizing from

the curvelet coe�cients, an approximation and some orien-

tation subimages with the same sizes as the input image.

The curvelet approximation subimage is computed by

setting to zero all the curvelet coe�cients except the

approximation ones and by applying the \inverse" FDCT

to reconstruct from these coe�cients:

IappC =
∑
k1,k2

〈I, ΦJ,[k1,k2]〉ΦJ,[k1,k2].

A curvelet orientation subimage is obtained by aggre-

gating the di�erent curvelet subbands lying in a given an-

gular wedge and reconstructing the corresponding subim-

age by using the inverse FDCT. Assume that the total

number of orientations at coarse scale is Q. Then the

following steps are used for selecting the FDCT coe�cients

involved in a subimage synthesis.

Computation of curvelet orientation subimages: For

every q ∈ {0, 1, . . . , Q− 1}:

• Identify for every j = 1, 2, . . . , J, the set of polar

wedges :

A[q] = {(j, n) : [θn(j), θn+1(j)[ ⊂ [θq, θq+1[} .

• Then, set to zero all the curvelet coe�cients, except

those pertaining to the above wedges, and reconstruct

the subimage IangC [q] by using the \inverse" FDCT:

IangC [q] =
∑

(j,n)∈A[q]

∑
k1,k2

〈I, Ψj,n,[k1,k2]〉Ψj,n,[k1,k2]

It follows from the above decomposition and by taking

into account (1) that

IC = IappC +
∑

q∈{0,1,...,Q−1}

IangC [q] = I.

In the following experimental results, we consider a num-

ber Q = 8 orientations.

C. Parametric modeling of the SWT and FDCT con-

tributions

The parametric modeling is addressed by using 1)

Edgeworth expansions for describing SWT and FDCT
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TABLE II
Overview of the parametric modeling and the associated number of parameters.

Parametric modeling FDCT SWT

Edgeworth
{
κp[IappC ]

}
16p64 {κp[cJ,0]}16p64

GG / LOGN / WBL
{
ρ1

[
IangC [q]

]
, ρ2

[
IangC [q]

]}
q=0,1,...,Q−1

{
ρ1

[
cj,n

]
, ρ2

[
cj,n

]}
16j6J
n∈{1,2,3}

Number of parameters 2×Q + 4 6× J + 4

approximations and 2) a dictionary D composed with

the Generalized Gaussian (GG), Log-Normal (LOGN) and

Weibull (WBL) distributions for describing the ampli-

tudes of SWT and FDCT details and orientations. The

analytic forms of these distribution functions are given in

Appendix A.

The SWT approximation subband cJ,0 and FDCT ap-

proximation subimage IappC have speci�c behavior [15]

because these coe�cients result from inner products with

scaling functions (a scaling function has no vanishing

moments). Finding a class of parametric models for the

approximation contributions is very intricate because of

this speci�city. In this respect, we consider the Edgeworth

expansion of order p = 4 in order to capture the informa-

tion conveyed by the �rst 4 cumulants of SWT cJ,0 and

FDCT IappC approximations.

For high frequency SWT and FDCT contributions (de-

tails and orientations), we focus on GG, LOGN and WBL

distributions from model validation results that are given

in Table1 I. This model validation has been performed

upon distribution families with exponential decays so as

to comply with the statistical properties of wavelet-based

transforms. From this model validation step, it follows

that: when compared with Gamma (GAM), Generalized

Extreme Values (GEV) and Exponential (EXP) distribu-

tions, the GG, LOGN and WBL distributions yield more

than 99% of retrieval results when the query concerns the

\distribution with the smallest Kolmogorov stochasticity

parameter" (see average retrieval results given in Table I).

These 3 distribution families are thus aggregated to form

the dictionary D of parametric models used in the sequel.

We then use the following model selection procedure to

retrieve the parameters of the best distribution from this

dictionary.

D. Model selection

Consider an SWT detail subband cj,n with some n 6= 0
or an FDCT orientation subimage IangC [q] for some q ∈
{0, 1, . . . , Q− 1}.

The model selection step involved in the diagram of

Fig. 2 consists in deriving from dictionary D, the best

1One can note the results given in Table I are speci�c to TS-X
images considered in the framework of the SWT and the FDCT.
Thus, statistics given in this table may di�er, depending on the data
type and the transform used.

distribution family and the parameters of this distribu-

tion for modeling the subband under consideration: this

distribution follows from 1) a �rst stage that aims at

computing 3 maximum-likelihood estimates associated

with GG, LOGN and WBL distributions respectively (see

Table I for the motivation on selecting these families) and

2) a second stage for selecting the best distribution as

the one admitting the smallest Kolmogorov stochasticity

parameter among these maximum-likelihood estimates.

The following items pinpoint the steps involved in this

model selection:

• Generate the set of parameters

SML = {(αML, βML), (µML, σML), (aML, bML)}

of the \bests" GG, LOGN and WBL distributions

from Maximum Likelihood (ML) estimation with re-

spect to the set y of coe�cients analyzed,

• the Kolmogorov stochasticity parameter [18] with

respect to the above ML based distributions is derived

from:

λN(y, Fρ1,ρ2) = sup |Fy,N(t) − Fρ1,ρ2(t)| , (2)

where Fy,N is the empirical cumulative distribution

function (cdf ) of the N-sample dataset y and Fρ1,ρ2
is one among the ML based cdfs computed above.

• The relevant distribution is then the distribution

Fρ∗
1
,ρ∗
2
with parameters derived from

(ρ∗1, ρ
∗
2) = arg min

(ρ1,ρ2)∈SML

λN(y, Fρ1,ρ2).

The distribution type (GG, LOGN or WBL) is the

index of the pair (ρ∗1, ρ
∗
2) in SML.

The parsimonious description represented by the block

diagram of Fig. 2 thus consists in a concise wavelet-

curvelet modeling of any Im by using P = 2Q + 6J + 8

parameters. Table II summarizes this parametric model-

ing. By taking into account that Q = 8 and J = 4 in the

following, we have P = 48 essential parameters per image

description. These parameters encompass multiscale and

orientation based image features.

It is worth emphasizing that the P parameters associ-

ated with the description of Im from the multi-temporal

sequence I can be computed and stored as long as the

image Im is available, during the acquisition process.

Furthermore, as Im is available, the similarity measure-

ments between Im and the sequence {I`, ` 6 m− 1} can
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be computed as well, for an operational purpose. These

similarity measurements proposed are developped in the

following section.

E. Similarity measurements

We use KL divergence as similarity measure between

the di�erent statistical distributions issued from dictio-

nary D. The similarity measurements between image fea-

tures (distribution parameters) are performed by using the

approach proposed in [16]. This approach is extended so

as to make possible comparing features issued from two

di�erent parametric families. Furthermore, the approach

proposed below also takes into account the modeling of

SWT and FDCT approximations by using Edgeworth

expansions.

We consider as similarity measure between two random

variables X1 and X2 distributions fX1 and fX2 (being

either Edgeworth expansions or parametric models from

D), the symmetric KL similarity measure de�ned as

K(X1, X2) = K(X1||X2) +K(X2||X1),

where K(X1||X2) is the divergence

K(Xi||Xj) =
∫
R
fXi(x) log

fXi(x)

fXj(x)
dx, i, j = 1, 2.

The similarity measures are applied to compare adjacent

SWT subbands or FDCT subimages, the global similarity

measure between Im and I` being:

KW(Im, I`) = K(cJ,0[Im], cJ,0[I`])
+

∑
j∈{1,2...,J}
n∈{1,2,3}

K(cj,n[Im], cj,n[I`]) (3)

for the SWT, where cj,n[Im], cj,n[I`] are the SWT coef-

�cients of Im and I` respectively and

KC(Im, I`) = K(IappC [m], IappC [`])

+

Q−1∑
q=0

K(IangC [m][q], IangC [`][q]), (4)

when the FDCT is considered ( IangC [m][q] denotes the q-

th oriented curvelet subimage of the m-th image of the

sequence I ).

In the following, K(X1||X2) is computed from parametric

models associated with the distributions of X1 and X2.

When the detail and orientation coe�cients are under

consideration, these distributions follow from a dictionary

D composed with the 3 best distribution families given

in Table I. Appendices B and C therefore provide the

parametric forms of the KL divergences involved in com-

paring two arbitrary elements of dictionary D. We recall

that approximation coe�cients are processed separately

in the sense that they are modeled by using Edgeworth

expansions: the close form of the KL divergence between

Edgeworth expansions for p = 4 can be found [19], [20].

III. KL based MDDM from SWT and FDCT

modeling

A. MDDM

Consider the M size sequence I given in Section II-A.

Section II-E provides 2M2 SWT and FDCT similarity

measurements (with a redundancy factor of 2 due to

symmetry).

We propose constructing SWT and FDCT MDDMs

from:

KW = (KW(Im, I`))16m6M,16`6M

and

KC = (KC(Im, I`))16m6M,16`6M .

These matrices relate to the di�erent cross similarities

between pairwise observations (Im, I`)16m6M,16`6M.

Matrices KW and KC are symmetric and have the form

of the following matrix:

K =


0 ? · ·
? 0 ? ·
· ? 0 ?

· · ? 0


where a star symbol is used to indicate the elements of

the second diagonal.

The motivation beyond the use of K is to provide

an intuitive and relevant tool for the analysis of image

time series in change-image/epoch detection purpose. It

is worth emphasizing that matrix K can be used in an

operational context: when a new acquisition is provided,

updating MDDM K only requires:

1) computing the P parameters associated with the

parsimonious description of the current acquisition,

2) computing the KL divergences between the above

parameters and those of the previous acquisitions

and

3) adding a new row and a new column composed with

the above KL divergences to K.

Thus the MDDM matrix format suits for long size image

time series.

B. Aggregation of SWT and FDCT MDDMs

The 2M2 SWT and FDCT cross similarity measure-

ments between elements of sequence I will hereafter be

displayed by using a single MDDM. Indeed, since we have

considered the symmetric Kullback-Leibler divergence,

then the corresponding SWT and FDCT MDDMs are

symmetric, so that only the upper triangular MDDM ma-

trix is necessary and su�cient for information processing,

per transform. Aggregating these MDDMs can thus be

performed by superimposing information from SWT and

FDCT MDDMs: by replacing the redundant information

issued from a single SWT MDDM with complementary
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]
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IappC,m
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ρ
[
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]
ρ
[
IangC,m[1]

]
...

ρ
[
IangC,m[Q − 1]

]
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Oriented KL measurements



K(IappC [tk], IappC [tm])

K(IangC [k][0], IangC [m][0])

K(IangC [k][0], IangC [m][1])

...

K(IangC [k][0], IangC [m][Q − 1])


↓∑

operator

KC(Ik, Im)  Km,k

Fig. 3. Flowchart representing the steps involved in MDDM value computation. In this owchart, vector κ = (κ`)`=1,2,3,4 designate the
�rst four cumulants and vector ρ = (ρ1, ρ2) represents the scale and shape parameters of the best model obtained from D.

information issued from the FDCT MDDM (redundancy

follows from the symmetry of the MDDM), we derive the

joint SWT - FDCT MDDM KW,C , with

KW,C =
(
KW(Im, I`)1l{m6`} +KC(Im, I`)1l{m>`}

)
16m6M
16`6M

In MDDM KW,C , the upper triangular divergence matrix

represents SWT similarity measurements as expressed in

(3) and the lower triangular divergence matrix provides

FDCT similarity measurements from (4). Fig. 3 provides

an overview of the di�erent steps involved in the MDDM

KW,C computation.

In matrix KW,C , the SWT and FDCT MDDMs are

fused (lossless fusion) in order to have a complementary

viewpoint that can be helpful for decision taking in many

situations. In what follows, representation KW,C will be

used for plotting MDDMs whereas analysis of the time

series with respect to the MDDM properties will be ad-

dressed with respect to one among MDDMs KW and KC .
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Landsat-2, 1975 Landsat-4, 1986 Landsat-5, 1992 Landsat-7, 2001

KW,C , Rondonia forest

Fig. 4. Multi-date image sequence from Rondonia forest, NASA/courtesy of nasaimages.org, and its MDDM KW,C . The upper (resp. lower)
triangular matrix of the MDDM represents the SWT (resp. FDCT) contributions in KW,C . The �rst row and the second diagonal of KW,C
are increasing sequences: the changes are progressive and maintained. In addition, the changes from the last column of KW,C appears abrupt
as corroborated by the visual image comparison. Images are with size 1920× 2880.

C. Change-image detection from MDDM analysis

Let us focus on an MDDM K being either KW or KC .

The analysis of I derives from the construction of

MDDM K:

• In absence of signi�cant changes from the observed

scene and the acquisition system, matrix K does not

exhibit any particular structure: it represents only

acquisition noise.

• In presence of a gradually maintained change (Exam-

ple: deforestation),

– the second diagonal of K, as well as,

– each semi-row of K starting from a second diag-

onal element (that is {Km,` : ` = m+ 1, . . . ,M}),

are increasing sequences, if we assume that the dif-

ferent images are conform, i.e. the acquisitions have

been achieved in the same conditions.

• An abrupt change occurs when every semi-row of

K starting from a second diagonal element can be

roughly associated with a step-like function in the

following sense: the divergence values across the semi-

row form two clusters (or stationary subsequences), a

�rst cluster with small divergence values representing

only acquisition noise (before changes) and a second

cluster with large divergence values. The location in

time of the changes lies in-between the two clusters.

• In most cases, the analysis of the neighborhood of a

divergence values given in the MDDM characterizes

and helps understanding the changes or the acquisi-

tion conditions at the corresponding acquisition time.

Fig. 4 presents an illustration of progressive changes

from an MDDM KW,C computed from a sequence of

Landsat images. Images given in Fig. 4 show a part of

the Rondonia forest (Brazil) that has been subject to

a drastic deforestation (more than 15000km2 devastated

per year). The images clearly highlight through a visual

comparison, the progressive changes that have led to the

forest destruction. These changes and their progressive

nature appear in MDDM2 KW,C : the second diagonals

and any of the semi-column/row starting with a diagonal

element are increasing sequences. The abrupt nature of

the global change also appear by noting that the last

column (respectively row) has very large KW,C values in

comparison to the other columns (respectively rows).

2The MDDM colors have been obtained from the following con-
vention: We �rst apply the normalization: KW ≡ KW/max[KW ] and
KC ≡ KC/max[KC ] where max[M] denotes here the maximum over
elements of the matrix M. We then construct the map KW,C from
the above normalized similarity measurements. The color map then
ranges from blue (associated with 0) to red (associated with 1) by
passing through cyan, yellow, and orange. The same convention is
used for all the MDDM color compositions given in the paper.
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D. MDDM and the non-conformity of an acquisition

with respect to the image time series

ERS 2, June 06, 2003 ENVISAT, August 15, 2003

ENVISAT, June 25, 2004 ERS 2, June 10, 2005

ENVISAT, July 15, 2005 ENVISAT, June 30, 2006

K, Arcachon Bay

Fig. 5. Multitemporal ERS 2 and ENVISAT image sequence,
CNES/courtesy. The MDDM KW,C only reects acquisition noise
and an outlier (ENVISAT acquisition of 2005, July 15. Images are
with size 3840× 4480.

A non-conform acquisition (image-outlier) is charac-

terized by a column of K with large divergence values,

among the other divergence values representing acquisi-

tion noise. Note that the `-th column K[`] of K represents

dissimilarities of acquisitions in I with respect to the

acquisition performed at time t`. As a consequence, an

index relating the non-conformity (or inconsistency) of a

given acquisition is the cumulative dissimilarities from the

columns of K:

D[`] = ‖K[`]‖1 =
M∑
m=1

Km,`. (5)

TABLE III
Non-conformity of acquisitions in Rondonia and Arcachon
time series. Strong deviation from the normal behavior of
the sequence occur for acquisitions with large D values

(red, blue and green colors in the table).

` 1 2 3 4
Rondiana DW [`] 11.54 7.27 13.03 25.32

DC [`] 7.41 4.94 8.49 16.31

Arcachon

` 1 2 3 4 5 6
DW [`] 5.56 2.89 3.23 3.85 8.82 2.36
DC [`] 9.97 4.58 4.81 6.68 15.67 3.94

For illustrating the role of index D, let us consider

the Rondonia images of Fig. 4: Table III provides index

D measurements from the MDDM of the corresponding

images. It appears clearly that the image acquired in 2001

di�ers signi�cantly from the other images of the Rondonia

time series. Note that for this trivial example, the above

remark can be observed directly from the Rondonia optical

image time series or its MDDM K.

The analysis of SAR time series such as the one given

in Fig. 5 is more intricate. Images in Fig. 5 are ERS 2

and ENVISAT SAR images showing the Arcachon Bay

(France). In addition with the noise induced by acqui-

sition conditions, other disturbances characterizing this

scene are swell movement, sand displacement, vegetation

variability and the presence of boats depending on the

acquisition time. The MDDM K does not highlight any

suspicious behavior, except that acquisition 5 (July 15,

2005) is not conform (the column 5 and row 5 have rather

large values), in comparison with the other elements of

the Arcachon time series. In particular, Table III provides

the 3 acquisitions that are less conform from the analysis

with respect to index D (colors red, blue and green in

Table III).

The following section provides experimental results on

the application of K and D for the analysis of image time

series involving 13 and 11 acquisition dates respectively.

IV. Analysis of TS-X image time series by using

MDDMs

In this section, we consider two high resolution SAR

image time series with respectively 13 and 10 images. The

problem tackled is glacier monitoring in a change detection

context. The sequences considered are TS-X images of

Chamonix Mont-Blanc test site in the French Alps. Among

these mountains, we focus hereafter on the Argenti�ere

glacier.
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We �rst consider a time series acquired from May 31,

2009 to October 21, 2009, in ascending orbit. The dates

of acquisition are given in Fig. 6. The MDDM KW,C is

provided in the same �gure.

KW,C , Argenti�ere glacier,

TS-X \Ascending", 13 acquisition dates,

11 days bidate interval
2009-05-31
2009-06-11
2009-06-22
2009-07-03
2009-07-14
2009-07-25
2009-08-05
2009-08-16
2009-08-27
2009-09-18
2009-09-29
2009-10-10
2009-10-21

Fig. 6. MMDM KW,C for a multi-date TS-X image sequence in
ascending orbit. The changes from the MDDM are progressive from
July to September and reect the glacier surface evolution.

As it can be seen from this MDDM, the upper right

wedge ofK has large divergence values whereas the second

diagonal reects only acquisition noise: changes are pro-

gressive and follows from climatic seasonal variation that

impact the consistency of the primary layer of the glacier.

For change evaluation in the spatial domain, acquisitions-

of-interest from the above MDDM are the �rst and the

last acquisitions from the image time series (dates 05-31

and 21-10).

The cumulative dissimilarity indices D[`], ` =

1, 2, . . . , 13 of this time series are given in Table IV.

It appears from this table that neither image I13, nor
image I1 are representative of the glacier state on the

acquisition period: D[1] and D[13] deviate signi�cantly

from the rest of the cumulative dissimilarities. Table IV

reveals a rather stationary state of the glacier from the

period of July 03, 2009 to September 18, 2009. After this

stationary period, we observe a signi�cant increase of the

cumulative dissimilarity indices that can be explained

by recent snowfalls and/or short-time continuous snow

deposit on the glacier at the beginning of the autumn.

We now consider a time series of TS-X images of the

Argenti�ere glacier acquired in descending orbit (acquisi-

tion dates are given in Fig. 7). Images are displayed in the

SAR slant range geometry.

This sequence extends to one year, with the speci�city

that no images are available between 2008-10-22 and 2009-

05-28 (period including the winter). As it can be seen from

the MDDM KW,C of Fig. 7, this \disconnection" have

been well detected. Indeed, this \disconnection" involves

two di�erent seasons where the glacier state is such that

the �rst layers of the glacier have di�erent backscattering

KW,C , Argenti�ere glacier,

TS-X \Descending", 10 acquisition dates,

11 days bidate intervals
2008-09-29

2008-10-10

2008-10-21

2009-05-29

2009-06-09

2009-06-20

2009-07-01

2009-07-12

2009-08-14

2009-08-25

Fig. 7. MDDM KW,C for a sequence of TS-X images acquired over
Argenti�ere glacier in descending orbit. Changes are abrupt (the �rst
row of the KL MDDM has a step located at the acquisition date 4
whereas the second diagonal has a unique outlier located at date 4)
and progressive (decay of semi-row sequences after acquisition date
4). Images are with size 3072× 4864.

properties. From the analysis of this MDDM, the acquisi-

tions we will focus on are those performed at 2008: 09-29

(I1), 05-29 (I4) and 08-25 (I10).
For this TS-X sequence, SWT and FDCT indices D

show the same behavior in terms of the stationary se-

quences (see Table V), but have di�erent ranking of

cumulative deviations. The \mean" and the \max" fusion

rules applied to SWT and FDCT indicesD emphasize that

FDCT results are more relevant than the SWT ones for an-

alyzing this time series. This can be explained by refering

to the suitability of FDCT for representing geometrically

regular objects. The above results are instructive in the

sense that it reveals a fact that is speci�c to the acquisi-

tion mode and the topography of this Argenti�ere's area:

glacier surface and geometry is more visible in descending

acquisitions due to the glacier slope and valley main

orientation. In this respect, we can recommend analyzing

the FDCT based modeling for the TS-X descending mode

when observing the Argenti�ere glacier.

Note that, from Table V, one can distinguish mainly

2 changes in time which separate the acquisitions before

2009-05-29 and after 2009-06-20, the corresponding subse-

quences having rather stationary cumulative divergences.

V. Spatial change detection from dissimilarity

maps between stationary subsequences

The analysis performed in Section IV above makes it

possible to detect change-images in image time series.

From this analysis, certain image time series can be seen,

coarsely, as composed of a stationary subsequences in-

between the corresponding change-images.

The following addresses spatial change detection be-

tween the stationary subsequences identi�ed from a time

series. We begin by presenting the basics of the method

through an example in Section V-A. We then apply this
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TABLE IV
Non-conformity of acquisitions in the Argenti�ere \ascending" time series. Strong deviation from the normal behavior of

the sequence occur for acquisitions with large D values (red, blue and green colors in the table).

Argenti�ere \ascending", 2009
Dates 05-31 06-11 06-22 07-03 07-14 07-25 08-05 08-16 08-27 09-18 09-29 10-10 10-21

DW [`] 6.76 4.03 4.52 2.07 2.02 2.60 2.10 2.23 2.15 2.43 4.28 2.03 14.14
DC [`] 6.94 3.50 4.73 2.09 2.06 2.75 2.20 2.21 2.17 2.52 3.84 2.04 15.93

TABLE V
Non-conformity of acquisitions in the Argenti�ere \descending" time series. Strong deviation from the normal behavior of

the sequence occur for acquisitions with large D values (red, blue and green colors in the table).

Argenti�ere \descending", 2008-2009

2008 2009
Dates 09-29 10-10 10-21 05-29 06-09 06-20 07-01 07-12 08-14 08-25

DW [`] 6.05 6.68 5.61 5.58 7.09 4.22 2.99 2.62 2.33 2.96
DC [`] 8.42 9.70 8.21 8.05 8.16 6.06 4.26 3.74 3.21 3.96

method for analyzing subsequences issued from the TS-X

time series provided by Fig. 6 and Fig. 7 in Section V-B.

A. Spatial change detection: basics

Speci�cally, we consider images I2 and I5 of the se-

quence of the Argenti�ere glacier described in Fig. 7. These

images are TS-X images of the Argenti�ere glacier (French

Alps) acquired at dates 2008-10-10 and 2009-06-09, respec-

tively. Images I2 and I5 are with sizes 3072× 4864.
Change detection between I2 and I5, i.e. in the ob-

servation space, involves evaluating local dissimilarities

between these images. This problem is addressed hereafter

by using the parsimonious descriptions and the similarity

measures given in Section II. Indeed, for high resolution

images such as TS-X images, the (local) information on a

region of interest spreads over a large size pixel neighbor-

hood. This makes relevant, the use of the statistical tools

presented in Section II for retrieving and comparing local

image features.

In particular, when considering the SWT and FDCT

approximation modeling, this relevancy can be highlighted

by the following remark.

In [21], the information issued from the 4 �rst cumu-

lants3 is shown to be suitable for the description of 8-

bit RADARSAT images. In contrast, when 16-bit high

resolution TS-X images are concerned, Fig. 8 shows that

the information derived from the 4 �rst cumulants4 is

not su�cient to capture the image dynamic. These 4

�rst cumulants (relating the mean, standard deviation,

asymmetry and kurtosis) are rather suitable for modeling

SWT and FDCT approximations, due to the fact that

statistical distribution regularizes in the wavelet domain

(iterative convolution properties).

3The information from the 4 �rst cumulants is expressed in the
Pearson system in [21].

4The information from the 4 �rst cumulants is expressed in the
Edgeworth expansion in this paper.

Input TS-X bloc Modeling of the input bloc

SWT approximation, cJ,0 Modeling of cJ,0

FDCT approximation, IappC Modeling of IappC

Fig. 8. Experimental setup: Edgeworth (parametric) expansion
of order 4 is applied for modeling a 64 × 64 TS-X bloc (over the
Argenti�ere glacier serac area). The modeling performed in the image
domain (top) is irrelevant whereas the modeling is relevant for the
SWT (middle) and FDCT (down) approximations of the input TS-
X bloc. The comparison of the Edgeworth expansion is made with
respect to a smoothed histogram obtained by using (non-parametric)
kernel density estimation (in red).
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I2, 2008-10-10 I5, 2009-06-09

M1−r(I2, I5) MKW (I2, I5)

Fig. 9. TS-X images of the Argenti�ere glacier in descending orbit and their dissimilarity mapsM1−r,MKW , where r denotes the use of
the correlation coe�cient and KW relates to the measure given by (3). For every method, the dissimilarity values are linearly scaled to form
a colored image where the map of colors ranges from blue (minimum) to red (maximum) by passing through the colors green, yellow, and
orange. Changes appear in red color whereas non-changed areas appear in blue. The bi-date correlation is approximately the same all along
the Argenti�ere glacier so that changes seems uniform on the glacier: only second order changes are captured by the correlations coe�cients.
We need to take into account high order bi-date dependencies fromMKW in order to discriminate the e�ective changes.

Furthermore, this relevancy is justi�ed by noting that

the parsimonious description under consideration encom-

passes both low and high order cumulants of the in-

put random �eld. In this respect, the characterization

induced by the parameters of this description is more

relevant than using a single variable such as the correlation

coe�cient. Indeed, the latter parameter mainly reveals

second order bidate dependencies, when applied locally

on any pair (Im, I`) of observations, whereas second and

higher order bidate dependencies are considered when us-

ing the parsimonious descriptions of local neighborhoods

of (Im, I`).

For illustration, Fig. 9 provides dissimilarities between

I1 and I2 by using measurements from MKW and from

1 − r, where MKW (Im, I`) (resp. r(Im, I`)) denotes the
MDDM obtained from measurements by using (3) and

(resp. correlation coe�cient) between Im and I`. These
measurements are computed from sliding and overlapping

windows with sizes 64 × 64, the overlap induced by

the sliding window beginning at the center of the initial

window.

As it can be seen in Fig. 9, the correlation between I1
and I2 is too weak all over the Argenti�ere glacier, due to

the speckle decorrelation. It follows that correlation is not

relevant for assessing change signi�cance in this context.

In contrast with the correlation coe�cient, KW highlights

change amplitudes depending on the mountain's geome-

try: accumulation areas, seracs, . . . . This relevancy follows

from the capability of the multiscaled and oriented SWT

and FDCT similarity measurements in KW for discrimi-

nating di�erent change levels which a�ect both correlation

and higher order statistics.

B. Spatial change detection: similarities from

acquisitions-of-interest identi�ed in TS-X time

series

From the MDDM of Fig. 6, we can derive mainly two

acquisitions-of-interest; those performed at dates 2009-05-

31 and 2009-10-21, respectively. The corresponding images

are given in Fig. 10.

These acquisitions-of-interest reect the state of the

glacier over two \extremal" behaviors, as it can be seen
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I1, 2009-05-31 I13, 2009-10-21 M(I1, I13)

Fig. 10. Dissimilarity map between two images issued from the TS-X sequence given in Fig. 6. The acquisitions-of-interest are the �rst
and last acquisitions from the sequence. Images are with size 4096× 3072.

by comparing image I1 (dusky) and image I13 (with high

luminance) provided in Fig. 10. In particular,

• the \dusky" state characterizing the glacier in May is

con�rmed by comparing image I1 of Fig. 10 (acquired
in ascending orbit at May 31) with I5 given in Fig. 9

(acquired at 9 days interval, in descending orbit).

• the \high luminance" characterizing the glacier state

in October is assessed by comparing image I13 of Fig.
10 and image I2 given in Fig. 9: these images are

acquired at the same time period (one year period

and 11 days interval).

Thus, the state of the glacier during short-time stationary

sequences is characterized by images that look similar in

terms of intensity variations.

Spatial inter-seasonal dissimilarities can then be evalu-

ated from measurements M(·, ·) computed over overlap-

ping windows extracted from the acquisitions-of-interest

I1, I13: these dissimilarities are given in Fig. 10. It follows

from M(I1, I13) that the main di�erence between the

glacier layer composition at May and October is concen-

trated at the upper part of the glacier in the acumulation

area, where fresh snowfall modi�es the surface scattering

(see [22]).

From the MDDM given in Fig. 7, we can derive 3

acquisitions-of-interest, those performed at dates 2008-

09-29, 2009-05-29 and 2009-08-25. These acquisitions and

their bidate dissimilarity maps are given in Fig. 11. One

can conclude, by comparing the 3 dissimilarity maps

M(I1, I4),M(I4, I10) andM(I10, I1) that
• changes that do not appear in the 3 dissimilarity maps

are occasional or transient. They follow (mainly)

climatic conditions which are intrinsic to the di�erent

seasons (consequences of the winter and the summer

in a high mountainous glacier area) and depend on 1)

the glacier elevation and 2) the glacier slope orienta-

tion: in the change maps given in Fig. 11, the change

distributions in amplitude relate to the form and the

geometry of the glacier.

• Permanent changes may refer to unstable zones like

moraines or to continuous displacements of some

glacier blocks, for instance in crevasses or serac fall

areas.

VI. Conclusion

In this paper, we have proposed a new approach for

analyzing SAR image time series. This approach relies

on the computation of a multi-date divergence matrix

(MDDM) with respect to some cross divergences issued

from the sequences of SAR image description parameters.

Description parameters are issued from SWT and

FDCT subband modeling. The modeling has been ad-

dressed by using Edgeworth expansions for approximation

subbands and GG, LOGN and WBL statistical distri-

bution families for detail and orientation subbands. The

approach is multi-model (parametric modeling is not re-

stricted to a single distribution family) and the paramet-

ric computation of Kullback-Leibler divergence has been

extended to measure inter-family dissimilarities (between

distribution families GG, LOGN and WBL).

This approach is computationally workable for long size

image time series and makes their analysis straightforward

from an MDDM display (that can support series with more

than 1000 images). This analysis have shown relevancy

in monitoring the temporal evolution of Alps glaciers at

two di�erent levels: �rstly at the image (or sub-image)

level, by analyzing the proposed MDDM and cumula-

tive dissimilarity indices that reveal non-conform images
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I1, 2008-09-29 M(I1, I4)

I4, 2009-05-29 M(I4, I10)

I10, 2009-08-25 M(I10, I1)

Fig. 11. Change detection for some acquisitions-of-interest issued from the Argenti�ere glacier TS-X sequence of Fig. 7. Images are with
size 3072× 4864.

and stationary subsequences; then at the pixel level, by

computing dissimilarity maps between images of interest

selected from the MDDM, for a spatial analysis of changing

areas.

The paper opens some prospects relating the statistics

of MDDMs for image time series analysis. Indeed, an

MDDM makes possible both global and local analysis of

a time series: encapsulating global and local MDDMs in

the neighborhood of a critical scene will ease a multilevel

analysis of the scene under consideration. In addition,

beyond the multi-date visual scene observation provided

by MDDMs, an MDDM representation makes also possible

variance analysis in the time axis, searching for the

median of the image time series, etc. Temporal segmen-

tation tools could also be developed to analyze MDDMs

and derive sub-matrices associated to seasonal or annual

evolutions. This can be derived by applying matrix norms

to the series of MDDMs obtained. This issue is challenging

with respect to future SAR missions like Sentinel 1 to

be launched in 2013, with more systematic acquisition

strategies (every 12 days, then every 6 days with two

satellites) and with free data access.

ACKNOWLEDGMENTS



15

The authors wish to thank the anonymous reviewers for

their precise comments and useful advice on this paper

and the German Space Agency (DLR) for providing the

TerraSAR-X data (Project MTH0232).

References

[1] L. Bruzzone, M. Marconcini, U. Wegmuller, and A. Wiesmann,
\An advanced system for the automatic classi�cation of multi-
temporal SAR images," IEEE Transactions on Geoscience and
Remote Sensing, vol. 42, no. 6, pp. 1321 { 1334, June 2004.

[2] L. Guoxiang, S. M. Buckley, D. Xiaoli, C. Qiang, and L. Xiao-
jun, \Estimating spatiotemporal ground deformation with im-
proved permanent-scatterer radar interferometry," IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 47, no. 8, pp.
2762 { 2772, Aug. 2009.

[3] D. Brunner, G. Lemoine, and L. Bruzzone, \Earthquake damage
assessment of buildings using VHR optical and SAR imagery,"
IEEE Transactions on Geoscience and Remote Sensing, vol. 48,
no. 5, pp. 2403 { 2420, May 2010.

[4] S. Lhermitte, J. Verbesselt, I. Jonckheere, K. Nackaerts, J. A.
van Aardt, W. W. Verstraeten, and P. Coppin, \Hierarchical
image segmentation based on similarity of NDVI time series,"
Remote Sensing of Environment, vol. 112, no. 2, pp. 506 { 521,
2008.

[5] A. Bastarrika, E. Chuvieco, and M. P. Martin, \Automatic
burned land mapping from MODIS time series images: As-
sessment in mediterranean ecosystems," IEEE Transactions on
Geoscience and Remote Sensing, vol. 49, no. 9, pp. 3401 { 3413,
sept. 2011.

[6] F. Bovolo, S. Marchesi, and L. Bruzzone, \A framework for
automatic and unsupervised detection of multiple changes in
multitemporal images," IEEE Transactions on Geoscience and
Remote Sensing, vol. 50, no. 6, pp. 2196 { 2212, June 2012.

[7] Y. Bazi, L. Bruzzone, and F. Melgani, \An unsupervised ap-
proach based on the generalized gaussian model to automatic
change detection in multitemporal SAR images," IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 43, no. 4, pp.
874 { 887, Apr. 2005.

[8] S. Park and W. W. Chu, \Similarity-based subsequence search
in image sequence databases," International Journal of Image
and Graphics, vol. 3, no. 1, pp. 31 { 53, 2003.

[9] J. Morio, P. Refregier, F. Goudail, P. C. Dubois-Fernandez, and
X. Dupuis, \Information theory-based approach for contrast
analysis in polarimetric and/or interferometric sar images,"
IEEE Transactions on Geoscience and Remote Sensing, vol. 46,
no. 8, pp. 2185 { 2196, Aug. 2008.

[10] E. Erten, A. Reigber, L. Ferro-Famil, and O. Hellwich, \A
new coherent similarity measure for temporal multichannel
scene characterization," IEEE Transactions on Geoscience and
Remote Sensing, vol. 50, no. 7, pp. 2839 { 2851, July 2012.

[11] R. R. Coifman and D. L. Donoho, Translation invariant de-
noising. Lecture Notes in Statistics, 1995, no. 103, pp. 125 {
150.

[12] E. J. Cand�es and D. L. Donoho, \Curvelets - a surprisingly
e�ective nonadaptive representation for objects with edges,"
Curves and Surfaces, L. L. Schumaker et al. (eds), Vanderbilt
University Press, Nashville, TN, 2000.

[13] E. J. Cand�es and D. L. Donoho, \New tight frames of curvelets
and optimal representations of objects with piecewise C2 singu-
larities," Communications on Pure and Applied Mathematics,
Wiley Periodicals, Inc., A Wiley Company, vol. 57, no. 2, pp.
219 { 266, 2004.

[14] E. Cand�es, L. Demanet, D. Donoho, and L. Ying, \Fast dis-
crete curvelet transforms,"Multiscale Modeling and Simulation,
vol. 5, no. 3, pp. 861 { 899, 2006.

[15] A. M. Atto and Y. Berthoumieu, \Wavelet packets of
nonstationary random processes: Contributing factors for
stationarity and decorrelation," IEEE Transactions on
Information Theory, vol. 58, no. 1, Jan. 2012. [Online].
Available: http://dx.doi.org/10.1109/TIT.2011.2167496

[16] A. M. Atto and Y. Berthoumieu, \How to perform texture
recognition from stochastic modeling in the wavelet domain,"
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, ICASSP, Prague, Czech Republic, May 22 - 27,
2011.

[17] A. M. Atto and Y. Berthoumieu, \Structuring of large and het-
erogeneous texture databases," IEEE Workshop on Statistical
Signal Processing, SSP, Nice, France, June 28 - 30, 2011.

[18] A. N. Kolmogorov, \Sulla determinazione empirica di una legge
di distribuzione," G. Ist. Ital. Attuari, vol. 4, pp. 83 { 91, 1933.

[19] J. Lin, N. Saito, and R. Levine, \Edgeworth approximation of
the Kullback-Leibler distance towards problems in image anal-
ysis," Univ. California, Davis. Tech. Rep. [Online]. Available:
http://www.math.ucdavis.edu/ ∼saito, 1999.

[20] J. Inglada and G. Mercier, \A new statistical similarity measure
for change detection in multitemporal SAR images and its
extension to multiscale change analysis," IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 5, pp. 1432 { 1445,
May 2007.

[21] J. Inglada, \Change detection on SAR images by using a
parametric estimation of the kullback-leibler divergence," in
IEEE International Geoscience and Remote Sensing Sympo-
sium, IGARSS, Proceedings, vol. 6, July 2003, pp. 4104 { 4106.

[22] R. Fallourd, O. Harant, E. Trouv�e, J.-M. Nicolas, M. Gay,
A. Walpersdorf, J.-L. Mugnier, J. Sera�ni, D. Rosu, L. Bom-
brun, G. Vasile, N. Cotte, F. Vernier, F. Tupin, L. Moreau,
and P. Bolon, \Monitoring temperate glacier displacement by
multi-temporal TerraSAR-X images and continuous GPS mea-
surements," IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 4, no. 2, pp. 372 { 386,
June 2011.

[23] P. McCullagh, Tensor Methods in Statistics. London, U.K.:
Chapman & Hall, 1987.

[24] A. Stuart and J. K. Ord, Kendall's Advanced Theory of Statis-
tics. 5th ed. London, U.K.: Arnold, 1991.

[25] M. N. Do and M. Vetterli, \Wavelet-based texture retrieval us-
ing generalized gaussian density and kullback-leibler distance,"
IEEE Transactions on Image Processing, vol. 11, no. 2, pp. 146
{ 158, Feb. 2002.

[26] R. Kwitt and A. Uhl, \Image similarity measurement by
Kullback-Leibler divergences between complex wavelet subband
statistics for texture retrieval," IEEE International Conference
on Image Processing, ICIP, San Diego, California, USA, 12 - 15
October, pp. 933 { 936, 2008.

Appendix A

Analytic forms of the parametric distribution

models

The Edgeworth expansion of order p of a random vari-

able X, absolutely continuous, with mean µ and standard

deviation σ is

fp(x) =
1√
2πσ

(
p∑
r=0

ηrHr(x)

)
e−

(x−µ)2

2σ2 , (6)

where Hr is the Chebyshev-Hermite polynomial of order

r [23] and the coe�cient ηr is a function of the r �rsts

cumulants of X. Note that when p = ∞, the right hand

side expression of the above equation is exactly the proba-

bility density function of X, under regularity assumptions

on this function [24].
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The GG, LOGN and the WBL distributions are used

in a joint framework: this includes the case where a GG

distribution has to be compared with a LOGN or a WBL

distribution, and vice versa. In this respect (a LOGN and

a WBL distribution operating on positive real values),

we consider for comparison purpose, the magnitude of

a random variable following the GG distribution: the

magnitude of a GG distribution with scale α, shape β

is given by:

fα,β(x) =
β

αΓ(1/β)
e−(x/α)β1lR+(x), (7)

where Γ is the standard Gamma function:

Γ(u) =

∫
R+

xu−1e−xdx

Note that this expression di�ers from the standard GG

density by a factor 2.

The LOGN distribution with log-scale parameter µ > 0

and shape σ2 is de�ned by:

fµ,σ(x) =
1

xσ
√
2π
e−(

(log x−µ)2

2σ2
)1lR+(x). (8)

The WBL distribution with scale a > 0 and shape b >

0 is de�ned by:

fa,b(x) =
b

a

( x
a

)b−1
e−( x

a
)b1lR+(x). (9)

Appendix B

Intra-family KL divergences for GG, LOGN and

WBL distributions

The expression of the KL measure for distributions

pertaining to the the same parametric family is available

for many distribution families from the literature.

For GG distributions, the KL divergence is given in [25].

The symmetric version of this divergence has the following

form:

K(X1, X2) =
(
α1

α2

)β2 Γ (1+β2
β1

)
Γ(1/β1)

+

(
α2

α1

)β1 Γ (1+β1
β2

)
Γ(1/β2)

−
β1 + β2
β1β2

. (10)

For Weibull distributions, the KL divergence is given in

[26]. We have that the symmetric version of this divergence

is

K(X1, X2) =
(
λ1

λ2

)k2
Γ

(
1+

k2

k1

)
+

(
λ2

λ1

)k1
Γ

(
1+

k1

k2

)
+e

(
k1

k2
+
k2

k1
− 2

)
− 2

+(k1 − k2) log
λ1

λ2
. (11)

where e is the Euler-Mascheroni constant.

Concerning LOGN distributions, the explicite form of

the parameter-dependent KL divergence derives from:

Proposition 1: The symmetric KL divergence be-

tween LOGN random variables X1 and X2 is given by:

K(X1, X2) =
1

2
(µ1 − µ2)

2

(
1

σ21
+
1

σ22

)
+
1

2

(
σ21
σ22

+
σ22
σ21

)
− 1. (12)

Proof: Proposition 1 derives from straightforward

calculus, by expanding the KL integral form as a sum of

Gaussian moments.

The following Appendix C derives close forms of the

KL divergence for the joint framework involved in the

use of a dictionary D. This joint framework requires

comparing distributions issued from di�erent parametric

families (Inter-family similarity measurements).

Appendix C

Inter-family KL divergences between GG, LOGN

and WBL distributions

Consider two random variables X1, X2 with probability

density functions fX1 , fX2 respectively. The symmetric KL

similarity measure between X1 and X2 is:

K(X1, X2) = H(X1||X2)−H(X1)+H(X2||X1)−H(X2) (13)

where the entropy H is de�ned for a random variable X

with probability density function fX by

H(X) = −

∫
R
fX(x) log fX(x)dx (14)

and H(Xi||Xj) denotes the entropy of random variable Xi
conditional on the random variable Xj. This conditional

entropy is

H(Xi||Xj) = −

∫
R
fXi(x) log fXj(x)dx (15)

when Xi, Xj admit probability density functions fXi , fXj
respectively.

A. KL Divergence between a Generalized Gaussian

Magnitude and a Weibull distribution

Let Xw, Xg be random variables distributed as WBL

and GG with probability density functions fa,b, fα,β re-

spectively. Proposition 4 below provides the symmetric KL

similarity measure between Xw and Xg. This proposition

requires the following Propositions 2 and 3 relating the

cross entropies between Xw and Xg. We have

Proposition 2: The conditional entropy H(Xw||Xg) is
given by

H(Xw||Xg) =
β

b

(a
α

)β
Γ

(
β

b

)
+ log Γ

(
1

β

)
+ log

α

β
. (16)

Proof: See Appendix D.
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Proposition 3: The conditional entropy H(Xg||Xw) is
given by

H(Xg||Xw) =
(α
a

)b Γ ((b+ 1)/β)
Γ(1/β)

− b log
(α
a

)
+ log

α

b
−
b− 1

β
ψ

(
1

β

)
, (17)

where ψ is the digamma function satisfying

d

dx
Γ(x) = ψ(x)Γ(x). (18)

Proof: See Appendix E.

From Propositions 2, 3, and by taking into account that

the entropy of the magnitude of a GG random variable is

H(Xg) =
1

β
+ log

(
1

β

)
+ log

(
αΓ

(
1

β

))
(19)

and the entropy of a WBL random variable is

H(Xw) = e

(
1−

1

b

)
+ log

(a
b

)
+ 1, (20)

we have:

Proposition 4: The symmetric KL divergence be-

tween a WBL and the magnitude of a GG random vari-

ables is given by:

K(Xw, Xg) =
(α
a

)b Γ ((1+ b)/β)
Γ(1/β)

+
β

b

(a
α

)β
Γ

(
β

b

)
−
1

β

+ (1− b)

(
e

b
+ log

α

a
+
1

β
ψ

(
1

β

))
− 1 (21)

B. KL Divergence between a Log-normal and a Weibull

distribution

To conclude this section, the following provides cross

entropies and KL divergences between a LOGN and a

WBL random variables X`, Xw with probability density

functions fµ,σ, fa,b respectively.

Proposition 5: The conditional entropy H(Xw||X`) is
given by

H(Xw||X`) =
1

2
log(2πσ2) +

(
loga+

e

b

)
+

e2 + π2/6

2σ2b2

+
1

σ2

(
µ2

2
− (µ− loga)

(
e

b
−
1

2
(µ− log b)

))
. (22)

Proof: See Appendix F.

Proposition 6: The conditional entropy H(X`||Xw) is
given by

H(X`||Xw) = b loga−log b+µ(1−b)+
ebµ+b

2σ2/2

a2
. (23)

Proof: See Appendix G.

From Propositions 5, 6, Equation (20) and by taking

into account that the entropy of a LOGN random variable

X` is

H(X`) =
1

2
+ µ+

1

2
log(2πσ2), (24)

we obtain:

Proposition 7: The symmetric KL divergence be-

tween an WBL and a LOGN random variables is given

by:

K(Xw, X`)=
ebµ+b

2σ2/2

a2
+

1

2σ2
×[

e2 + π2

6

b2
+ µ2 + (µ− loga)

(
µ− log b−

2e

b

)]
−b(µ− loga) +

2e

b
− e −

3

2
(25)

C. KL Divergence between a Generalized Gaussian

Magnitude and a Log-normal distribution

Consider now a GG magnitude and a LOGN ran-

dom variables Xg, X` with probability density functions

fα,β, fµ,σ respectively. The following provides cross en-

tropies and KL divergences between these random vari-

ables.

Proposition 8: The conditional entropy H(Xg||X`) is

given by

H(Xg||X`) =
1

2

(
log(2πσ2) +

µ2

σ2

)
+
(
1−

µ

σ2

)
logα

+
(logα)2

2σ2
+
1

β
ψ

(
1

β

)(
1−

µ

σ2
+

logα

σ2

)

+
1

β

ψ(2)
(
1
β

)
+
[
ψ
(
1
β

)]2
2σ2β2

(26)

where ψ(2) denotes the standard Trigamma function

satysfying

d

dz2
Γ(z) = Γ(z)

(
ψ(2)(z) + (ψ(z))2

)
. (27)

Proof: See Appendix H.

Proposition 9: The conditional entropy H(X`||Xg) is

given by

H(X`||Xg) = logα−logβ+Λ

(
1

β

)
+
1

αβ
eµβ+β

2σ2/2 (28)

where function Λ denotes the natural logarithm of the

Gamma function.

Proof: See Appendix I.

From Propositions 8, 9, Equations (19) and (24), we

have:
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Proposition 10: The symmetric KL divergence be-

tween LOGN and GGmagnitude random variables is given

by:

K(Xg, X`) =
1

β
ψ

(
1

β

)(
1−

µ

σ2
+

logα

σ2

)
− µ

+
ψ(2)

(
1
β

)
+
[
ψ
(
1
β

)]2
2σ2β2

+
µ2

2σ2

+ logα

(
1−

µ

σ2
+

logα

2σ2

)
−
1

β

+
1

αβ
eµβ+β

2σ2/2 −
1

2
. (29)

Appendix D

Proof of Proposition 2

We have:

H(Xw||Xg) = −

∫
R
fa,b(x) log fα,β(x)dx, (30)

where fα,β(x), fa,b(x) are given by (7), (9) respectively.

From (7), (9) and (30), it follows that

H(Xw||Xg) = −

∫
R+

fa,b(x)

(
log

β

αΓ(1/β)
− (|x|/α)β

)
dx

= log
αΓ(1/β)

β
+

∫
R+

fa,b(x) (|x|/α)
β
dx. (31)

By using integration by parts on the left hand side term

of (31), we have∫
R+

(
|x|

α

)β
fa,b(x)dx =

∫
R+

b

a

( x
a

)b−1 ( x
α

)β
e−(x/a)bdx

=
β

α

∫
R+

( x
α

)β−1
e−(x/a)bdx. (32)

By applying a change of variable on the latter equality, we

get∫
R+

(
|x|

α

)β
fa,b(x)dx =

β

b

(a
α

)β ∫
R+

x
β
b
−1e−xdx. (33)

Proposition 2 then follows from (31), (33) and by taking

into account the de�nition of the Γ function (see (8)).

Appendix E

Proof of Proposition 3

We have:

H(Xg||Xw) = −

∫
R
fα,β(x) log fa,b(x)dx, (34)

where fα,β(x), fa,b(x) are given by (7), (9) respectively.

By taking into account (7), (9) and (34), the conditional

entropy H(Xg||Xw) can be expressed in the following form

H(Xg||Xw) = log
a

b
+ (b− 1) loga

−
β

αΓ(1/β)

(
(b− 1)Aα,β +

(
1

a

)b
Bα,β,b

)
(35)

with

Aα,β =

∫
R+

e−(x/α)β log x dx (36)

and

Bα,β,b =

∫
R+

xbe−(x/α)βdx. (37)

We have:

Aα,β =
α

β

∫
R+

e−xx
1
β
−1 log

(
αx

1
β

)
dx,

=
α log(α)

β

∫
R+

e−xx
1
β
−1dx

+
α

β2

∫
R+

e−xx
1
β
−1 log x dx,

=
α

β2

(
Γ

(
1

β

)
logαβ +

(
d

dx
Γ(x)

)
/x= 1

β

)
. (38)

By noting taking into account (18), we obtain

Aα,β =
α

β2

(
logαβ +ψ(

1

β
)

)
Γ

(
1

β

)
. (39)

In addition, from a change of variable x −→ (x/α)β, we

derive:

Bα,β,b =
αb+1

β
Γ

(
b+ 1

β

)
. (40)

Proposition 3 is then a consequence of (35), (36), (37),

(39) and (40).

Appendix F

Proof of Proposition 5

We have:

H(Xw||X`) = −

∫
R
fa,b(x) log fµ,σ(x)dx, (41)

where fµ,σ, fa,b are given by (8), (9), respectively. The

sketch of the proof is the following: �rst, decompose

log fµ,σ in (41) as a logarithmic polynomial. Then, identify

the combination of derivatives of the gamma function by

expanding the integrand of (41).

Expressions (8), (18) involving the Gamma and

Digamma functions, as well as the Expression (27) involv-

ing the Trigamma function are useful in deriving (22) of

Proposition 5.

Appendix G

Proof of Proposition 6

We have:

H(X`||Xw) = −

∫
R
fµ,σ(x) log fa,b(x)dx, (42)

where fµ,σ, fa,b are given by (8), (9), respectively. The

integrand in (42) can be expanded as a combination of

Gaussian moments. This is performed via a change of

variable t = log x. Proposition 6 then follows after some

straightforward calculus.
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Appendix H

Proof of Proposition 8

We have:

H(Xg||X`) = −

∫
R
fα,β(x) log fµ,σ(x)dx, (43)

where fα,β, fµ,σ are given by (7), (8), respectively. The

steps of the proof are similar to those given in Appendix

F (proof of Proposition 5).

Appendix I

Proof of Proposition 9

We have:

H(X`||Xg) = −

∫
R
fµ,σ(x) log fα,β(x)dx, (44)

where fα,β, fµ,σ are given by (7), (8), respectively. The

steps of the proof are those given in Appendix 6 relating

the proof of Proposition 6.


