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Abstract

Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be mod-
eled by nonlinear dynamical systems. Among these instruments, flutes and flue organ pipes present
the particularity to be modeled as a delay dynamical system. In this paper, such a system, a
toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and pe-
riodic solutions are explored with respect to the blowing pressure, with focus on amplitude and
frequency evolutions along the different solution branches, as well as "jumps" between periodic so-
lution branches. The influence of a second model parameter (namely the inharmonicity) on the
behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence
of hysteresis or quasi-periodic regime. Throughout the paper, experimental results on a real instru-
ment are presented to illustrate various phenomena, and allow some qualitative comparisons with
numerical results.

1 Introduction

Sound production in self-sustained musical instru-
ments, like bowed string instruments, reed instru-
ments or flutes, involves the conversion of a quasi-
static energy source (provided by the musician)
into acoustic energy. This generation of auto-
oscillations necessarily implies nonlinear mecha-
nisms. Thus, even the simplest models of self-
sustained musical instruments should include non-
linear terms [27].

We focus in this paper on flute-like instruments.
Many works with both experimental and model-
ing approaches have highlighted the wide variety
of their oscillation regimes, and aim to explore the
complexity of their dynamics [20, 21, 23]. How-
ever, to the authors knowledge, none study has
ever investigated the determination of solution
branches using numerical continuation, and the
analysis of jumps between branches. This is done
in this paper.

A numerical continuation approach has recently
proved to be useful in the context of musical in-

1Corresponding author: terrien@lma.cnrs-mrs.fr

struments, especially for reed instruments (like
the clarinet) [3]. However, unlike reed instru-
ments, flute-like instruments are delay dynam-
ical systems (see section 2), which complicates
the model analysis, and prevents the use of the
same numerical tools (as, for example, Auto [18]
or Manlab [19]).

Using a numerical continuation software ded-
icated to delay dynamical systems, we study in
this paper a dynamical system inspired by the
physics of flute-like instruments. We call it a
toy model, since it is known in musical acoustics
that more accurate (yet more complex) models
should be considered. We investigate throughout
the paper the diversity of oscillation regimes of
the toy model, as well as bifurcations and jumps
between branches. We particularly focus on the
nature of the solutions (static or oscillating), and
in the later case, on the evolution of frequency
and amplitude along periodic solution branches.
Indeed, in a musical context, periodic solutions
correspond to notes, and oscillating frequency and
amplitude are respectively related to the pitch
and the intensity of the note played. Compar-
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isons between the obtained bifurcation diagrams,
experimental data and time-domain simulations
highlight the valuable contribution of numerical
continuation. Moreover, surprisingly enough, the
qualitative behaviour of the toy model displays
close similarities to that of a real instrument.

The paper is structured as follows. The dynam-
ical system under study is presented in section 2.
In section 3, we present the results of numerical
continuation of the branches of static and peri-
odic solutions and their stability analysis, with
focus on amplitude and frequency evolutions. The
study of "jumps" between different periodic solu-
tions branches is presented in section 4. Finally,
we discuss, in section 5, the influence of a parame-
ter related to the instrument makers’ work on the
characteristics of the different oscillating regimes.
Qualitative comparisons with the sound produced
by real instruments and with the experience of an
instrument maker are presented.

2 System studied (toy model)

In this paper, we study the following delay dy-
namical system:







z(t) = v(t− τ)
p(t) = α · tanh [z(t)]
V (ω) = Y (ω) · P (ω)

(1)

where lowercase variables are written in the time
domain, and uppercase variables in the frequency
domain. The unknowns are z, v, and p, while α
and τ are scalar parameters. Y is a known func-
tion of the frequency, and will be detailed later.
We first briefly describe the mechanism of sound
production in flute-like instruments, and then we
precise to which extent this system can be inter-
preted as an extremely simplified model of this
kind of musical instruments.

2.1 Sound production in flute-like in-

struments

Since the work of Helmholtz [1], a classical ap-
proach consists in modeling a musical instrument
by a nonlinear coupling between an exciter and a
resonator. In other wind instruments, the exciter
involves the vibration of a solid element: a cane
reed in the clarinet or the saxophone, the musi-
cian’s lips in the trumpet or the trombone... In
flute-like instruments (which includes recorders,
transverse flutes, flue organ pipes...), the exciter

Figure 1: Recorder section, and simplified repre-
sentation of the jet oscillation on both sides of the
labium.

consists in the oscillation of the blown air jet
around an edge called labium (see figure 1) [11].

The jet-labium interaction constitutes the
pressure source which excites the resonator
formed by the pipe, and thus creates an acoustic
field in the instrument. In turn, the acoustic field
disturbs the jet at the channel exit. As the jet is
naturally unstable, this perturbation is convected
and amplified along the jet, from the channel exit
to the labium, which sustains the oscillations of
the jet around the labium, and thus the sound
production [2].

The convection time of perturbations along the
jet introduces a delay in the system, whose value
is related to the convection velocity cv of these
hydrodynamic perturbations. Theoretical [5, 12]
and experimental [4] studies have shown that cv
is related to the jet velocity Uj (itself related to
the fact that the musician blows hard or not in
the instrument) through:

cv ≈ 0.5 · Uj. (2)

Noting W the length of the jet (i.e. the distance
between the channel exit and the labium, high-
lighted in figure 1), an approximation of the delay
value is given by:

τ =
W

cv
≈

W

0.5 · Uj

. (3)

2.2 System studied: a toy model of

flute-like instruments

This mechanism of sound production can be mod-
eled by a nonlinear oscillator, such as the one rep-
resented in figure 2 [11]. This very basic modeling
includes the three following elements:
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Figure 2: Basic modeling of sound production
mechanism in flute-like instruments, as a system
with a feedback loop [2].

• a delay, related to the convection time of the
hydrodynamic perturbations along the jet.

• a nonlinear function, representing the jet-
labium interaction.

• a linear transfer function representing the
acoustic behaviour of the resonator.

Therefore, system (1) can be seen as a very basic
model of flute-like instruments, and thus can be
related to the nonlinear oscillator represented
in figure 2. Variables z, p and v are then
respectively related to the transversal deflection
of the jet at the labium, to the pressure source
created by the jet-labium interaction, and to the
acoustic wave velocity at the input of the pipe
(see figure 1). The scalar parameters α and τ are
respectively associated to the amplification of the
perturbations along the jet, and to the convection
delay defined by equation (3).

Using a modal decomposition of the resonator
acoustical response, the transfer function is writ-
ten in the frequency domain as a sum of m modes
(as it is done, for example, in the work of Silva
[13]):

Y (ω) =
m
∑

k=1

ak · jω

ω2

k − ω2 + jω · ωk

Qk

(4)

where ak, ωk and Qk are respectively the modal
amplitude, the resonance pulsation and the
quality factor of the kth mode.

As it does not take into account the following el-
ements, this representation is very simplified com-
pared to the most recent models of flute-like in-
struments [2]:

• a precise modeling of the aeroacoustic source,
which includes, in the latest models, a time
derivative of the delayed term [11].

• nonlinear losses, due to vortex shedding at
the labium [22].

• an accurate description of the resonator: in
theory, the modal decomposition in equation
(4) includes an infinite number of modes. For
sake of simplicity, we only retain in this paper
at most the first two modes of the pipe.

2.3 Rewritting as a first-order system

To be analysed with classical numerical continua-
tion methods for delay differential equations [14],
system (1) should be rewritten as a classical first-
order delay system ẋ = f(x(t), x(t − τ), γ). In
such a formulation, x is the vector of state vari-
ables and γ the set of parameters. To improve
numerical conditioning of the problem, a dimen-
sionless time variable and a dimensionless convec-
tion delay are defined :

{

t̃ = ω1t
τ̃ = ω1τ

(5)

with ω1 the first resonance pulsation (see equation
(4)). Rewritting system (1) finally leads to the
following system of 2m equations, where m is the
number of modes in the transfer function Y (ω)
(see appendix A for more details).
∀ i = [1, ...,m] (where i is an integer):



















































































v(t̃) =

m
∑

k=1

vk(t̃)

y(t̃) =
m
∑

k=1

yk(t̃)

v̇i(t̃) = yi(t̃)

ẏi(t̃) =
αai
ω1

{

1− tanh2
[

v(t̃− τ̃)
]}

· y(t̃− τ̃)−

(

ωi

ω1

)

2

vi(t̃)

−
ωi

ω1Qi

yi(t̃).

(6)

System (6) is studied throughout this paper. Nu-
merical results are computed using the software
DDE Biftool [6], which performs numerical con-
tinuation of delay differential equations using a
prediction/correction approach [14]. Periodic so-
lutions are computed using orthogonal collocation
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[24]. Typically, we use about 100 points per pe-
riod, and the degree of the Lagrange interpolation
polynomial is 3 or 4.

3 Periodic regimes emerging
from the equilibrium solution

3.1 Branch of equilibrium solutions

In flute-like instruments, the delay τ is related to
the jet velocity (see equation (3)), and therefore
to the static pressure into the musician’s mouth
through the stationary Bernoulli equation. To an-
alyze the system (6), it is thus particularly inter-
esting to choose this variable as the continuation
parameter.

Regardless of the parameter values, it is obvious
that system (6) has a unique equilibrium solution
defined by:







∀i = [1, 2, ...,m] :
vi(t̃) = 0
yi(t̃) = 0

(7)

A stability analysis of this static solution is per-
formed both through computation of the eigenval-
ues of the linearized problem and the analysis of
the open-loop gain (see appendix B for more de-
tails). Moreover, this linear analysis allows to dis-
tinguish two kinds of emerging periodic solutions:

• those resulting from the coupling between an
acoustic mode of the resonator (a particular
term in the sum defining the transfer func-
tion Y (ω) in equation (4)) and the first hy-
drodynamic mode of the jet (corresponding
to n = 0 in equation (24) of appendix B).

• those resulting from the coupling between an
acoustic mode of the resonator and an higher-
ranked hydrodynamic mode of the jet (corre-
sponding to n > 0 in equation (24)).

Indeed, for flute-like instruments, an auto-
oscillation results from the coupling between
an acoustic mode of the resonator and an hy-
drodynamic mode of the jet [2]. The first case
n = 0 corresponds to the "standard" regimes
in flute-like instruments. On the contrary, the
second case n > 0 corresponds to the so-called
"aeolian" regimes. In the context of musical
instruments, it corresponds to particular sounds,
like for example those produced when the wind
machine of an organ is turned off leaving a key

pressed.

We focus here on these two kinds of periodic
solutions, and we study particularly the amplitude
and frequency evolutions along the branches.

3.2 Branches of periodic solutions: ae-

olian and standard regimes

For sake of clarity, we consider in this section
a transfer function containing a single acoustic
mode (i.e. m = 1 in the expression of Y (ω), de-
fined by equation (4)). The addition of a second
acoustic mode will be discussed in the next sec-
tion.

Numerical continuation of the different periodic
solution branches allows to display the bifurcation
diagram showed in figure 3, representing the am-
plitude of the oscillating variable v(t̃) defined in
system (6), with respect to the dimensionless de-
lay τ̃ . It is useful to keep in mind that blowing
harder makes the jet velocity Uj increase and thus
τ decrease (according to equation (3)).

The stability of each branch is adressed by com-
puting the Floquet multipliers: since all of them
lie within the unit circle, it can be concluded that
all the branches are stable [10].

As shown in figure 3, the use of equation (24)
(appendix B) allows to distinguish the different
kind of periodic regimes, and highlights that the
only standard regime (related to the first hydro-
dynamic mode of the jet) is located in the part of
the graph where ω1τ is lower than τ∗ = 2. The
other branches correspond to aeolian regimes re-
lated to the second and the third hydrodynamic
mode of the jet (respectively n = 1 and n = 2).

A larger range in τ̃ in figure 3 would reveal
other branches of aeolian sounds. They corre-
spond to the infinite series of aeolian instabilities
highlighted for each acoustic mode of the transfer
function Y (ω) in appendix B.

3.2.1 Amplitude evolutions

To study flute-like instruments, it is useful to de-
fine the dimensionless jet velocity θ [7]:

θ =
Uj

W · f
(8)

where W is the jet length (see figure 1), and f the
oscillation frequency.
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Figure 3: Bifurcation diagram of system (6). Ab-
scissa: dimensionless delay ω1τ . Ordinate: am-
plitude of the oscillating variable v(t̃). Symbols
× represent the stable parts of the branches. Pa-
rameters value: m = 1, α = 10 ; a1 = 70 ;
ω1 = 2260 ; Q1 = 50. Values of n are computed
using equation (24) in appendix B.

Indeed, the representation, in figure 4, of the os-
cillation amplitude of the variable v(t̃) as a func-
tion of θ for each branch plotted in figure 3 shows
a clear separation between aeolian and standard
regimes in two different zones of θ. This is inter-
esting since for flute-like instruments playing un-
der normal conditions, θ is expected to be larger
than 4 [8]. Figure 4 shows the same trend for
the standard regime. On the contrary, we observe
that all aeolian regimes are located in a zone de-
fined by θ < 4. This feature is in agreement with
the fact that they occur at low jet velocities. In-
deed, for the same oscillation frequency, θ is neces-
sarily lower for an aeolian regime than for a stan-
dard regime.

Moreover, the bifurcation diagram displayed
in figure 4 shows a particular amplitude evolu-
tion for aeolian regimes. Indeed, one notices, for
such regimes, a bell-shaped curve, whereas for the
"standard" regime one can observe a saturation of
the amplitude. Thus, while the standard regime
exists when τ tends to zero (and thus when the
jet velocity Uj tends to infinity - see equation (3)),
aeolian regimes conversely exist only for restricted
ranges of these two parameters.

3.2.2 Frequency evolutions

Figure 5 presents the oscillation frequency as a
function of θ, along the different periodic solution
branches shown in figure 3. Similarly to the am-
plitude, it reveals different evolution patterns for
aeolian and standard regimes :
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f1
(with f1 = ω1

2π
the

resonance frequency). Symbols × represent the
stable parts of the branches.

• For the standard regime, one observes an im-
portant frequency deviation just after the os-
cillation threshold. Then the frequency tends
toward the resonance frequency f1 = ω1/2π.

• For aeolian regimes, one observes an impor-
tant frequency deviation just after the oscil-
lation threshold, followed by a second fre-
quency deviation after a plateau around the
resonance frequency (inflection point at f1 =
ω1/2π).

3.3 Experimental illustration

Because of the important simplification of the
model, a quantitative comparison between
experimental and numerical results is not pos-
sible. However, a qualitative comparison is
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interesting, and proves that the dynamical sys-
tem studied in this paper reproduces some key
features of the behaviour of flute-like instruments.

Experimentally, aeolian sounds occur for very
low blowing pressures (which correspond to high
values of the delay τ), that is to say when the
musician blows very gently in the instrument. It
is why experimental observation of such sounds is
particularly complicated. The use of a pressure-
controlled artificial mouth (which permits to play
the instrument without musician, and to control
very precisely the mouth pressure) provides
new information about the dynamics of the
instrument [9]. The simultaneous measurement
of the mouth pressure (related to the jet velocity
Uj by the stationary Bernoulli equation) and the
acoustic pressure under the labium (see figure 1)
allows to study the influence of some parameters
on the characteristics of the oscillation regimes.

Time-frequency analysis of the sound produced
by a recorder during both an increasing and a de-
creasing ramp of the blowing pressure (figure 6)
highlights several oscillation regimes (zones A and
C) below the threshold of the principal regime cor-
responding to the expected note (zone B). Figure
7 represents, for the same data, the oscillation am-
plitude as a function of θ. As for aeolian regimes
on the numerical bifurcation diagram (figure 4),
we observe that one of these regimes is located in
a zone defined by θ < 4, whereas the principal
regime (zone B) appears for θ > 4. If the second
one (regime A2-C2 in figures 6 and 7) appears for
higher values of θ (about 5 < θ < 6.5), it nev-
ertheless can be considered as an aeolian regime.
Indeed, it corresponds to an oscillation on the first
resonance mode of the pipe, whereas regimes A1-
C1 and B corresponds to oscillations on the second
resonance mode. Consequently, the oscillation fre-
quency being lower, the value of θ is increased.

Moreover, for the two sounds which appear for
low values of the mouth pressure, the bell-shaped
evolution of the oscillating amplitude is clearly
visible, recalling the characteristics of aeolian
regimes of the model. On the contrary, the
oscillating amplitude of the principal regime
shows a different evolution, comparable to the
one observed in figure 4 for the standard regime.
As far as the frequency is concerned, large
variations can be observed in figure 6, particu-
larly close to the threshold of the standard regime.
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Thereby, the very simple model studied here
produces aeolian regimes, which present partic-
ular features which recalls some experimental ob-
servations on a recorder played by an artificial
mouth. Moreover, these observations on the am-
plitude and frequency evolution patterns for aeo-
lian regimes can recall the results of Meissner in
the case of a cavity resonator excited by an air jet
[7].

4 Jumps between periodic solu-
tion branches

In this section, we study system (6) as in section 3,
with the addition of a second acoustic mode (i.e.
two terms in equation (4), m = 2). As for an open
cylindrical resonator, the resonance frequency of
the second mode is chosen close to twice the first
resonance frequency [2].

4.1 Register change and hysteresis

phenomenon

The use of a transfer function including two modes
implies the existence of two standard regimes.
Each of these regimes results from the coupling
between one of the two acoustic modes and the
first hydronamic mode of the jet (n = 0).

For a second resonance frequency slightly lower
than twice the first one, numerical continuation
of the corresponding periodic solution branches
leads to the bifurcation diagram shown in figure
10 - (a). As previously, it represents the oscillating
amplitude of the variable v(t̃) as a function of the
dimensionless delay τ̃ . Here again, the stability
is adressed by examining the Floquet multipliers.
However, there is a major difference with the case
where only one mode of the resonator is consid-
ered: indeed, both stable and unstable portions
appear (symbol × corresponds to stable parts of
the branches).

More precisely, we can distinguish three differ-
ent zones in figure 10 - (a), highlighted in figure 8,
which is a zoom of figure 10 - (a), for 0 < ω1τ < 2:

• the first one is defined for ω1τ > 0.7; in this
case the first standard regime (called "first
register" in the context of musical acoustics),
is stable.

• for 0.1 < ω1τ < 0.7, the two standard

regimes (i.e. the first and the second reg-
ister) are simultaneously stable.

• in the third zone, where ω1τ < 0.1, the first
register is unstable, and the second register
is the only stable solution of the system.

The existence of a range of the dimensionless
delay τ̃ (between 0.1 and 0.7) where two peri-
odic solutions are simultaneously stable implies
the existence of an hysteresis phenomenon. In-
deed, starting from a value of τ̃ where the first
register is the only stable solution, and decreasing
the delay τ̃ (i.e. "blowing harder"), we observe
that the system follows the branch corresponding
to the first register until it becomes unstable (for
τ̃ = 0.1). At this point, the system synchronizes
with the second register.

Starting from this new point, and increasing the
delay τ (i.e. "blowing softer"), the system follows
the branch corresponding to the second register.
It is only when this second branch becomes un-
stable (for τ̃ = 0.7) that the sytem comes back to
the first register.

A time-domain simulation, using a Bogacki-
Shampine method based on a third-order Runge-
Kutta scheme [25] allows to confirm and highlight
this hysteresis phenomenon. In order to com-
pare the different results, the oscillating ampli-
tudes computed with this time-domain solver, for
both an increasing and a decreasing ramp of the
delay τ̃ are superimposed on the corresponding
bifurcation diagram (figure 8).
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4.2 Register change: experimental il-

lustration

In flute-like instruments, it is well-known by musi-
cians that blowing harder in the instrument even-
tually leads to a "jump" to the note an octave
above. Figure 9 represents the frequency evolu-
tion of the sound produced by a treble recorder
played by the artificial mouth, during an increas-
ing and a decreasing ramp of the alimentation
pressure.
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Figure 9: Playing frequency of a treble recorder
blown by an artificial mouth, during an increasing
(solid line) and decreasing (dashed line) blowing
pressure ramp, showing jumps between the two
standard regimes. F fingering (third octave).

These experimental results illustrate the
register change phenomenon, corresponding
to the "jump" from a periodic solution branch
of frequency f1 to another of frequency f2 ≈ 2 ·f1.

An hysteresis is also observed. Recalling that
in flute-like instruments, the blowing pressure is
related to the convection delay τ of the hydrody-
namic perturbations along the jet, these experi-
mental results can be compared to numerical re-
sults presented in figure 8. It shows again that
the system under study reproduces classical be-
haviour of recorder-like instruments.

5 Influence of the ratio of the
two resonance frequencies

Numerical continuation allows a systematic inves-
tigation of the parameters influence on the oscilla-
tion regimes. In this section, we focus on the influ-
ence of the ratio of the two resonance frequencies.
Indeed, this parameter is well-known to instru-
ment makers and players for its influence on the
sound characteristics [28]. Moreover, its influence

has been proved for other musical instruments (for
example, in [16]).

5.1 Stability of periodic solution

branches

Figures 10 present bifurcation diagrams obtained
for different values of this ratio (respectively ω2

ω1
=

1.99 ; ω2

ω1
= 2 et ω2

ω1
= 2.05). Only the second

resonance frequency ω2 varies from one case to the
other; all the others parameters are kept constant.

For all these bifurcation diagrams, the bell-
shaped curve corresponds to an aeolian regime
(see section 3.2), the dark gray curve corresponds
to the first register, the light gray dashed one cor-
responds to the second register, and symbols ×
represent stable parts of the branches.

Although the resonance frequency of the sec-
ond mode is only slightly modified from one case
to the other, one observes significant changes in
the stability properties of the two registers. In
the case of two perfectly harmonic acoustic modes
(ω2 = 2ω1), represented in figure 10 - (b), the first
register is initially stable, and becomes unstable
when the delay τ̃ decreases (i.e. when the blowing
pressure increases). On the contrary, the second
register is first unstable and becomes stable when
the delay τ̃ decreases. For the range of τ̃ located
between the loss of stability of the first register
and the stabilization of the second register (i.e.
between the two vertical dot-dashed lines in fig-
ure 10 - (b)), there is no stable periodic or static
solution.

In order to determine the nature of the differ-
ent resulting bifurcations, we propose to study
Floquet multipliers in the vicinity of stability
changes. As shown in figure 11, stabilization of
the second register occurs, at τ̃ = 0.68, by the
crossing of the unit circle by two conjugate com-
plex Floquet multipliers.

In the case of a direct bifurcation, this Hopf
bifurcation of the limit cycle leads to a quasi pe-
riodic regime [10]. The numerical tools used here
do not allow numerical continuation of this kind
of solutions. On the other hand, time-domain
integration methods allow to study such regimes.
Figure 12 shows the time-frequency analysis of
the signal obtained with the same time-domain
solver as previously, by increasing the dimension-
less delay τ̃ in a quasi-static way from an initial
value for which the second register is stable,
to a final value for which the first register is
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Figure 10: Bifurcation diagrams of the system (6),
obtained with numerical continuation, for differ-
ent values of inharmonicity of the two resonance
modes. Parameter values: m = 2 ; α = 340 ;
a1 = 10 ; a2 = 30 ; Q1 = 100 ; Q2 = 100 ;
ω1 = 2764. (a) Top: ω2 = 5510, ω2

ω1
= 1.99.

(b) Middle: ω2 = 5528, ω2

ω1
= 2. (c) Bottom:

ω2 = 5654, ω2

ω1
= 2.05. Abscissa: dimensionless

delay ω1τ . Ordinate: oscillating amplitude of the
variable v. Symbols × represent the stable parts
of the branches.

stable. We note three different regimes: zones
A (ω1τ < 0.71) and C (ω1τ > 0.9) correspond
respectively to the second and first registers.
In zone B (0.71<ω1τ < 0.9), the presence of
multiple frequencies reveals the existence of a
quasiperiodic regime, which agrees with the
results of Floquet analysis.

As shown in figure 10 - (a), a small decrease
of the second mode resonance frequency (of
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Figure 11: Representation in the complex plane
of the Floquet multipliers for a point located just
before the stabilization of the second periodic so-
lution branch (related to the second register). Pa-
rameter values are the same as for figure 10 - (b).
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Figure 12: Time-frequency representation ob-
tained by a time-domain simulation of the system
(6), using a third-order Runge-Kutta scheme. A
slowly increasing ramp of the dimensionless delay
ω1τ is achieved. Zone A corresponds to the second
register, zone C corresponds to the first register,
and zone B to a quasiperiodic regime. Parameter
values are the same as for figure 10 - (b).
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about 0.6 %) compared to the harmonic case
ω2 = 2ω1 does not alter the general form of the
bifurcation diagram: the first register is stable
for high values, whereas the second register is
first unstable and becomes stable when the delay
τ̃ decreases. However, the stability ranges are
significantly modified. Compared to the previous
case, the first register is stable for smaller values
of the delay τ̃ , which leads to the existence of a
range of τ̃ where the two registers are simulta-
neously stable. In the later case, the hysteresis
phenomenon emphasized in section 4 becomes
possible.

These stability ranges are affected again by an
increase of the second mode resonance frequency
(leading to a difference of about 2% between ω2

and 2ω1). Figure 10 - (c) shows the resulting
bifurcation diagram. One can notice that the first
register is now stable for all values of τ̃ between
2 and 0. Hence, once the system is synchronized
on this branch of solutions, no register change is
possible, and the only way to make the system
oscillate on the second register is to change initial
conditions. Time-domain simulations results (not
presented here) show good agreement with these
characteristics.

5.2 Experimental illustration

As emphasized in section 1, the simplicity of the
studied system prevents a quantitative compari-
son between numerical results and experimental
datas. However, we can qualitatively compare
some experimental phenomena with numerical
results presented in the previous section.

The use of an artificial mouth with a real instru-
ment highlights the influence of the inharmonicity
on the sound characteristics. Indeed, the mea-
sured inharmonicity depends on the fingering.

Thus, for a small inharmonicity (ω2

ω1
≈ 2.04), an

increasing mouth pressure ramp (corresponding
to a decrease of the convection delay τ) causes a
regime change from the first register to the second
register, including an hysteresis effect (as shown
in figure 13).

For a larger inharmonicity of the resonance
frequencies (ω2

ω1
≈ 1.92), the same experiment

leads to a very different behaviour. As shown
in figure 14, we observe a transition from the
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Figure 13: Time-frequency representation (top)
of the sound of a treble recorder played by an ar-
tificial mouth during an increasing and decreas-
ing blowing pressure ramp (bottom). G fingering
(3th octave), with a slightly positive inharmonic-
ity (ω2

ω1
≈ 2.04).

first register to a quasiperiodic regime whitout
hysteresis effect.
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Figure 14: Time-frequency representation (top) of
the sound of a treble recorder played by an arti-
ficial mouth during an increasing and decreasing
blowing pressure ramp (bottom). B-flat finger-
ing (3th octave), with a significant negative in-
harmonicity (ω2

ω1
≈ 1.92).

Comparison of these results with those of fig-
ures 10 - (a), 10 - (b) and 10 - (c) proves that the
behaviour of both the studied system and the real
instrument strongly depends on the inharmonicity
of the two first resonance frequencies.

A small change of this parameter value is
enough to alter the oscillation thresholds of
the different regimes, their stability properties,
or even the nature of the oscillation regimes.
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Depending on the case, the system can "jump"
between branches of periodic solutions (with hys-
teresis effect), or jump from a periodic solution
branch to a quasiperiodic regime.

Moreover, these results seem to be consistent
with the experience of a recorder maker [28]: ac-
cording to his experience, the first register is sta-
ble for a wider range of alimentation pressure in
the case of strong inharmonicity and the case of a
perfect harmonicity should be avoided to prevent
instabilities.

6 Conclusion

We have studied a nonlinear delay dynamical
sytem with small number of degrees of freedom.
We focused on periodic solutions. Indeed, this
system is inspired by the fonctioning of flute-like
instruments and in most cases, notes produced
by these instruments are periodic oscillations.

Because of the drastic simplifications, the
studied system can not be considered a priori as
a model of the functioning of these instruments.
However, as shown in this paper, the use of
numerical continuation tools, providing a more
global vision of the dynamics of the system,
highlights that the system not only presents a
considerable variety of periodic regimes, but also
has a second interest. Indeed, it qualitatively
reproduces a lot of phenomena observed exper-
imentally on flute-like instruments : amplitude
and frequency evolutions for both standard and
aeolian regimes, regime changes with hysteresis
effect, and quasi periodic oscillations.

We can furthermore investigate the influence of
some parameters related to instrument maker’s
issues. We focused here on the role of the inhar-
monicity of the two first resonance frequencies.
Analysis of bifurcation diagrams leads to results
that are consistent with the empirical knowledge
of an instrument maker.

However, it would be hazardous to use the stud-
ied dynamical system as a predictive tool, for ex-
ample for the design of musical instruments. In-
deed, some parameters of the system can not be
related to mesurable physical quantities. More-
over, as we emphasized in section 1, some impor-
tant physical phenomena have not been taken into

account. These two elements make vain any at-
tempt of quantitative comparison between numer-
ical and experimental results. Particularly, we did
not discussed about the sound timbre, which cor-
responds to the spectrum of the sound produced
by the instrument. This characteristics is essen-
tial in a musical context since it allows us to dis-
tinguish, in the case of a steady-state regime, the
sound of a flute from that, for example, of a trum-
pet. The system studied here can not be used
to predict the sound timbre, since some elements
known for their significant influence on the spec-
trum have been neglected:

• the offset between the position of the labium
and the channel exit. Due to symmetry prop-
erties of the nonlinear function, this parame-
ter controls the ratio between even and odd
harmonics. [26]

• nonlinear losses due to the flow separation at
the labium, which have an important influ-
ence on the sound level.[23]

• the dipolar character of the pressure source,
created by the oscillation of the jet around
the labium, which favors high frequencies
[11].

Taking into account these two first elements do
not compromise the use of the approach presented
in this paper. Only the number of parameters
and degree of freedom (and thus the computation
time) increases. However, taking into account the
third element involves the presence of a delayed
derivative term in the right-hand side of the sec-
ond equation of system (1). This change trans-
forms the delay system into a neutral delay dy-
namical system, and thus introduces additional
difficulties in numerical continuation and system
analysis [17].
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A DDE-Biftool: Reformulation

of the studied system

To be implemented in the software DDE-Biftool,
system (1) needs to be reformulated as follows:

ẋ = f(x(t), x(t− τ), γ) (9)

where τ is a delay, x the vector of state variables,
and γ the set of parameters.

We detail here such a reformulation in the case of
a single-mode transfer function (equation (4)):

Y (ω) =
jω · a1

ω2

1
− ω2 + jω ω1

Q1

(10)

where ω is the pulsation, and a1, ω1 and Q1 are
respectively the modal amplitude, the resonance
pulsation and the quality factor of the resonance
mode.

Let us inject equation (10) in the third equation
of system (1):

V ·

[

ω2

1
− ω2 + jω

ω1

Q1

]

= jω · a1 · P. (11)

An inverse Fourier transform leads to:

v̈(t) + ω2

1
· v(t) +

ω1

Q1

· v̇(t) = a1 · ṗ(t). (12)

The right-hand side of this expression can be de-
veloped using the second equation of system (1):

p(t) = α · tanh [z(t)] . (13)

Differentiating with respect to time, and using the
first equation of system (1), we obtain:

ṗ(t) = α · ż(t) ·
{

1− tanh2[z(t)]
}

= α · v̇(t− τ) ·
{

1− tanh2[v(t− τ)]
} (14)

Injecting this expression in equation (12) leads to:

v̈(t) +
ω1

Q1

v̇(t) + ω2

1v(t) = a1α · v̇(t− τ)

·
{

1− tanh2[v(t− τ)]
}

(15)

To improve numerical conditioning of the prob-
lem, it is convenient to make the temporal vari-
ables dimensionless. Let us introduce the new
variables:

{

t̃ = ω1 · t
τ̃ = ω1 · τ

Equation (15) becomes:

d2v(t̃)

d( t̃
ω1
)2

+
ω1

Q1

·
d(v(t̃))

d( t̃
ω1
)

+ ω2

1
· v(t̃)

= a1α
d[v(t̃ − τ̃)]

d( t̃
ω1
)

·
{

1− tanh2[v(t̃− τ̃)]
}

.

(16)

It leads to:

v̈(t̃) +
1

Q1

· v̇(t̃) + v(t̃)

=
a1α

ω1

· v̇(t̃− τ̃) ·
{

1− tanh2
[

v(t̃− τ̃)
]}

,
(17)

where v̇ define the derivative of v with respect to
dimensionless time t̃.
We define a new variable:

y(t̃) = v̇(t̃), (18)

which leads to the correct form of the system
(given by equation (9)):






















v̇(t) =y(t)

ẏ(t̃) =
a1α

ω1

· y(t̃− τ̃) ·
{

1− tanh2
[

v(t̃− τ̃)
]}

− v(t̃)−
1

Q1

y(t̃).

(19)

Generalization to a system including m res-
onance modes is straightforward. In this case,
equation (4) contains m terms (with m > 1):

Yin =
m
∑

k=1

jω · ak
ω2

k − ω2 + jω ωk

Qk

(20)

and it leads to a system of 2m equations (i.e. 2
equations by resonance mode), of the following
form:



























































∀i = [1, 2...,m] :

v̇i(t̃) = yi(t̃)

ẏi(t̃) =
aiα

ω1

{

1− tanh2

[

m
∑

k=1

vk(t̃− τ̃)

]}

·
m
∑

k=1

[

yk(t̃− τ̃)
]

−

(

ωi

ω1

)

2

vi(t̃)

−
ωi

ω1Qi

yi(t̃).

(21)
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Figure 15: Real part of the eigenvalues λ of the
Jacobian matrix of system (6) along the static so-
lution branch, with respect to the dimensionless
delay τ ·ω1. Hopf bifurcations (intersections with
the horizontal line Re(λ) = 0) are highlighted
by circles. Parameters value: m = 1, α = 10 ;
a1 = 70 ; ω1 = 2260 ; Q1 = 50.

B Linear analysis around the
equilibrium solution

B.1 Eigenvalues of the Jacobian

Linearisation of system (6) around equilibrium so-
lution (7) allows to compute the eigenvalues λ of
the Jacobian matrix of the studied system along
this branch. Their real parts Re(λ) determine the
stability properties of the static solution: it is sta-
ble if and only if all the eigenvalues have negative
real parts [10].

Considering, for sake of clarity, a single acous-
tic mode of the resonator (i.e. m = 1 in equation
(4)), we represent, in figure 15, Re(λ) with re-
spect to the continuation parameter τ̃ , along the
branch of equilibrium solutions. This represen-
tation highlights that this static solution is sta-
ble for 1.8 < τ̃ < 4.1 and for 9.1 < τ̃ < 9.5.
Analysis of both real and imaginary parts of the
eigenvalues shows that the equilibrium solution
is a focus point when it is stable, and a saddle
point when it is unstable [10]. Moreover, inspec-
tion of the intersection points with the x-axis (de-
fined by Re(λ) = 0) determines Hopf bifurcations
[10], which correspond to the birth of the differ-
ent periodic solutions branches (here highlighted
by circles at τ̃ = 1.8 ; τ̃ = 4.1 ; τ̃ = 9.1 and
τ̃ = 9.5).

B.2 Open-loop gain

In a feedback loop system such as the one pre-
sented in section 2, another approach to get in-

formation about the destabilization mechanisms
of the equilibrium solution is to study the open-
loop gain Gol(ω) of the linearised system. Indeed,
the emergence of auto-oscillations from the equi-
librium solution (corresponding to a Hopf bifur-
cation) is possible under the two following condi-
tions [15]:

• modulus G of the linearised open-loop gain
Gol must be equal to 1.

• phase P of the linearised open-loop gain Gol

must be a multiple of 2π.

Writting system (1) in the frequency domain
leads to:







Z(ω) = V (ω)e−jωτ

P (ω) = α · tanh(Z(ω))
V (ω) = Y (ω) · P (ω)

(22)

and linearisation of the second equation around
the equilibrium solution (7) leads to the open-loop
gain:

Gol(ω) = αY (ω) · e−jωτ , (23)

The conditions of emergence of auto-oscillations
are then given by:

{

G(ω) = α · |Y (ω)| = 1
P (ω) = arg(Y (ω))− ωτ = −n · 2π

(24)

where n is an integer.

To exemplify the conditions given by equation
(24), let us consider a transfer function Y (ω)
representing the first two modes of a cylindri-
cal resonator (m = 2 in equation (4)). Figure
16 shows the variables G (top) and P (bottom)
with respect to ω. Two different values of the
delay τ are considered (corresponding to two dif-
ferent values of the jet velocity Uj = 6.5ms−1 and
Uj = 15.7ms−1) for phase P (G is independent
of τ). The points where equations (24) are ful-
filled are marked with circles (◦) when n = 0 and
squares (�) when n = 1. Plots of P for lower val-
ues of Uj (i.e. for higher values of τ) would have
revealed other intersections with horizontal lines
P = −n · 2π, with larger values of n.

Provided the amplification α is large enough,
this example highlights the existence of an infinity
of solutions of equations (24) for different values
of Uj, each solution being related to a given value
of the integer n. Therefore, for each value of n,
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Figure 16: Open-loop gain modulus G (top) and
phase P (bottom) defined by eq. (24), for two dif-
ferent values of the jet velocity Uj . Emergence of
self-sustained oscillations is possible if the mod-
ulus is equal to one (dash line, at the top), and
if the phase crosses a straight line with equation
P = −n · 2π (dash lines, at the bottom).

an instability may emerge from the equilibrium
branch.

From the physics point of view, the integer n
represents the rank of the hydrodynamic mode of
the jet involved in the emergence of the instability.
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