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Denote by Q( √ -m), with m a square-free positive integer, an imaginary quadratic number field, and by O-m its ring of integers. The Bianchi groups are the groups SL2(O-m). In the literature, there has been so far no example of p-torsion in the integral homology of the full Bianchi groups, for p a prime greater than the order of elements of finite order in the Bianchi group, which is at most 6.

However, extending the scope of the computations, we can observe examples of torsion in the integral homology of the quotient space, at prime numbers as high as for instance p = 80737 at the discriminant -1747. 1 ( Γ \H; Z) computed in figures 1 and 2. The first compuations of H 1 (Γ; Z) ⊃ H 1 ( Γ \H; Z) by Swan [Swa71] were on a range of Bianchi groups with vanishing cusp-complementary homology H cusp 1 ( Γ \H; Z). The first example where H cusp 1 ( Γ \H; Z) is non-zero, occurred in an unpublished calculation of Mennicke. Swan's manual computations of group presentations have been extended on the computer by Riley [Ril83]; and later Vogtmann [Vog85] and Scheutzow [Sch92] systematically computed H cusp 1 ( Γ \H; Q) for a large range of Bianchi groups. But they were still in in the range where Γ \H admits no homological torsion. Aranes [Ara10] has computed cell complexes for the Bianchi groups for all m 100, and Yasaki [Yas10] has obtained GL 2 (O -m )-cell complexes (with the Voronoï model) for the same range as well as all cases where O is of class number 1 or 2. This includes two cases, m = 74 and m = 86, where some 2-torsion appears in H cusp 1 ( Γ \H; Z), but the

Introduction

The Bianchi groups Γ := SL 2 (O -m ) may be considered as a key to the study of a larger class of groups, the Kleinian groups, which date back to work of Henri Poincaré [START_REF] Poincaré | [END_REF]. In fact, each non-co-compact arithmetic Kleinian group is commensurable with some Bianchi group [START_REF] Maclachlan | The arithmetic of hyperbolic 3-manifolds[END_REF]. A wealth of information on the Bianchi groups can be found in the monographs [START_REF] Fine | Algebraic theory of the Bianchi groups[END_REF], [START_REF] Elstrodt | Groups acting on hyperbolic space[END_REF], [START_REF] Maclachlan | The arithmetic of hyperbolic 3-manifolds[END_REF]. In the literature, there has been so far no example of p-torsion in the integral homology of the full Bianchi groups, for p a prime greater than the order of elements of finite order in the Bianchi group (a recent survey of relevant calculations has been given in [Şen12]). In fact, the numerical studies that have been made so far, were carried out in the range where the quotient space of hyperbolic 3-space H by the Bianchi group is often homotopy equivalent to a wedge sum of 2-spheres, 2-tori and Möbius bands [START_REF] Vogtmann | Rational homology of Bianchi groups[END_REF].

We make use of Serre's decomposition [START_REF] Serre | Le problème des groupes de congruence pour SL2[END_REF] of the homology group H 1 ( Γ \H; Z) into the direct sum of the free Abelian group with one generator for each element of the class group of O -m and the group H cusp latter two authors have not yet provided homology computations. When the absolute value of the discriminant gets greater, torsion in the integral homology of the quotient space appears (see figure 2) at prime numbers as high as for instance 80737 at the discriminant -1747, whereas the order of elements of finite order in SL 2 (O -m ) is at most 6. A growth of the torsion in the Abelianization of the Bianchi groups with respect to the covolume can be observed, which is in concordance with the predictions of [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF]. We can also observe that the occurring torsion subgroups are quite likely to occur as squares, but this is no general principle, because the discriminant -431 produces a counterexample to this phenomenon.

In order to obtain the results of figures 1 and 2, in section 7 we fill out Swan's concept [START_REF] Swan | Generators and relations for certain special linear groups[END_REF] and elaborate algorithms to compute a fundamental polyhedron for the action of the Bianchi groups on hyperbolic 3-space. Other algorithms based on the same concept have independently been implemented by Cremona [Cre84] for the five cases where O -m is Euclidean, and by his students Whitley [START_REF] Whitley | Modular symbols and elliptic curves over imaginary quadratic fields[END_REF] for the non-Euclidean principal ideal domain cases, Bygott [START_REF] Bygott | Modular forms and modular symbols over imaginary quadratic fields[END_REF] for a case of class number 2 and Lingham [START_REF] Lingham | Modular forms and elliptic curves over imaginary quadratic fields[END_REF], used in [START_REF] Cremona | Finding all elliptic curves with good reduction outside a given set of primes[END_REF]) for some cases of class number 3; and finally Aranés [START_REF] Aranés | Modular symbols over number fields[END_REF] for arbitrary class numbers. The algorithms presented in subsection 7 come with an implementation [START_REF] Rahm | Open source program (GNU general public license)[END_REF] for all Bianchi groups; and we make explicit use of the cell complexes it produces. The provided implementation [START_REF] Rahm | Open source program (GNU general public license)[END_REF] has been validated by the project PLUME of the CNRS, and is subject to the certificate C3I of the GENCI and the CPU. Other results obtained with the employed implementation are described in [START_REF]Homology and K-theory of the Bianchi groups[END_REF] and [START_REF] Rahm | On Level One Cuspidal Bianchi Modular Forms[END_REF]. On the computing clusters of the Weizmann Institute of Science, this implementation has been applied to establish a database of cell complexes for over 180 Bianchi groups, using over fifty processormonths. This database includes all the cases of ideal class numbers 3 and 5, most of the cases of ideal class number 4 and all of the cases of discriminant absolute value bounded by the number 500.

A computational advantage is the shortcut that we obtain in section 4 by linking the Borel-Serre compactification of the quotient space with Flöge's compactification in a long exact sequence, based on the recent paper [START_REF]On a question of Serre[END_REF]. Flöge's compactification admits a computationally easier cell structure, and we can explicitly calculate the equivariant Leray-Serre spectral sequence associated to it. In section 5, we describe how to assemble the homology of the Borel-Serre compactified quotient space and the Farrell cohomology of a Bianchi group to its full group homology with trivial Z-coefficients. Here, we divide by the center of SL 2 (O -m ), consisting of plus and minus the identity matrix, yielding PSL 2 (O -m ). As the center of SL 2 (O -m ) is the kernel of its action on hyperbolic 3-space, this does not change the quotient space. And for Γ := PSL 2 (O -m ), general formulae for its Farrell cohomology have been given [START_REF]Accessing the Farrell-Tate cohomology of discrete groups[END_REF] (based on [START_REF]The homological torsion of PSL2 of the imaginary quadratic integers[END_REF]).

1.1. Organization of the paper. We print the isomorphism types of H cusp 1 ( Γ \H; Z) that were obtained in figures 1 and 2. The homology group H 1 ( Γ \H; Z) is a direct sum of the former and the free Abelian group with rank the cardinality of the class group of O -m , which we also print. There is an inclusion of H 1 ( Γ \H; Z) into the group homology H 1 (Γ; Z); and the latter group homology is a quotient of the direct sum of H 1 ( Γ \H; Z) and the Farrell supplement that has been computed and printed in a separate column. In section 2, we define the Bianchi fundamental polyhedron, which induces our cell structure on Γ \H. We use it in section 3 to obtain the Flöge cellular complex, which we connect in section 4 to the Borel-Serre compactification of Γ \H. Then we proceed to H 1 (PSL 2 (O -m ); Z) in section 5, describe Swan's concept in section 6 and its realization in section 7. 

∆ m class group H cusp 1 Farrell supplement -7 7 {1} 0 Z/2 -8 2 {1} 0 Z/2 ⊕ Z/3 -11 11 {1} 0 Z/3 -15 15 Z/2 0 Z/2 ⊕ Z/3 -19 19 {1} 0 0 -20 5 Z/2 0 (Z/2) 2 ⊕ Z/3 -23 23 Z/3 0 Z/2 ⊕ Z/3 -24 6 Z/2 0 Z/2 ⊕ Z/3 -31 31 Z/3 0 Z/2 -35 35 Z/2 Z Z/2 ⊕ Z/3 -39 39 Z/4 0 Z/2 ⊕ Z/3 -40 10 Z/2 Z (Z/2) 2 ⊕ Z/3 -43 43 {1} Z 0 -47 47 Z/5 0 Z/2 ⊕ Z/3 -51 51 Z/2 Z Z/3 -52 13 Z/2 Z (Z/2) 2 -55 55 Z/4 Z Z/2 ⊕ Z/3 -56 14 Z/4 Z (Z/2) 2 ⊕ Z/3 -59 59 Z/3 Z Z/3 -67 67 {1} Z 2 0 -68 17 Z/4 Z (Z/2) 2 ⊕ Z/3 -71 71 Z/7 0 Z/2 ⊕ Z/3 -79 79 Z/5 Z (Z/2) 3 -83 83 Z/3 Z 2 Z/3 -84 21 Z/2 × Z/2 Z 3 (Z/2) 3 ⊕ (Z/3) 2 -87 87 Z/6 Z 2 Z/2 ⊕ Z/3 -88 22 Z/2 Z 3 Z/2 ⊕ Z/3 -91 91 Z/2 Z 3 Z/2 -95 95 Z/8 Z Z/2 ⊕ Z/3 -103 103 Z/5 Z 2 Z/2 -104 26 Z/6 Z 2 (Z/2) 2 ⊕ (Z/3) 2 -107 107 Z/3 Z 3 (Z/3) 3 -111 111 Z/8 Z 2 Z/2 ⊕ Z/3 -115 115 Z/2 Z 5 Z/2 ⊕ Z/3 -116 29 Z/6 Z 3 (Z/2) 2 ⊕ Z/3 -119 119 Z/10 Z (Z/2) 2 ⊕ Z/3 -120 30 Z/2 × Z/2 Z 6 (Z/2) 3 ⊕ (Z/3) 3 -123 123 Z/2 Z 5 Z/3 -127 127 Z/5 Z 3 Z/2 -131 131 Z/5 Z 3 Z/3 -132 33 Z/2 × Z/2 Z 6 (Z/2) 3 ⊕ (Z/3) 4 -136 34 Z/4 Z 4 (Z/2) 4 ⊕ Z/3 -139 139 Z/3 Z 4 0 -143 143 Z/10 Z 2 Z/2 ⊕ (Z/3) 2 -148 37 Z/2 Z 6 (Z/2) 4 -151 151 Z/7 Z 3 Z/2 -152 38 Z/6 Z 4 Z/2 ⊕ Z/3 -155 155 Z/4 Z 6 Z/2 ⊕ Z/3 -159 159 Z/10 Z 4 Z/2 ⊕ Z/3 -163 163 {1} Z 6 0 -164 41 Z/8 Z 4 (Z/2) 2 ⊕ Z/3 -167 167 Z/11 Z 2 Z/2 ⊕ Z/3 -168 42 Z/2 × Z/2 Z 9 (Z/2) 3 ⊕ (Z/3) 2 -179 179 Z/5 Z 5 Z/3 -183 183 Z/8 Z 6 Z/2 ⊕ Z/3 -184 46 Z/4 Z 7 (Z/2) 2 ⊕ Z/3 -187 187 Z/2 Z 7 Z/3 -191 191 Z/13 Z 2 Z/2 ⊕ Z/3 -195 195 Z/2 × Z/2 Z 11 (Z/2) 2 ⊕ (Z/3) 2 -199 199 Z/9 Z 4 Z/2 -203 203 Z/4 Z 8 Z/2 ⊕ Z/3 -211 211 Z/3 Z 7 0 -212 53 Z/6 Z 8 (Z/2) 2 ⊕ Z/3 -215 215 Z/14 Z 4 Z/2 ⊕ Z/3 ∆ m class group H cusp 1 Farrell supplement -219 219 Z/4 Z 9 Z/2 ⊕ Z/3 -223 223 Z/7 Z 8 (Z/2) 3 -227 227 Z/5 Z 7 Z/3 -228 57 Z/2 × Z/2 Z 12 (Z/2) 3 ⊕ (Z/3) 2 -231 231 Z/6 × Z/2 Z 9 (Z/2) 2 ⊕ (Z/3) 2 -232 58 Z/2 Z 10 (Z/2) 2 ⊕ Z/3 -235 235 Z/2 Z 11 (Z/2) 3 ⊕ Z/3 -239 239 Z/15 Z 3 Z/2 ⊕ Z/3 -244 61 Z/6 Z 9 (Z/2) 2 -247 247 Z/6 Z 8 Z/2 -248 62 Z/8 Z 8 (Z/2) 2 ⊕ Z/3 -251 251 Z/7 Z 7 Z/3 -255 255 Z/6 × Z/2 Z 11 (Z/2) 2 ⊕ (Z/3) 3 -259 259 Z/4 Z 10 Z/2 ⊕ Z/3 -260 65 Z/4 × Z/2 Z 12 (Z/2) 5 ⊕ (Z/3) 2 -263 263 Z/13 Z 5 Z/2 ⊕ Z/3 -264 66 Z/4 × Z/2 Z 12 (Z/2) 2 ⊕ (Z/3) 3 -267 267 Z/2 Z 13 Z/3 -271 271 Z/11 Z 6 Z/2 -276 69 Z/4 × Z/2 Z 15 (Z/2) 3 ⊕ (Z/3) 2 -280 70 Z/2 × Z/2 Z 15 (Z/2) 3 ⊕ (Z/3) 2 -283 283 Z/3 Z 10 0 -287 287 Z/14 Z 7 (Z/2) 2 ⊕ Z/3 -291 291 Z/4 Z 13 Z/2 ⊕ Z/3 -292 73 Z/4 Z 12 (Z/2) 2 ⊕ Z/3 -295 295 Z/8 Z 11 Z/2 ⊕ Z/3 -296 74 Z/10 Z 9 ⊕ (Z/2) 2 (Z/2) 2 ⊕ (Z/3) 2 -299 299 Z/8 Z 10 Z/2 ⊕ (Z/3) 4 -303 303 Z/10 Z 12 Z/2 ⊕ Z/3 -307 307 Z/3 Z 11 0 -308 77 Z/4 × Z/2 Z 15 (Z/2) 3 ⊕ (Z/
Z 19 ⊕ (Z/2) 2 (Z/2) 2 ⊕ Z/3 -455 455 Z/10 × Z/2 Z 19 ⊕ (Z/2) 2 (Z/2) 2 ⊕ (Z/3) 2 -456 114 Z/4 × Z/2 Z 24 ⊕ (Z/2) 2 (Z/2) 2 ⊕ (Z/3) 4 -463 463 Z/7 Z 16 Z/2 -467 467 Z/7 Z 16 Z/3 -471 471 Z/16 Z 18 Z/2 ⊕ Z/3 -472 118 Z/6 Z 19 ⊕ (Z/2) 2 Z/2 ⊕ Z/3 -479 479 Z/25 Z 8 ⊕ (Z/3) 2 Z/2 ⊕ Z/3 -483 483 Z/2 × Z/2 Z 29 (Z/2) 2 ⊕ (Z/3) 2 -487 487 Z/7 Z 17 ⊕ (Z/13) 2 Z/2 -488 122 Z/10 Z 18 ⊕ (Z/2) 2 (Z/2) 2 ⊕ (Z/3) 2 -491 491 Z/9 Z 16 Z/3 -499 499 Z/3 Z 19 ⊕ (Z/3) 2 (Z/2) 2 -520 130 Z/2 × Z/2 Z 28 ⊕ (Z/2) 2 (Z/2) 4 ⊕ (Z/3) 2 -523 523 Z/5 Z 19 0 -532 133 Z/2 × Z/2 Z 29 (Z/2) 3 ⊕ (Z/3) 2 -547 547 Z/3 Z 21 ⊕ (Z/2) 2 (Z/3) 2 -555 555 Z/2 × Z/2 Z 35 (Z/2) 2 ⊕ (Z/3) 2 -568 142 Z/4 Z 25 ⊕ (Z/2) 2 (Z/2) 6 ⊕ Z/3 -571 571 Z/5 Z 23 0 -595 595 Z/2 × Z/2 Z 33 (Z/2) 2 ⊕ (Z/3) 4 -619 619 Z/5 Z 23 ⊕ (Z/3) 2 0 -627 627 Z/2 × Z/2 Z 35 (Z/3) 2 -643 643 Z/3 Z 27 Z/3 -667 667 Z/4 Z 28 Z/2 ⊕ Z/3 -683 683 Z/5 Z 26 Z/3 -691 691 Z/5 Z 26 ⊕ (Z/7) 2 0 -696 174 Z/6 × Z/2 Z 38 (Z/2) 3 ⊕ (Z/3) 3 -715 715 Z/2 × Z/2 Z 39 (Z/2) 2 ⊕ (Z/3) 2 -723 723 Z/4 Z 37 ⊕ (Z/2) 2 Z/2 ⊕ Z/3 -739 739 Z/5 Z 28 0 -760 190 Z/2 × Z/2 Z 42 ⊕ (Z/2) 2 (Z/2) 3 ⊕ (Z/3) 2 -763 763 Z/4 Z 34 Z/2 ⊕ Z/3 -787 787 Z/5 Z 30 0 -795 795 Z/2 × Z/2 Z 51 (Z/2) 2 ⊕ (Z/3) 3 -883 883 Z/3 Z 35 0 -907 907 Z/3 Z 36 ⊕ (Z/13) 2 0 -947 947 Z/5 Z 37 ⊕ (Z/89) 2 Z/3 -955 955 Z/4 Z 46 ⊕ (Z/2) 4 ⊕ (Z/3) 2 Z/2 ⊕ Z/3 -1003 1003 Z/4 Z 44 ⊕ (Z/3) 2 Z/2 ⊕ Z/3 -1027 1027 Z/4 Z 44 ⊕ (Z/2) 2 Z/2 ⊕ (Z/3) 3 -1051 1051 Z/5 Z 43 ⊕ (Z/13) 2 0 -1123 1123 Z/5 Z 44 ⊕ (Z/7) 2 0 -1227 1227 Z/4 Z 65 ⊕ (Z/2 2 ) 2 Z/2 ⊕ Z/3 -1243 1243 Z/4 Z 54 ⊕ (Z/3) 4 Z/2 ⊕ Z/3 -1387 1387 Z/4 Z 58 ⊕ (Z/167) 2 Z/2 ⊕ (Z/3) 3 -1411 1411 Z/4 Z 60 ⊕ (Z/2 4 ) 2 ⊕ (Z/43) 2 Z/2 ⊕ Z/3 -1507 1507 Z/4 Z 66 ⊕ (Z/3) 2 ⊕ (Z/5) 4 Z/2 ⊕ Z/3 -1555 1555 Z/4 Z 76 ⊕ (Z/2 2 ) 8 ⊕ (Z/11) 2 Z/2 ⊕ Z/3 -1723 1723 Z/5 Z 69 ⊕ (Z/7) 2 ⊕ (Z/23) 2 ⊕ (Z/883) 2 0 -1747 1747 Z/5 Z 70 ⊕ (Z/80737) 2 (Z/3) 2 -1867 1867 Z/5 Z 75 ⊕ (Z/2) 4 ⊕ (Z/7 2 ) 2 ⊕ (Z/137) 2 0 Figure 2. H cusp 1 ( Γ \H; Z)
, with its torsion decomposed into prime power factors, for some greater absolute values of the discriminant.

The Bianchi fundamental polyhedron

Let m be a squarefree positive integer and consider the imaginary quadratic number field Q( √ -m) with ring of integers O -m , which we also just denote by O. Consider the familiar action by fractional linear transformations (we give an explicit formula for it in lemma 21) of the group Γ := SL 2 (O) ⊂ GL 2 (C) on hyperbolic three-space, for which we will use the upper-half space model H. As a set,

H = {(z, ζ) ∈ C × R | ζ > 0}.
The Bianchi-Humbert theory [START_REF] Bianchi | Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî[END_REF], [START_REF] Humbert | Sur la réduction des formes d'Hermite dans un corps quadratique imaginaire[END_REF] gives a fundamental domain for this action. We will start by giving a geometric description of it, and the arguments why it is a fundamental domain.

Definition 1. A pair of elements (µ, λ) ∈ O 2 is called unimodular if the ideal sum µO +λO equals O.
The boundary of H is the Riemann sphere ∂H = C ∪ {∞} (as a set), which contains the complex plane C. The totally geodesic surfaces in H are the Euclidean vertical planes (we define vertical as orthogonal to the complex plane) and the Euclidean hemispheres centred on the complex plane.

Notation 2. Given a unimodular pair (µ, λ) ∈ O 2 with µ = 0, let S µ,λ ⊂ H denote the hemisphere given by the equation |µz -

λ| 2 + |µ| 2 ζ 2 = 1.
This hemisphere has centre λ/µ on the complex plane C, and radius

1/|µ|. Let B := (z, ζ) ∈ H: The inequality |µz -λ| 2 + |µ| 2 ζ 2 1
is fulfilled for all unimodular pairs (µ, λ) ∈ O 2 with µ = 0 . Then B is the set of points in H which lie above or on all hemispheres S µ,λ .

Lemma 3 ([Swa71]

). The set B contains representatives for all the orbits of points under the action of SL 2 (O) on H.

The action extends continuously to the boundary ∂H, which is a Riemann sphere. In Γ := SL 2 (O -m ), consider the stabiliser subgroup Γ ∞ of the point ∞ ∈ ∂H. In the cases m = 1 and m = 3, the latter group contains some rotation matrices like 0 , which we want to exclude. These two cases have been treated in [Men79], [START_REF] Schwermer | The integral homology of SL_2 and PSL_2 of Euclidean imaginary quadratic integers[END_REF] and others, and we assume m = 1, m = 3 throughout the remainder of this article. Then,

Γ ∞ = ± 1 λ 0 1 | λ ∈ O ,
which performs translations by the elements of O with respect to the Euclidean geometry of the upper-half space H.

Notation 4. A fundamental domain for Γ ∞ in the complex plane (as a subset of ∂H) is given by the rectangle

D 0 := {x + y √ -m ∈ C | 0 x 1, 0 y 1}, m ≡ 1 or 2 mod 4, {x + y √ -m ∈ C | -1 2 x 1 2 , 0 y 1 2 }, m ≡ 3 mod 4.
And a fundamental domain for Γ ∞ in H is given by

D ∞ := {(z, ζ) ∈ H | z ∈ D 0 }.
Definition 5. We define the Bianchi fundamental polyhedron as

D := D ∞ ∩ B.
It is a polyhedron in hyperbolic space up to the missing vertex ∞, and up to missing vertices at the singular points if O is not a principal ideal domain (see subsection 6.2). As Lemma 3 states Γ • B = H, and as

Γ ∞ • D ∞ = H yields Γ ∞ • D = B, we have Γ • D = H.
We observe the following notion of strictness of the fundamental domain: the interior of the Bianchi fundamental polyhedron contains no two points which are identified by Γ. Swan proves the following theorem, which implies that the boundary of the Bianchi fundamental polyhedron consists of finitely many cells.

Theorem 6 ([Swa71]

). There is only a finite number of unimodular pairs (λ, µ) such that the intersection of S µ,λ with the Bianchi fundamental polyhedron is non-empty.

Swan further proves a corollary, from which it can be deduced that the action of Γ on H is properly discontinuous.

The Flöge cellular complex

In order to obtain a cell complex with compact quotient space, we proceed in the following way due to Flöge [START_REF]Zur Struktur der PSL2 über einigen imaginär-quadratischen Zahlringen[END_REF]. The boundary of H is the Riemann sphere ∂H, which, as a topological space, is made up of the complex plane C compactified with the cusp ∞. The totally geodesic surfaces in H are the Euclidean vertical planes (we define vertical as orthogonal to the complex plane) and the Euclidean hemispheres centred on the complex plane. The action of the Bianchi groups extends continuously to the boundary ∂H. Consider the cellular structure on H induced by the Γ-images of the Bianchi fundamental polyhedron. The cellular closure of this cell complex in H ∪ ∂H consists of H and

Q( √ -m) ∪ {∞} ⊂ (C ∪ {∞}) ∼ = ∂H. The SL 2 (O -m )-orbit of a cusp λ µ in Q( √ -m) ∪ {∞} corresponds to the ideal class [(λ, µ)] of O -m .
It is well-known that this does not depend on the choice of the representative λ µ . We extend our cell complex to a cell complex X by joining to it, in the case that O -m is not a principal ideal domain, the SL 2 (O -m )-orbits of the cusps λ µ for which the ideal (λ, µ) is not principal. At these cusps, we equip X with the "horoball topology" described in [START_REF]Zur Struktur der PSL2 über einigen imaginär-quadratischen Zahlringen[END_REF]. This simply means that the set of cusps, which is discrete in ∂H, is located at the hyperbolic extremities of X : No neighbourhood of a cusp, except the whole X, contains any other cusp.

We retract X in the following, SL 2 (O -m )-equivariant, way. On the Bianchi fundamental polyhedron, the retraction is given by the vertical projection (away from the cusp ∞) onto its facets which are closed in H ∪ ∂H. The latter are the facets which do not touch the cusp ∞, and are the bottom facets with respect to our vertical direction. The retraction is continued on H by the group action. It is proven in [START_REF] Flöge | Zur Struktur der PSL2 über einigen imaginär-quadratischen Zahlringen[END_REF] that this retraction is continuous. We call the retract of X the Flöge cellular complex and denote it by X. So in the principal ideal domain cases, X is a retract of the original cellular structure on H, obtained by contracting the Bianchi fundamental polyhedron onto its cells which do not touch the boundary of H. In [START_REF] Rahm | The integral homology of PSL_2 of imaginary quadratic integers with non-trivial class group[END_REF], it is checked that the Flöge cellular complex is contractible.

Connecting Flöge cell complex and Borel-Serre compactification

Let Γ be a Bianchi group with O admitting as only units {±1}, i.e. we suppose O not to be the Gaussian or Eisenstein integers. In the latter two cases, the problem of the singular cusps treated here does not occur anyway. Let T i be the torus attached at the cusp i of Γ, and let x i and y i denote the cycles generating H 1 (T i ). Let P be the Bianchi fundamental polyhedron of Γ. Write "hyp. cells" for cells in the interior of hyperbolic space. Consider the short exact sequence of chain complexes obtained from collapsing the singular tori, 

∂ 3 ∂ 3 β 0 0 ⊕ ∂ 2 0 ⊕ ∂ 2 β 0 ⊕ ∂ 1 0 ⊕ ∂ 1
Poincaré's theorem on fundamental polyhedra tells us that ∂ 3 (P ) =

any cusp c T c , and hence ∂ 3 (P ) = T ∞ . From [START_REF]On a question of Serre[END_REF], we see that for every cusp c, there is a chain of hyperbolic 2-cells that we denote by ch(x c ) and which is mapped to the cycle x c by ∂ 2 . And furthermore, y c is in the cokernel of ∂ 2 (of course, this holds up to the appropriate permutation of the labels x c and y c ). This implies that ∂ 2 (ch(x ∞ )) = x ∞ and y ∞ is in the cokernel of ∂ 2 . As the quotient space is path-wise connected, the cokernel of ∂ 1 is isomorphic to Z. The above information tells us that the long exact sequence induced on integral homology by the map β concentrates in

0 singular s T s any cusp c T c / ∪cTc ⊕ H cusp 2 H cusp 2 s ch(x s ) s x s , y s c y c ⊕ H cusp 1 H cusp 1 ⊕ y ∞ 0 Z Z 0, β 2 β 1
where the maps without labels are the obvious restriction maps making the sequence exact; and where H cusp 

The equivariant spectral sequence to group homology

Let Γ := PSL 2 (O -m ), and let X be the Flöge cellular complex of section 3, the cell structure of which we subdivide until the cells are fixed pointwise by their stabilisers. We describe now how to assemble the homology of the Borel-Serre compactified quotient space (issue of the previous section) and the Farrell cohomology of Γ, for which general formulae have been given in [START_REF]Accessing the Farrell-Tate cohomology of discrete groups[END_REF] (based on [START_REF]The homological torsion of PSL2 of the imaginary quadratic integers[END_REF]), to the full group homology of Γ with trivial Z-coefficients. We proceed following [Bro82, VII] and [START_REF] Schwermer | The integral homology of SL_2 and PSL_2 of Euclidean imaginary quadratic integers[END_REF]. Let us consider the homology H * (Γ; C • (X)) of Γ with coefficients in the cellular chain complex C • (X) associated to X; and call it the Γ-equivariant homology of X. As X is contractible, the map X → pt. to the point pt. induces an isomorphism

H * (Γ; C • (X)) → H * (Γ; C • (pt.)) ∼ = H * (Γ; Z).
Denote by X p the set of p-cells of X, and make use of that the stabiliser Γ σ in Γ of any p-cell σ of X fixes σ pointwise. Then from

C p (X) = σ∈X p Z ∼ = σ ∈ Γ \X p Ind Γ Γσ Z,
Shapiro's lemma yields

H q (Γ; C p (X)) ∼ = σ ∈ Γ \X p H q (Γ σ ; Z);
and the equivariant Leray/Serre spectral sequence takes the form

E 1 p,q = σ ∈ Γ \X p H q (Γ σ ; Z) =⇒ H p+q (Γ; C • (X)),
converging to the Γ-equivariant homology of X, which is, as we have already seen, isomorphic to H p+q (Γ; Z) with the trivial action on the coefficients Z. As in degrees above the virtual cohomological dimension, which is 2 for the Bianchi groups, the group homology is isomorphic to the Farrell cohomology, we obtain the isomorphism type from the above mentioned general formulae.

In the lower degrees q ∈ {0, 1, 2}, the following terms remain on the E 2 -page, which is concentrated in the columns p = 0, 1, 2:

q = 2 s singular Z ⊕ 2-torsion ⊕ 3-torsion 2-torsion ⊕ 3-torsion 0 q = 1 s singular Z 2 ⊕ Farrell supplement 2-torsion ⊕ 3-torsion 0 q = 0 Z H 1 ( Γ \X; Z) H 2 ( Γ \X; Z) d 2 2,0 l l (( (( (( (( (( (( (( (( (( (( (( (( (( ( 
where the "Farrell supplement" is the cokernel of the map

σ ∈ Γ \X 0 H 1 (Γ σ ; Z) d 1 1,1 ←--- σ ∈ Γ \X 1 H 1 (Γ σ ; Z).
induced by inclusion of finite cell stabilisers. As the cells are fixed pointwise by their stabilisers, we see that for q > 0, the E 1 p,q -terms are concentrated in the two columns p = 0 and p = 1. We compute the bottom row (q = 0) of the above spectral sequence as the homology of the quotient space Γ \X. Then we infer from section 4 that the rational rank of the differential d 2 2,0 is the number of non-trivial ideal classes of O -m . Using Serre's decomposition of the homology group H 1 ( Γ \H; Z) into the direct sum of the free Abelian group with one generator for each element of the class group of O -m and the group H cusp 1 ( Γ \H; Z), and using the long exact sequence of section 4, we see that H 1 ( Γ \X; Z) ∼ = H cusp 1 ( Γ \H; Z) ⊕ Z. This has made it possible ot compute H cusp 1 ( Γ \H; Z) from the quotient space of the Flöge cellular complex in figures 1 and 2. Furthermore, we have an inclusion of H 1 ( Γ \H; Z) into the group homology H 1 (Γ; Z); and the latter group homology is a quotient of the direct sum of H 1 ( Γ \H; Z) and the Farrell supplement.

Swan's concept to determine the Bianchi fundamental polyhedron

This section recalls Richard G. Swan's work [START_REF] Swan | Generators and relations for certain special linear groups[END_REF], which gives a concept -from the theoretical viewpoint -for an algorithm to compute the Bianchi fundamental polyhedron. The set B which determines the Bianchi fundamental polyhedron has been defined using infinitely many hemispheres. But we will see that only a finite number of them are significant for this purpose and need to be computed. We will state a criterion for what is an appropriate choice that gives us precisely the set B. This criterion is easy to verify in practice. Suppose we have made a finite selection of n hemispheres. The index i running from 1 through n, we denote the i-th hemisphere by S(α i ), where α i is its centre and given by a fraction α i = λ i µ i in the number field Q( √ -m ). Here, we require the ideal (λ i , µ i ) to be the whole ring of integers O. This requirement is just the one already made for all the hemispheres in the definition of B. Now, we can do an approximation of notation 2, using, modulo the translation group Γ ∞ , a finite number of hemispheres.

Notation 7. Let B(α 1 , . . . , α n ) := (z, ζ) ∈ H: The inequality |µz -λ| 2 + |µ| 2 ζ 2
1 is fulfilled for all unimodular pairs (µ, λ) ∈ O 2 with λ µ = α i + γ, for some i ∈ {1, . . . , n} and some γ ∈ O . Then B(α 1 , . . . , α n ) is the set of all points in H lying above or on all hemispheres S(α i + γ), i = 1, . . . , n; for any γ ∈ O.

The intersection B(α 1 , . . . , α n )∩D ∞ with the fundamental domain D ∞ for the translation group Γ ∞ , is our candidate to equal the Bianchi fundamental polyhedron.

Convergence of the approximation.

We will give a method to decide when B(α 1 , . . . , α n ) = B. This gives us an effective way to find B by adding more and more elements to the set {α 1 , . . . , α n } until we find B(α 1 , . . . , α n ) = B. We consider the boundary ∂B(α 1 , . . . , α n ) of B(α 1 , . . . , α n ) in H ∪ C. It consists of the points (z, ζ) ∈ H ∪ C satisfying all the non-strict inequalities |µz-λ| 2 +|µ| 2 ζ 2 1 that we have used to define B(α 1 , . . . , α n ), and satisfy the additional condition that at least one of these non-strict inequalities is an equality. We will see below that ∂B(α 1 , . . . , α n ) carries a natural cell structure. This, together with the following definitions, makes it possible to state the criterion which tells us when we have found all the hemispheres relevant for the Bianchi fundamental polyhedron. Definition 8. We shall say that the hemisphere S µ,λ is strictly below the hemisphere S β,α at a point z ∈ C if the following inequality is satisfied:

z - α β 2 - 1 |β| 2 < z - λ µ 2 - 1 |µ| 2 .
This is, of course, an abuse of language because there may not be any points on S β,α or S µ,λ with coordinate z. However, if there is a point (z, ζ) on S µ,λ , the right hand side of the inequality is just -ζ 2 . Thus the left hand side is negative and so of the form -(ζ ′ ) 2 . Clearly, (z, ζ ′ ) ∈ S β,α and ζ ′ > ζ. We will further say that a point (z, ζ) ∈ H ∪ C is strictly below a hemisphere S µ,λ , if there is a point (z, ζ ′ ) ∈ S µ,λ with ζ ′ > ζ.

6.2. Singular points. We call cusps the elements of the number field K = Q( √ -m ) considered as points in the boundary of hyperbolic space, via an embedding K ⊂ C ∪ {∞} ∼ = ∂H.

We write ∞ = 1 0 , which we also consider as a cusp. It is well-known that the set of cusps is closed under the action of SL 2 (O) on ∂H; and that we have the following bijective correspondence between the SL 2 (O)-orbits of cusps and the ideal classes in O. A cusp λ µ is in the SL 2 (O)-orbit of the cusp λ ′ µ ′ , if and only if the ideals (λ ′ , µ ′ ) and (λ, µ) are in the same ideal class. It immediately follows that the orbit of the cusp ∞ = 1 0 corresponds to the principal ideals. Let us call singular the cusps λ µ such that (λ, µ) is not principal. And let us call singular points the singular cusps which lie in ∂B. It follows from the characterisation of the singular points by Bianchi that they are precisely the points in C ⊂ ∂H which cannot be strictly below any hemisphere. In the cases where O is a principal ideal domain, K ∪ {∞} consists of only one SL 2 (O)-orbit, so there are no singular points. We use the following formulae derived by Swan, to compute representatives modulo the translations by Γ ∞ , of the singular points.

Lemma 9 ([Swa71]

). The singular points of K, mod O, are given by

p(r+ √ -m) s , where p, r, s ∈ Z, s > 0, -s 2 < r s 2 , s 2 r 2 + m, and • if m ≡ 1 or 2 mod 4, s = 1, s | r 2 +
m, the numbers p and s are coprime, and p is taken mod s;

• if m ≡ 3 mod 4,
s is even, s = 2, 2s | r 2 + m, the numbers p and s 2 are coprime; p is taken mod s 2 . The singular points need not be considered in Swan's termination criterion, because they cannot be strictly below any hemisphere S µ,λ . 6.3. Swan's termination criterion. We observe that the set of z ∈ C over which some hemisphere is strictly below another is C or an open half-plane. In the latter case, the boundary of this is a line. Notation 10. Denote by L( α β , λ µ ) the set of z ∈ C over which neither S β,α is strictly below µ,λ nor vice versa. This line is computed by turning the inequality in definition 8 into an equation. Swan calls it the line over which the two hemispheres agree, and we will see later that the most important edges of the Bianchi fundamental polyhedron lie on the preimages of such lines. We now restrict our attention to a set of hemispheres which is finite modulo the translations in Γ ∞ . Consider a set of hemispheres S(α i + γ), where the index i runs from 1 through n, and γ runs through O. We call this set of hemispheres a collection, if every non-singular point z ∈ C ⊂ ∂H is strictly below some hemisphere in our set. Now consider a set B(α 1 , . . . , α n ) which is determined by such a collection of hemispheres.

Theorem 11 (Swan's termination criterion [START_REF] Swan | Generators and relations for certain special linear groups[END_REF]). We have B(α 1 , . . . , α n ) = B if and only if no vertex of ∂B(α 1 , . . . , α n ) can be strictly below any hemisphere S µ,λ .

In other words, no vertex v of ∂B(α 1 , . . . , α n ) can lie strictly below any hemisphere S µ,λ . Let us call height the coordinate ζ of the upper-half space model introduced at the beginning of section 2. With this criterion, it suffices to compute the cell structure of ∂B(α 1 , . . . , α n ) to see if our choice of hemispheres gives us the Bianchi fundamental polyhedron. This has only to be done modulo the translations of Γ ∞ , which preserve the height and hence the situations of being strictly below. Thus our computations only need to be carried out on a finite set of hemispheres. 6.4. Computing the cell structure in the complex plane. We will in a first step compute the image of the cell structure under the homeomorphism from ∂B(α 1 , . . . , α n ) to C given by the vertical projection. For each 2-cell of this structure, there is an associated hemisphere S µ,λ . The interior of this 2-cell consists of the points z ∈ C, where all other hemispheres in our collection are strictly below S µ,λ . Swan shows that this is the interior of a convex polygon. The edges of these polygons lie on real lines in C specified in notation 10.

A vertex is an intersection point z of any two of these lines involving the same hemisphere S µ,λ , if all other hemispheres in our collection are strictly below, or agree with, S µ,λ at z. 6.5. Lifting the cell structure back to hyperbolic space. Now we can lift the cell structure back to ∂B(α 1 , . . . , α n ), using the projection homeomorphism onto C. The preimages of the convex polygons of the cell structure on C, are totally geodesic hyperbolic polygons each lying on one of the hemispheres in our collection. These are the 2-cells of ∂B(α 1 , . . . , α n ).

The edges of these hyperbolic polygons lie on the intersection arcs of pairs of hemispheres in our collection. As two Euclidean 2-spheres intersect, if they do so non-trivially, in a circle centred on the straight line which connects the two 2-sphere centres, such an intersection arc lies on a semicircle centred in the complex plane. The plane which contains this semicircle must be orthogonal to the connecting line, hence a vertical plane in H. We can alternatively conclude the latter facts observing that an edge which two totally geodesic polygons have in common must be a geodesic segment. Lifting the vertices becomes now obvious from their definition. This enables us to check Swan's termination criterion.

We will now sketch Swan's proof of this criterion. Let P be one of the convex polygons of the cell structure on C. The preimage of P lies on one hemisphere S(α i ) of our collection. Now the condition stated in theorem 11 says that at the vertices of P , the hemisphere S(α i ) cannot be strictly below any other hemisphere. The points where S(α i ) can be strictly below some hemisphere constitute an open half-plane in C, and hence cannot lie in the convex hull of the vertices of P , which is P . Theorem 11 now follows because C is tessellated by these convex polygons.

Algorithms realizing Swan's concept

From now on, we will work on putting Swan's concept into practice. We can reduce the set of hemispheres on which we carry out our computations, with the help of the following notion.

Definition 12. A hemisphere S µ,λ is said to be everywhere below a hemisphere S β,α when:

λ µ - α β 1 |β| - 1 |µ|.
Note that this is also the case when S µ,λ = S β,α . Any hemisphere which is everywhere below another one, does not contribute to the Bianchi fundamental polyhedron, in the following sense.

Proposition 13. Let S(α n ) be a hemisphere everywhere below some other hemisphere S(α i ), where i ∈ {1, . . . , n -1}. Then B(α 1 , . . . , α n ) = B(α 1 , . . . , α n-1 ).

Proof. Write α n = λ µ and α i = θ τ with λ, µ, θ, τ ∈ O. We take any point (z, ζ) strictly below S µ,λ and show that it is also strictly below S τ,θ . In terms of notation 7, this problem looks as follows: we assume that the inequality |µz -λ| 2 + |µ| 2 ζ 2 < 1 is satisfied, and show that this implies the inequality |τ z -

θ| 2 + |τ | 2 ζ 2 < 1. The first inequality can be transformed into z -λ µ 2 + ζ 2 < 1 |µ| 2 . Hence, z -λ µ 2 + ζ 2 < 1 |µ| .
We will insert this into the triangle inequality for the Euclidean distance in C × R applied to the three points (z, ζ), ( λ µ , 0) and ( θ τ , 0), which is

z - θ τ 2 + ζ 2 < λ µ - θ τ + z - λ µ 2 + ζ 2 .
So we obtain z -θ τ 2 + ζ 2 < λ µ -θ τ + 1 |µ| . By definition 12, the expression on the right hand side is smaller than or equal to 1 |τ | . Therefore, we take the square and obtain

z -θ τ 2 + ζ 2 < 1 |τ | 2
, which is equivalent to the claimed inequality. Another notion that will be useful for our algorithm, is the following. Definition 14. Let z ∈ C be a point lying within the vertical projection of S µ,λ . Define the lift on the hemisphere S µ,λ of z as the point on S µ,λ the vertical projection of which is z.

Notation 15. Denote by the hemisphere list a list into which we will record a finite number of hemisphere s S(α 1 ), . . ., S(α n ). Its purpose is to determine a set B(α 1 , . . . , α n ) in order to approximate, and finally obtain, the Bianchi fundamental polyhedron. is finite. So, there exists an S µ,λ for which the norm of µ takes its maximum on this finite set. The variable N reaches this maximum for |µ| after a finite number of steps; and then Swan's termination criterion is fulfilled. The latter steps require a finite run-time because of propositions 19 and 20.

Swan explains furthermore how to obtain an a priori bound for the norm of the µ ∈ O occurring for such hemispheres S µ,λ . But he states that this upper bound for |µ| is much too large. So instead of the theory behind theorem 6, we use Swan's termination criterion (theorem 11 above) to limit the number of steps in our computations. We then get the following.

Observation 17. We can give bounds for |µ| in the cases where K is of class number 1 or 2 (there are nine cases of class number 1 and eighteen cases of class number 2, and we have done the computation for all of them). They are the following: Remark 18. In algorithm 1, we have chosen the value E by an extrapolation formula for observation 17. If this is greater than the exact bound for |µ|, the algorithm computes additional hemispheres which do not contribute to the Bianchi fundamental polyhedron. On the other hand, if E is smaller than the exact bound for |µ|, it will be increased in the outer while loop of the algorithm, until it is sufficiently large. But then, the algorithm performs some preliminary computations of the intersection lines and vertices, which cost additional run-time. Thus our extrapolation formula is aimed at choosing E slightly greater than the exact bound for |µ| we expect.

           K of
Proposition 19. Algorithm 2 finds all the hemispheres of radius 1 N , on which a 2-cell of the Bianchi fundamental polyhedron can lie. This algorithm terminates within finite time.

Proof.

• Directly from the definition of the hemispheres S µ,λ , it follows that the radius is given by 1 |µ| . So our algorithm runs through all µ in question. By construction of the Bianchi fundamental polyhedron D, the hemispheres on which a 2-cell of D lies must have their centre in the fundamental rectangle D 0 . By proposition 13, such hemispheres cannot be everywhere below some other hemisphere in the list.

• Now we consider the run-time of the algorithm. There are finitely many µ ∈ O the norm of which takes a given value. And for a given µ, there are finitely many λ ∈ O such that λ µ is in the fundamental rectangle D 0 . Therefore, this algorithm consists of finite loops and terminates within finite time.

• Now we consider the run-time. This algorithm consists of loops running through the hemisphere list, which has finite length. Within one of these loops, there is a loop running through the set of pairs of lines L( α β , λ µ ). A (far too large) bound for the cardinality of this set is given by the fourth power of the length of the hemisphere list. The steps performed within these loops are very delimited and easily seen to be of finite run-time.

Algorithm 3 Computing the minimal proper vertex height

Input: The hemisphere list {S(α 1 ), . . . , S(α n )}. Output: The lowest height ζ of a non-singular vertex of ∂B(α 1 , . . . , α n ). And the hemisphere list with some hemispheres removed which do not touch the Bianchi fundamental polyhedron.

for all pairs S β,α , S µ,λ in the hemisphere list which touch one another, do compute the line L( α β , λ µ ) of notation 10. end for for each hemisphere S β,α in the hemisphere list, do for each two lines L( α β , λ µ ) and L( α β , θ τ ) referring to α β , do Compute the intersection point of L( α β , λ µ ) and L( α β , θ τ ), if it exists. end for end for Drop the intersection points at which S β,α is strictly below some hemisphere in the list. Erase the hemispheres from our list, for which no intersection points remain. Now the vertices of B(α 1 , . . . , α n ) ∩ D ∞ are the lifts (specified in definition 14) on the appropriate hemispheres of the remaining intersection points. Pick the lowest value ζ > 0 for which (z, ζ) ∈ H is the lift on some hemisphere of a remaining intersection point z. Return ζ.

7.2. The cell complex and its orbit space. With the method described in subsection 6.4, we obtain a cell structure on the boundary of the Bianchi fundamental polyhedron. The cells in this structure which touch the cusp ∞ are easily determined: they are four 2-cells each lying on one of the Euclidean vertical planes bounding the fundamental domain D ∞ for Γ ∞ specified in notation 4; and four 1-cells each lying on one of the intersection lines of these planes. The other 2-cells in this structure lie each on one of the hemispheres determined with our realization of Swan's algorithm.

As the Bianchi fundamental polyhedron is a hyperbolic polyhedron up to some missing cusps, its boundary cells can be oriented as its facets. Once the cell structure is subdivided until the cells are fixed pointwise by their stabilisers, this cell structure with orientation is transported onto the whole hyperbolic space by the action of Γ.

7.3. Computing the vertex stabilisers and identifications. Let us state explicitly the Γ-action on the upper-half space model H, in the form in which we will use it rather than in its historical form.

Lemma 21 (Poincaré). If γ = a b c d ∈ GL 2 (C), the action of γ on H is given by γ

• (z, ζ) = (z ′ , ζ ′ ), where ζ ′ = | det γ|ζ |cz -d| 2 + ζ 2 |c| 2 , z ′ = d -cz (az -b) -ζ 2 ca |cz -d| 2 + ζ 2 |c| 2 .
From this operation formula, we establish equations and inequalities on the entries of a matrix sending a given point (z, ζ) to another given point (z ′ , ζ ′ ) in H. We will use them in algorithm 4 to compute such matrices. For the computation of the vertex stabilisers, we have (z, ζ) = (z ′ , ζ ′ ), which simplifies the below equations and inequalities as well as the pertinent algorithm. First, we fix a basis for O as the elements 1 and We observe that f (k) is a quadratic function in k ∈ Z ⊂ R, taking its values exclusively in R. Hence its graph has the shape of a parabola, and the negative values of f (k) appear exactly on the interval where k is between its two zeroes,

k ± = 2j m+1 ± 2 √ ∆ m+1 ,
where ∆ = m+1 rρj 2 m. This implies the third and fourth claimed inequalities. As k is a real number, ∆ must be non-negative in order that f (k) be non-positive. Hence j 2 1+ 1 m rρ , which gives the second claimed inequality.

Lemma 23. Under the assumptions of lemma 22, write d in the basis as q + sω, where q, s ∈ Z. Write cz in the basis as R(cz) + W (cz)ω, where R(cz), W (cz) ∈ Q. Then √ m 2 .

We express this as

q ± = R(cz) -W (cz) 2 + s 2 ± √ ∆, where ∆ = r ρ -r 2 |c| 2 -m W (cz) 2 -s 2 2
, which is the claimed equation. The condition that q must be a rational integer implies ∆ 0, which can be rewritten in the claimed inequalities.

We further state a simple inequality in order to prove that algorithm 4 terminates in finite time. Proof.

• The first claim is easily established using the bounds and formulae stated in lemmata 22 and 23.

• Now we consider the run-time. This algorithm consists of three loops the limits of which are at most linear expressions in 1 √ rρ . For s ± limit , we use lemma 24 and r 2 |c| 2 r ρ to see this (we get a factor |z| here, which we can neglect).

Finally, it should be said that the scope of computations one can do with geometric models for the Bianchi groups does not stop once the integral homology of the full group is known. There is further interest in homology with twisted coefficients, congruence subgroups and modular forms (see for instance [Şen11], [ŞT09]). Currently, Page [START_REF] Page | Computing arithmetic Kleinian groups[END_REF] is working on optimizing algorithms in order to obtain more cell complexes for Bianchi groups and other Kleinian groups.
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 222 , m ≡ 3 mod 4. As we have put m = 1 and m = 3, the only units in the ring O are ±1. We will use the notations ⌈x⌉ := min{n ∈ Z | n x} and ⌊x⌋ := max{n ∈ Z | n x} for x ∈ R. Lemma 22. Let m ≡ 3 mod 4. Let a b c d ∈ SL 2 (O) be a matrix sending (z, r) to (ζ, ρ) ∈ H. Write c in the basis as j + kω , where j, k ∈ Z. Then |c| 2 From the operation equation a b c d •(z, r) = (ζ, ρ), we deduce |cz -d| 2 + r 2 |c| 2 = r ρ and conclude r 2 |c| 2 r ρ , whence the first inequality. We insert |c| 2 = j -k jk into it, and obtain

Lemma 24 .

 24 Let K = Q( √ -m) with m = 3. Let c, z ∈ K. Write their product cz in the Q-basis {1, ω} for K as R(cz) + W (cz)ω. Then the inequality |W (cz)| |c| • |z| holds. Proof. Let x+ yω ∈ K with x, y ∈ Q. Our first step is to show that |y| |x + yω|. Consider the case m ≡ 1 or 2 mod 4. Then |x + yω| = x 2 + my 2 √ m|y| |y|, and we have shown our claim. Else consider the case m ≡ 3 mod 4. Then, |x + yω| = (x + ωy)(x + ωy) = x follows for m > 3. Now we have shown that |W (cz)| |cz|; and we use some embedding of K into C to verify the equation |cz| = |c| • |z|. Proposition 25. Let m ≡ 3 mod 4. Then algorithm 4 gives all the matrices a b c d ∈ SL 2 (O) with c = 0, sending (z, r) to (ζ, ρ) ∈ H. It terminates in finite time.
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7.1. The algorithm computing the Bianchi fundamental polyhedron. We now describe the algorithm that we have realized using Swan's description; it is decomposed into algorithms 1 through 3 below.

Initial step. We begin with the smallest value which the norm of a non-zero element µ ∈ O can take, namely 1. Then µ is a unit in O, and for any λ ∈ O, the pair (µ, λ) is unimodular. And we can rewrite the fraction λ µ such that µ = 1. We obtain the unit hemispheres (of radius 1), centred at the imaginary quadratic integers λ ∈ O. We record into the hemisphere list the ones which touch the Bianchi fundamental polyhedron, i.e. the ones the centre of which lies in the fundamental rectangle D 0 (of notation 4) for the action of Γ ∞ on the complex plane.

Step A. Increase |µ| to the next higher value which the norm takes on elements of O. Run through all the finitely many µ which have this norm. For each of these µ, run through all the finitely many λ with λ µ in the fundamental rectangle D 0 . Check that (µ, λ) = O and that the hemisphere S µ,λ is not everywhere below a hemisphere S β,α in the hemisphere list. If these two checks are passed, record (µ, λ) into the hemisphere list.

We repeat step A until |µ| has reached an expected value. Then we check if we have found all the hemispheres which touch the Bianchi fundamental polyhedron, as follows.

Step B. We compute the lines L( α β , λ µ ) of definition 10, over which two hemispheres agree, for all pairs S β,α , S µ,λ in the hemisphere list which touch one another. Then, for each hemisphere S β,α , we compute the intersection points of each two lines L( α β , λ µ ) and L( α β , θ τ ) referring to α β . We drop the intersection points at which S β,α is strictly below some hemisphere in the list. We erase the hemispheres from our list, for which less than three intersection points remain. We can do this because a hemisphere which touches the Bianchi fundamental polyhedron only in two vertices shares only an edge with it and no 2-cell. Now, the vertices of B(α 1 , . . . , α n ) ∩ D ∞ are the lifts of the remaining intersection points. Thus we can check Swan's termination criterion (theorem 11), which we do as follows. We pick the lowest value ζ > 0 for which (z, ζ) ∈ H is the lift inside Hyperbolic Space of a remaining intersection point z. If ζ 1 |µ| , then all (infinitely many) remaining hemispheres have radius equal or smaller than ζ, so (z, ζ) cannot be strictly below them. So Swan's termination criterion is fulfilled, we have found the Bianchi fundamental polyhedron, and can proceed by determining its cell structure. Else, ζ becomes the new expected value for 1 |µ| . We repeat step A until |µ| reaches 1 ζ and then proceed again with step B.

Algorithm 1 Computation of the Bianchi fundamental polyhedron

Input: A square-free positive integer m.

Output:

The hemisphere list, containing entries S(α 1 ),. . . ,S(α n ) such that

Let O be the ring of integers in Q( √ -m). Proof.

• The value ζ is the minimal height of the non-singular vertices of the cell complex ∂B(α 1 , . . . , α n ) determined by the hemisphere list {S(α 1 ), . . . , S(α n )}.

All the hemispheres which are not in the list, have radius smaller than 1 N . By remark 18, the inequality ζ 1 N will become satisfied; and then no nonsingular vertex of ∂B(α 1 , . . . , α n ) can be strictly below any of them. Hence by theorem 11, B(α 1 , . . . , α n ) = B; and we obtain the Bianchi fundamental polyhedron as B(α 1 , . . . , α n ) ∩ D ∞ .

• We now consider the run-time. By theorem 6, the set of hemispheres {S µ,λ | S µ,λ touches the Bianchi Fundamental Polyhedron} Algorithm 2 Recording the hemispheres of radius 1 N Input: The value N , and the hemisphere list (empty by default). Output: The hemisphere list with some hemispheres of radius 1 N added.

for a running from 0 through N within Z, do for b in Z such that |a + bω| = N , do Let µ := a + bω. for all the λ ∈ O with λ µ in the fundamental rectangle D 0 , do if the pair (µ, λ) is unimodular, then

Let L be the length of the hemisphere list. everywhere_below := false, j := 1. while everywhere_below = false and j L, do Let S β,α be the j'th entry in the hemisphere list; if S µ,λ is everywhere below S β,α , then everywhere_below := true. end if Increase j by 1. end while if everywhere_below = false, then Record S µ,λ into the hemisphere list.

end if end if end for end for end for

We recall that the notion "everywhere below" has been made precise in definition 12; and that the fundamental rectangle D 0 has been specified in notation 4.

Proposition 20. Algorithm 3 finds the minimal height occurring amongst the non-singular vertices of ∂B(α 1 , . . . , α n ). This algorithm erases only such hemispheres from the list, which do not change ∂B(α 1 , . . . , α n ). It terminates within finite time.

Proof.

• The heights of the points in H are preserved by the action of the translation group Γ ∞ , so we only need to consider representatives in the fundamental domain D ∞ for this action. Our algorithm computes the entire cell structure of ∂B(α 1 , . . . , α n ) ∩ D ∞ , as described in subsection 6.4. The number of lines to intersect is smaller than the square of the length of the hemisphere list, and thus finite. As a consequence, the minimum of the height has to be taken only on a finite set of intersection points, whence the first claim. • If a cell of ∂B(α 1 , . . . , α n ) lies on a hemisphere, then its vertices are lifts of intersection points. So we can erase the hemispheres which are strictly below some other hemispheres at all the intersection points, without changing ∂B(α 1 , . . . , α n ).

Algorithm 4 Computation of the matrices identifying two points in H. .

for k running from ⌊k - limit ⌋ through ⌈k + limit ⌉ do c := j + kω; if |c| 2 1 rρ and c nonzero, then Write cz in the basis as R(cz) + W (cz)ω with R(cz), W (cz) ∈ Q. d will run through O with |cz -d| 2 + r 2 |c| 2 = r ρ . Write d in the basis as q + sω, where q, s ∈ Z. . for s running from ⌊s - limit ⌋ through ⌈s + limit ⌉ do

; if ∆ is a rational square, then q ± := R(cz) -W (cz) 2 + s 2 ± √ ∆. Do the following for both q ± = q + and q ± = q -if ∆ = 0. if q ± ∈ Z, then d := q ± + sω; if |cz -d| 2 + r 2 |c| 2 = r ρ and (c, d) unimodular, then a := ρ r d -ρ r czcζ. if a is in the ring of integers, then b is determined by the determinant 1: b :=