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Abstract We analyze a quasi-continuous linear chain with self-similar distribution of harmonic
interparticle springs as introduced for one dimension in [13]. We define a continuum limit for one
dimension and generalize it to n = 1, 2, 3, .. dimensions of the physical space. Application of Hamil-
ton’s (variational) principle defines then a self-similar and as consequence non-local Laplacian operator
for the n-dimensional space where we proof its ellipticity and its accordance (up to a strictly posi-
tive prefactor) with the fractional Laplacian −(−∆)

α
2 . By employing this Laplacian we establish a

Fokker Planck diffusion equation: We show that this Laplacian generates spatially isotropic Lévi sta-
ble distributions which correspond to Lévi flights in n-dimensions. In the limit of large scaled times
∼ t/rα >> 1 the obtained distributions exhibit an algebraic decay ∼ t−

n
α → 0 independent from

the initial distribution and spacepoint. This universal scaling depends only on the ratio n/α of the
dimension n of the physical space and the Lévi parameter α.

Keywords. Fractional Laplacian, Fokker Planck equation, anomalous diffusion, Lévi flights, Lévi (sta-
ble) distributions, self-similarity, scaling laws, fractional operator, non-locality

1 Introduction

Self-similarity (scaling-invariance) can be found in many problems of physics. Hence there is a need for
understanding the dynamics that leads to fractal and self-similarity properties in domains of the physics
as varied as flow turbulence and complex materials. In ‘traditional modelling’ the continuum is assumed
to have a characteristic length scale which determines the wavelengths where wave fields interact with
the microstructure. However, there are numerous materials in nature which are constituted by a
scale hierarchy of recurrent microstructure which can be conceived in a good approximation as self-
similar. This is true for solids and porous media but also in fluid mechanics, or multicomponent and
multiphase flows. As a consequence, there are many areas of modelling that could benefit from a
better understanding of the mechanisms underlying the dynamics of objects exhibiting self-similarity
properties. In fluid mechanics, synthetic turbulence models are one of many examples of tempering
with the input spectrum in order to understand better the physics underlying Lagrangian diffusion
[1] and such spectra can be traced to the fractal distributions of velocity accumulation points in the
synthetic flow. Fractal approaches are developing rapidly in fluid mechanics. Such approaches consist
in either experimentally or numerically interfering with the flow, forcing it through self-similar objects
(or through numerical forcing) [2, 3, 4].

To the best of our knowledge there is no generally accepted continuum field approach that is able to
take into account self-similarity (scaling invariance). Therefore, simple continuum models accounting
for fractal and self-similar mechanisms are highly desirable. Strictly speaking, so far there has not
been generally accepted procedure describing how key operators such as the Laplacian have to be
modified when self-similarity of particle interactions comes into play. The recent paper [13] develops
the first steps for such a procedure. However, limited to the one-dimensional case. In that paper
we established a “self-similar Laplacian operator” from the elastic energy of a quasi-continuous linear
chain with self-similar particle interactions. This was followed by the derivation of a continuum limit
for that Laplacian [16]. In the present paper we briefly revisit this model and show that this self-similar
Laplacian as well as its generalization to n dimensions can be rigorously obtained by application of
Hamilton’s variational principle. Furthermore, we generalize the Laplacian to the physical space in n
dimension where spatial isotropy of the Laplacian is maintained. The diffusion processes generated by
a Fokker Planck equation is analysed using the self-similar Laplacian. It is shown that independently
of n, the physical dimension, the underlying anomalous diffusion processes are Lévi flights. In this
way the present model could be an essential feature and necessary ingredient for flow turbulence.

It has been recognized that complex processes exist where the role of fluctuations is by far underes-
timated and which cannot be described by Gaussian statistics. These random particle motions have
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much more erratic characteristics as the “benign” Brownian motions which can be described by Gaus-
sian statistics and normal distributions. This is true for instance for the stock market, where Gaussian
statistics fails largely by underestimating fluctuations (risks!). One of the first researchers to recognize
this was indeed Mandelbrot [5, 6]. Among the stochastic motions that are characterized by infinite
mean fluctuations are those with Lévi-distributed scale free jump distributions. Such motions, known
in the literature as Lévi flights are the source of anomalous diffusion [8]. Lévi flights are widely found
in nature for instance in the dynamics of bumblebees [11]. There is a huge number of models of Lévi
flights by fractional kinetic equations of diffusion and a vast literature devoted to this subject. An
excellent overview is provided in [21] (see also the references therein). However, the subject of the
present paper is not the investigation of the properties of Lévi flights themselves which are well studied,
e.g. [9, 10, 21]. In most of these models a diffusion problem is ad hoc defined such that Lévi stable
distributions solve the fractional problem. However, a physical interpretation or justification of these
fractional operators is in many cases not given [9, 10]. The goal of the present paper is to establish
a simple and physically well based model where the Laplacian used in the Fokker Planck diffusion
equation is rigorously deduced from Hamilton’s principle.

This paper is organized as follows: We deduce a self-similar Laplacian as a result of a continuum
limit of the linear chain with a self-similar distribution of interparticle springs in one dimension.
This continuum limit results in a Laplacian in the form of a self-adjoint combination of fractional
operators. Then we generalize this Laplacian to the n-dimensional physical space (n = 1, 2, 3). The
generalization to higher dimensions than one is performed such that the Laplacian maintains spatially
isotropic symmetry. We deduce the dispersion relation and the density of normal modes (oscillator
density) both obeying characteristic scaling laws. By employing this Laplacian we formulate a diffusion
equation (Fokker Planck equation) which generates Lévi stable distributions. It does not matter for
the model whether we conceive this distribution as particle density function or probability density
function. In the first case we consider an ensemble of diffusing particles and in the other case the
probability distribution of one propagating particle. For the latter case the stochastic particle motion
which describes our model are Lévi flights. Despite we refer more to the “diffusion picture”, the
interpretation of our model can be fully transferred into the “stochastic picture” of a single randomly
walking Lévi flyer particle.

We derive the time evolution operator in its space-time representation. We focus especially on the
asymptotic behavior at large (scaled) times which is found to be a spatially uniform algebraic decay
approaching zero density. We demonstrate that this characteristic spatially homogeneous behavior of
the asymptotic density indicates the approach of the system to a quasi-equal distribution approaching
maximum (infinite) entropy due to the complete uncertainty of the location of a particle independent
from the initial distribution.

To deduce the self-similar Laplacian operator we consider a “material system” with a spatially
homogeneous constant mass distribution and spatially harmonic self-similar interparticle interactions.
As demonstrated in [13] such a material system exhibits a regime with a fractal dispersion relation
that appears in a Weierstrass-Mandelbrot function which is exactly self-similar. Interparticle inter-
actions which are exactly self-similar in the below defined sense require an infinite physical space.
In the continuum limit of this model the fractal properties of the dispersion relation disappear and
the dispersion relation assumes the form of a smooth power function [13, 15, 16]. The continuum
limit of this model opens a general way to deduce continuous field theories in media with self-similar
interparticle interactions leading to self-similar constitutive laws. In a recent paper [15] this theory is
elaborated for one dimension. In the present paper we generalize this model to n = 1, 2, 3, .. dimensions
of the physical space. For the sake of simplicity we refer to the medium with self-similar interactions
just as “self-similar medium” or “self-similar continuum”. We emphasize that the self-similarity of
interparticle interactions is the inevitable source of non-locality in the deduced Laplacian operator. In
contrast to this, a linear chain which contains only harmonic next neighbor interparticle interactions
yields in the continuum limit the traditional spatially local Laplacian. A discrete material system
leading to a fractal dispersion relations due to non-local interparticle interactions has probably first
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been considered by Tarasov [18] (see also the numerous references therein).

2 Preliminary remarks

It is an interesting question how physical phenomena change when the interparticle interactions become
self-similar. For instance when we consider the Poisson equation

∆selfsim u(r) = χ(r) (1)

with a self-similar Laplacian operator ∆selfsim which is to be specified. To this end we should elaborate
first of all the notion of “self-similarity” employed in this paper. The notion of “self-similarity” which
is employed in this paper as well as in [13, 15, 16] corresponds to the notion ”self-similarity at a
point” which is commonly used in the mathematical literature [17]. Generally, an object is exactly
self-similar in the strict sense if it can be decomposed into parts which are exact rescaled copies of
the entire object. In contrast is the notion ”self-similarity at a point” where “point” means here a
fixed-point of the scaling operation: An object which is self-similar at a point contains a single part
which is a re-scaled copy of the entire object and so forth over an infinity of scales [17].

According to this notion of self-similarity we call a function Λ(h) self-similar with respect to h, i.e.
self-similar at point h = 0, when the relation

Λ(Nh) = N δΛ(h) (2)

is fulfilled for a prescribed scaling factor N > 1 and for any h > 0. We assume real valued scaling
exponents δ ∈ R. If a function Λ(h) fulfills (2), it follows that (2) remains true if we replace N → N s

with (s ∈ Z0 denotes positive and negative integers including zero). In other words: if Λ(h) is self-
similar with respect to h in the sense of relation (2), then there exists a N > 1 such that the discrete
set of rescaling operations h′ = hN ′ with N ′ = N s with only positive and negative integers s ∈ Z0

including the zero, satisfy the self-similarity condition (2), namely Λ(hN ′) = N ′δΛ(h)1. We observe
further by putting h = Np+χ with p ∈ Z0 and 0 ≤ χ < 1 denoting the non-integer part, and by using
the property of self-similarity that (Np = hN−χ)

Λ(h = NpNχ) = NpδΛ(Nχ) = hδN−δχΛ(Nχ) (3)

From this relation we observe that all values of Λ are uniquely determined by its values within 1 ≤
Nχ < N (as 0 ≤ χ < 1) [14]. Further we see that Λ(h) scales as hδ, especially when h → 0. However,
in general, a unique limit h → 0 of h−δΛ(h) = N−δχΛ(Nχ) does not exist because of its dependence on
χ. Let us assume that a constant C > 0 exists such that 0 < |N−δχΛ(Nχ)| ≤ C ∀h > 0 then function
Λ(h) fulfills the inequality

0 < |Λ(h)| ≤ Chδ (4)

For 0 < δ ≤ 1 relation (4) is the Hoelder condition, e.g. [7]. The function Λ(h) is then a Hoelderian
function (Hoelder continuous function) being continuous but non-differentiable for 0 < δ < 1 at h = 0.
Hoelderian functions include a wide range of fractal and erratic functions [7]. For δ ≥ 1 the function
Λ(h) is differentiable at h = 0. Self-similar functions can hence be fractal or non-fractal functions.

Generally a self-similar function which fulfills (2) for a prescribed N can be written in the form

Λ(h) =
∞
∑

s=−∞
N−δsf(N sh) (5)

1In the continuum limit to be discussed below, this set {hNs} becomes a continuous one.
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which converges for sufficiently good functions f [13]. Without any loss of generality we can restrict
ourselves to N > 1. The simplest self-similar functions of this type are power-functions hδ. They
constitute also the continuum limit of (5) (eq. (9) below).

3 The self-similar elastic continuum

3.1 One-dimensional case

In this section we evoke a self-similar Laplacian from a simple linear chain model which was introduced
in [13] and its continuum limit we introduced in recent papers [15, 16] for the one-dimensional infinite
space. We consider this quasi-continuous chain with self-similar harmonic springs with the Hamiltonian
functional [13]

H =
1

2

∫ ∞

−∞

(

u̇2(x, t) + V(x, t, h)
)

dx (6)

where x denotes the space- and t the time coordinates. Each spacepoint x denotes also a mass point
and the mass density of the system we consider is constant (spatially homogeneous) and we put the
mass density equal to 1. 1

2
V(x, t, h) indicates the elastic energy density with

V(x, t, h) = 1

2

∞
∑

s=−∞
N−δs

[

{u(x, t)− u(x+ hN s, t)}2 + {u(x, t)− u(x− hN s, t)}2
]

(7)

which converges in the range 0 < δ < 2 and where we assume h > 0 and N being a prescribed scaling
factor. Without loss of generality we can restrict ourselves to N > 1 (N ∈ R). The additional factor
1/2 in the elastic energy (7) compensates double counting of the springs when integrating in (6). It is
important to note that the elastic energy density does not have any characteristic interaction length
scale. The variable h characterizes self-similarity of the elastic energy density, but does not have the
physical meaning of a characteristic length. Unlike in the case of a linear chain with only next neighbor
interactions, the limit h → 0 would not localize the interparticle interactions. In (6) and (7) u and
u̇ = ∂

∂t
u stand for the displacement field and the velocity field, respectively. (7) has the property of

being self-similar with respect to h at point h = 0, namely

V(x, t, Nh) = N δV(x, t, h) (8)

As a starting point for the approach to be developed we evoke the continuum limit of (7) and the
resulting equation of motion. For 0 < δ ≤ 1 (7) is a Hoelder continuous function being for 0 < δ < 1
non-differentiable at h = 0. If we prescribe in (7) a periodic field u(x) then the elastic energy density
is in 0 < δ ≤ 1 a fractal function (Weierstrass-Mandelbrot fractal function). We define the continuum
limit as N = 1 + ζ (0 < ζ << 1) so τ = hN s becomes a continuous variable and we can write a
self-similar function Λ(h) which fulfills a self-similarity condition (8) asymptotically as [13]

Λ(h) =
∞
∑

s=−∞
N−δsf(N sh) ∼ hδ

ζ

∫ ∞

0

f(τ)

τ δ+1
dτ (9)

having the form of a power function Λ(h) = const hδ. Both the discrete as well as the continuous
representation of (9) converge for sufficiently good functions (see details in [13]). From (9) follows that
in that continuum limit we can write (7) as a functional of the displacement field u(x, t) in the form

V(x, t, h) = hδ

2ζ

∫ ∞

0

{(u(x, t)− u(x+ τ, t))2 + (u(x, t)− u(x− τ, t))2}
τ δ+1

dτ (10)
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which exists as in the discrete case (7) in the band 0 < δ < 2. Application of Hamilton’s principle
leads then to the definition of the Laplacian of our system which is then determined by the functional
derivative of the elastic energy V with respect to the field u, namely [22]

∆(δ,h,ζ)u =: −δV

δu
, V =

1

2

∫

Vdx (11)

The equation of motion (self-similar wave equation) has then the form [13]

∂2

∂t2
u(x, t) = ∆(δ,h,ζ)u(x, t) (12)

(11) together with (10) defines the self-similar Laplacian in its continuous representation of the
one-dimensional medium. Relation (11) defines the Laplacian for both cases, in the the discrete case
of (7) as well as for the continuous case (10). In both cases the Laplacian is due to its construction
self-similar with respect to h. The self-similar Laplacian is necessarily a non-local and self-adjoint
negative semi-definite2, spatially isotropic operator: In the continuous case it is obtained as

∆(δ,h,ζ)u(x) =
hδ

ζ

∫ ∞

0

(u(x− τ) + u(x+ τ)− 2u(x))

τ 1+δ
dτ (13)

existing for 0 < δ < 2. It might be sometimes convenient to rewrite (13) in the equivalent form

∆(δ,h,ζ)u(x) =
hδ

ζδ

d

dx

∫ ∞

0

(u(x+ τ)− u(x− τ))

τ δ
dτ , 0 < δ < 2 (14)

where the range of existence of these relations is 0 < δ < 2. In the entire analysis of this paper we put
for any complex number z = |z|eiϕ the principal value −π < ϕ = Arg(z) ≤ π for its argument ϕ. In
the further analysis we will need the Γ-function (faculty-function) Γ(z) which is defined by [20]

Γ(α + 1) =: α! =
∫ ∞

0
e−τταdτ, Re(α) > −1 (15)

The condition Re(α) > −1 is required for integral (15) to exist. Re(Z) denotes the real- and Im(Z)
the imaginary part of a complex number Z. Using (14) the equation of motion (12) takes the form

∂2

∂t2
u(x, t) =

∂

∂x
σ(x, t) (16)

where ∂
∂x

indicates the traditional partial derivative with respect to x and σ(x, t) denote the stress
having the form [16]

σ(x) =
hδ

ζδ

∫ ∞

0

(u(x+ τ)− u(x− τ))

τ δ
dτ , 0 < δ < 2 (17)

where the integration constant turns out to be zero when integrating the right hand side of (14) with
respect to x. For further comparison it will be convenient to represent (17) in the equivalent form

σ(x) =
hδ

2ζδ

∫ ∞

−∞
τ
(u(x+ τ)− u(x− τ))

|τ |δ+1
dτ , 0 < δ < 2 (18)

where sgn(τ) = τ
|τ | maintains the integrand to be an even function with respect to τ .

From this follows that self-similarity of the interparticle interactions leads inevitably to non-local
field theories. In the elastic framework the material (moduli) functions are convolution kernels. In
contrast to the “classical” non-local elasticity theory as outlined by Eringern [19] the self-similar case
is characterized by long-range power law kernels decaying critically slowly [15, 16].

2Uniform translations are eigenmodes to eigenvalue zero.
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4 The self-similar Laplacian of the n-dimensional space

We introduce a generalization of the self-similar Laplacian (13) to the n-dimensional space where
n = 1, 2, 3. We define this Laplacian by its action on a scalar field variable u(x). Then we can
generalize the one-dimensional case (13) to n = 1, 2, 3 dimensions as3

∆(n,δ)u(x) =
hδ−(n−1)

2ζ

∫

(u(x+ r) + u(x− r)− 2u(x))

rδ+1
dnr, 0 < δ − (n− 1) < 2 (19)

This integral is performed over the entire n-dimensional physical space R
n. The prefactor 2−1

has been chosen due to the fact that in (13) a prefactor 2−1 has to be added to the integrand if we
integrate over the entire physical space R

1. (19) exists for sufficiently smooth fields u(x) converging
in the interval n− 1 < δ < n + 1. In some cases also the equivalent representation

∆(n,δ)u(x) =
hδ−(n−1)

ζ

∫ {u(r)− u(x)}
|r− x|δ+1

dnr, 0 < δ − (n− 1) < 2 (20)

might be convenient. In the appendix (8.2) we demonstrate that our self-similar Laplacian (19), (20) is
up to a strictly positive prefactor coinciding with the fractional Laplacian−(−∆)

α
2 (with α = δ−(n−1)

and 0 < α < 2) known from the literature, e.g. [23] and the references therein.
For the analysis the following representation of (19) in terms of a divergence of a vector field will

be useful
∆(n,δ)u(x) = ∇x ·D(x) (21)

where (∇x)j =
∂

∂xj
denotes the (traditional) gradient operator. The vector field D is determined (up

to an unimportant rotational gauge vector field b with ∇ · b = 0) by

D(x) =
1

(δ − (n− 1))

hδ−(n−1)

2ζ

∫

r

rδ+1
{u(x+ r)− u(x− r)} dnr, 0 < δ − (n− 1) < 2 (22)

which recovers for n = 1 expression (18). This vector field exists in the same interval n−1 < δ < n+1
as (19). The deduction of (22) is performed in the appendix 8.1 by using the Gaussian theorem.
Further useful equivalent representations of (22) are given in the appendix. We note that u is a
scalar field and the integrand of (22) is an even function with respect to integration variable r. For
n = 1 (22) corresponds to the stresses (18). If we conceive equation (1) as a Poisson equation in
an electrodynamic context then the vector field (22) can be conceived as the “dielectric displacement
field”. Then (1) with (21) defines the self-similar Gauss-law (charge conservation). Starting from
this we can set up a theory of self-similar fields and set up “self-similar” Maxwell equations. In the
appendix 8.1 we have deduced a useful scalar ”potential” (eq. (83)). However, we will elaborate the
subject of a “self-similar” electrodynamic field theory in a sequel paper.

4.1 Dispersion relation and density of normal modes

In view of the translational symmetry of the Laplacian, we observe that plane-waves φk(r) = eik·r are
eigenfunctions of the Laplacian (19) where its negative eigenvalues constitute the dispersion relation
ω2(k) which is obtained by the relation

∆(n,δ)φk(r) = −ω2
n,δ(k)φk(r) (23)

3The multiplyer hδ has been changed into hδ−(n−1) to keep the dimension of the self-similar Laplacian independent
on n.
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ω2
n,δ(k) = −hδ−(n−1)

2ζ

∫

(

eik·r + e−ik·r − 2
)

rδ+1
dnr (24)

We observe that the dispersion relation fulfills the scaling property

ω2
n,δ(k) = An,δk

δ−n+1 , 0 < δ − n+ 1 < 2 (25)

depending only on k = |k| reflecting isotropy of the Laplacian and An,δ = ω2
n,δ(k = 1) is defined by

(24). We observe from (24) that the coefficient An,δ > 0 is strictly positive indicating “elastic stability”.
A further evaluation of the coefficient An,δ is given in the appendix 8.2. The following observation
is noteworthy: In dispersion relation (25) appears always a positive exponent 0 < δ − n + 1 < 2
being within the interval (0, 2) whatever the dimension n of the physical space. From this follows the
important property

ω2
n,δ(k → 0) = 0 (26)

for any dimension n as a necessary consequence of the translational invariance of the self-similar
Laplacian. Translational invariance requires that the k = 0 mode (uniform translation of the entire
“material system”) must give a zero contribution to the elastic energy and hence corresponds to
eigenvalue zero.

It is now straight-forward to obtain the density of normal modes which we denote by D(ω). This
quantity is defined such that D(ω)dω counts the number of normal modes (per n-dimensional unit-
volume) with frequencies in the interval [ω, ω + dω]. We obtain this quantity from the dispersion
relation by (e.g. [13] or any textbook of theoretical physics)

D(ω)dω =
1

(2π)n
On(1)k

n−1dk (27)

where we put α = δ− (n−1) where k = k(ω) = ω
2
α

A
1
α
is the inverse dispersion relation and On(1) =

2π
n
2

Γ(n
2
)

denotes the surface of the unit-sphere. Then (27) yields the scaling law

D(ω) =
22−n

π
n
2Γ(n

2
)αA

n
α

n,δ

ω
2n
α
−1 (28)

where the prefactor is always positive and the exponent 2n
α
− 1 > n− 1 ≥ 0 (0 < α < 2) whatever the

dimension n of the physical space. Hence we have for n = 1 an exponent 2
δ
− 1 > 0 (0 < δ < 2); for

n = 2 an exponent 4
δ−1

− 1 > 1 (1 < δ < 3); and for n = 3 an exponent 6
δ−2

− 1 > 2 (2 < δ < 4).

The above power law (28) confirms our conjecture raised in [13], namely that the property

D(ω → 0) = 0 (29)

holds generally in self-similar media where the density of normal modes obeys a power law with
positive exponent for any dimension n of the physical space. For n = 1 the expression obtained in [13]
is recovered by (29) with the exponent being 2

δ
− 1 > 0 (0 < δ < 2) and yields

D1(ω) =
2

πδA
1

δ

1,δ

ω
2

δ
−1 (30)

In contrast to the self-similar Laplacian of our model the traditional Laplacian would give a dis-
persion relation ω2(k) = k2 and correspondingly the density of normal modes would be in the n-
dimensional space

Dtraditional(ω) =
On(1)

(2π)n
ωn−1 =

21−n

π
n
2Γ(n

2
)
ωn−1 (31)

8



scaling as ∼ ωn−1 and where (28) would assume (31) when we put there the “forbidden” value α = 2
and A = 1. We emphasize that in a space of dimension n the exponent due to the self-similar (non-
local) Laplacian is always greater than the exponent due to the traditional (localized) Laplacian

2n

α
− 1 > n− 1 , 0 < α = δ − (n− 1) < 2 (32)

It is quite remarkable that the self-similar Laplacian gives rise to unusual physical phenomena being
qualitatively different from those found with a traditional Laplacian.

Whereas diffusion problems formulated with a traditional Laplacian describe traditional Gaussian
statistics with finite variances, diffusion problems formulated with Laplacian (19) describe random
motions allowing long-range scale-free distributed jumps and yielding infinite variances referred to as
Lévi flights. We devote the next section to this problem.

5 Anomalous diffusion problem in n dimensions - Lévi flights

We consider an ensemble of particles of density ρ(r, t) where ρ(r, t)dnr denotes the number fraction of
particles being located at a time t in the volume element dnr which is attached to spacepoint r. We
refer to this picture as the “diffusion picture”. The other picture of this model is a single randomly
walking particle where ρ(r, t)dnr then means in this “stochastic picture” the probability to find the
particle at time t > 0 in the volume element dnr which is attached to spacepoint r. In what follows
we describe a model of the space-time evaluation of the density ρ where both pictures, the diffusion
picture and the stochastic picture are possible physical interpretations. In the stochastic picture the
present model describes a random walking particle which is walking continuously in time where the
jump distance of the particle in any infinitesimal time interval δt is distributed according to a power
law and isotropic in space. For such stochastic motions Mandelbrot coined the term Lévi flights. We
will see that our above introduced self-similar Laplacian operator is the source of exactly this type of
stochastic motion in the n = 1, 2, 3, ..-dimensional space.

We consider the problem for t > 0. We are especially interested in the characteristic asymptotic
behavior for large times t.

The density to be analyzed is normalized for all times t > 0 according to

∫

ρ(r, t) dnr = 1 (33)

We then define the diffusion problem by the following diffusion equation (in the stochastic picture
Fokker Planck equation)

∂

∂t
ρ(r, t) = −Ln,δρ(r, t) (34)

where −Ln,δ = ∆n,δ denotes the Laplacian (19). We further assume a prescribed initial distribution

ρ(r, t = 0) = ρ0(r) (35)

which is also normalized according to (33). We conceive the positive semi-definite operator Ln,δ as
the diffusion generator where its eigenvalue spectrum is just the dispersion relation (25) with the
diffusional eigenmodes φk(r) = eik·r. The density ρ(r, t) writes in terms of eigenmodes as Fourier
transformation

ρ(r, t) =
1

(2π)n

∫

ρ̂(k, t)eik·rdnk (36)

9



the Fourier amplitude ρ̂(k, t) fulfills the evolution equation

∂

∂t
ρ̂(k, t) = −ω2

n,δ(k)ρ̂(k, t) (37)

showing an exponential decay in time (A = An,δ > 0)

ρ̂(k, t) = e−tAkα ρ̂0(k) (38)

where we have put α = δ−(n−1) and ρ̂0(k) indicating the Fourier transform of the initial distribution
ρ0(r). Unlike in the case of Gaussian diffusion, the non-locality of Laplacian (19) indicates that non-
local particle jumps are admitted which are scale free distributed. We will come back to this important
property more closely below.

We can also write the solution of (34) in the form

ρ(r, t) = e−tLn,δρ0(r) (39)

which we will evaluate next. We observe that the normalization of (39) is maintained at all times t > 0
∫

ρ(r, t)dnr = e−tLn,δ

∫

ρ0(r)d
nr = 1e−Ln,δt1 = 1 (40)

since ρ0(r) is normalized with Ln,δ1 = 0 so that all powers higher than m = 0 in the exponential
series of the time evolution operator e−Ln,δt1 applied on a constant yield vanishing contributions. This
indicates that the total particle number is a conserved quantity. It is further illuminating to consider
the diffusion processes more closely: To this end we consider how the density ρ(r, t+ δt) evolves from
the density ρ(r, t) where δt is an infinitesimal small time interval

ρ(r, t+ δt) = e−δtLn,δρ(r, t) (41)

where we can put e−δtLn,δ ≈ 1− δtLn,δ and so

ρ(r, t + δt) = ρ(r, t)− δtLn,δρ(r, t) (42)

The negative Laplacian Ln,δ is the generator, generating the infinitesimal transformation of the density
from t to t + δt.

Since ρ(r, t)dnr denotes the particle number fraction being at time t in volume element dnr which
is attached to the spacepoint r, we can conceive the quantity

ρ(r, t+ δt)− ρ(r, t)

δt
∼ ∂

∂t
ρ(r, t) = −Ln,δρ(r, t) (43)

as the net balance of the particle number(fraction) departing and arriving in volume element dnr
during the time interval δt. In other words (43) measures the number of particles jumping into the
volume element minus the number of particles jumping out of the volume element.

The local net balance is due to the non-locality of the generating operator Ln,δρ(r, t) depending on
all values of ρ at time t in the entire physical space R

n and not (as in the case of Gaussian diffusion)
only from the ρ-values in the local neighborhood. We can express this local balance described by the
diffusion equation (34) in terms of a continuity equation

∂

∂t
ρ(x, t) = −∇x · J(x, t) (44)

where we introduced the particle flux density J(x) which we can write by using (22) in the form

J(x, t) =
−1

(δ − (n− 1))

hα

2ζ

∫ r

rδ+1
{ρ(x + r, t)− ρ(x− r, t)}dnr, 0 < δ − (n− 1) < 2 (45)
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which is determined up to an unimportant rotational gauge field (describing closed flux lines which do
not change the local density (43)). We observe that equal distributions ρ(x) = const would not cause
any particle flux. We can write the flux density also in the equivalent form

J(x, t) =
1

(δ − (n− 1))

hα

ζ

∫

r

rδ+1
ρ(x− r, t)dnr, 0 < δ − (n− 1) < 2 (46)

where a further equivalent expression is obtained by exchanging r → −r in (46). For n = 1 these
relations recover the expression found earlier [16]. We can conceive (45) or equivalently (46) as the
(non-local) constitutive law connecting particle flux and density replacing the (local) Fick’s law of
Gaussian diffusion.

Let us consider the particle jump rate into a small volume element δV around r = 0 due to a
localized distribution Q(x, t = 0) = δn(x). This localized particle distribution induces at spacepoint
of distance x = |x| instantaneously the flux (due to non-local particle jumps of distance x)

J(x, t = 0) =
hδ

(δ − (n− 1))ζ

x

xδ+1
(47)

These non-local particle jumps due to the flux (47) must cause at spacepoint x a particle balance
which must be positive due to counting particle jumps from r = 0 to x, i.e. jumps over a distance x.
We obtain with (47)

∂

∂t
Q(x, t = 0) = −∇x · J(x, t = 0) =

hα

ζ
x−δ−1 > 0 , ∀x 6= 0 (48)

which is positive and scaling as ∼ x−δ−1 and decays always with distance x whatever the dimension
n since n < δ + 1 < n + 2 and is nonzero in the entire space whatever the jumping distance x of the
particles. The relation (48) holds everywhere except in the origin x = 0. Due to the stochastic spatial
isotropy of the particle jumps, integration of (48) over the unit sphere gives the jump rate of all jumps
with distance R at t = 0+. This rate is given by

−
∫

|n=1|
J ·nRn−1dΩ(n) =

2π
n
2

Γ(n
2
)
Rn−1h

α

ζ
R−δ−1 ∼ R−α−1 , 0 < α = δ− (n−1) < 2, R 6= 0 (49)

where 2π
n
2

Γ(n
2
)
Rn−1 is the surface of the sphere of radius R. We can interpret (49) as follows: The

probability that a particle which is at t = 0 located in the origin r = 0 undertakes a jump of distance
R within the infinitesimal time interval δt scales as R−α−1. It follows that the jump rate of all jumps
of distance R at t = 0+ decays spatially scaling as ∼ R−α−1 with the jump distance R and indeed is
Lévi distributed where 0 < α < 2 is the band of admissible Lévi-parameter α whatever the dimension
n of the physical space.

A crucial rule plays the space-time representation of the time evolution operator from which we
considered the small time regime in (48). This propagator is generally defined by

Q(r, t) = e−tLn,δδn(r) (50)

where δn(r) denotes the n-dimensional Dirac’s δ-function. In the stochastic picture the interpretation is
as follows: The kernel Q(r, t) describes then the conditional probability density and Q(r, t)dnr denotes
the probability to find the particle which was located at t = 0 in the origin r = 0 at time t in the volume
element dnr attached to the spacepoint r. Correspondingly Q(r, t) fulfills then the initial condition

Q(r, t = 0) = δn(r) (51)
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and is hence itself a normalized probability distribution solving (34). We deduce some integral relations
thereof in the appendix 9. The density (39) can then be represented by the convolution

ρ(r, t) =
∫

Q(r− r′, t)ρ0(r
′)dnr′ (52)

Taking into account that

δn(r) =
1

(2π)n

∫

eik·rdnk (53)

together with the property

Lm
n,δe

ik·r = ω2m
n,δ (k)e

ik·r, m = 0, 1, 2, .. ∈ N (54)

where ω2
n,δ(k) denotes the dispersion relation (25), we can write for any sufficiently smooth function

f(ξ) the relation f(tLn,δ)e
ik·r = f(tω2

n,δ(k))e
ik·r. By using this property for the exponential operator

e−Ln,δt we obtain Q(r, t) in the form

Q(r, t) =
1

(2π)n

∫

e−An,δk
αteik·rdnk (55)

where 0 < α = δ − (n− 1) < 2. The kernel is spatially isotropic and depends only on r = |r| due to
the isotropic symmetry of the δ-function. We note that the linear order in t of this Fourier integral
coincides with (48) constituting the regime of small times t (appendix 9).

Distributions of the form (55) are referred to as Lévi distributions [8, 6]. In contrast to Gaussian
distributions, Lévi-distributions exhibit diverging mean fluctuations (all even moments are diverging).
This can be directly verified from

< r2 >=
{
∫

Q(r, t)r2e−ik·rdnr
}

k=0
= −∇k · ∇kQ̃(k, t)|k=0 → ∞ (56)

which is fulfilled by Q̃(k, t) = e−An,δk
αt for positive α in the interval 0 < α < 2. It is interesting to see

that the condition of existence of the Laplacian (19) leads to the same admissible α-band 0 < α < 2 as
the condition of divergence of the variance (56), equivalent with the condition of non-differentiability

of Q̃(k, t) at k = 0.
All odd moments are vanishing due to the isotropic symmetry of the distribution Q(r, t). For the

further evaluation it is convenient to introduce the function defined by the surface integral over the
unit sphere

Gn(τ) =
1

(2π)n

∫

|k̂|=1
dΩ(k̂)eτ k̂1 =

1

(2π)n

∫

δ(k − 1)eτk1dnk (57)

where k1 denotes any Cartesian component of the unit vector k̂. We observe due to the spherical
symmetry that Gn(τ) contains only even powers in τ , i.e. only the even part cosh τ k̂1 of the integrand
contributes to (57). The surface integral (57) is evaluated explicitly in appendix 9 (eq. (111)). The
kernel (55) can be further written as

Q(r, t) = r−nP (
Aδ,nt

rα
) (58)

where P is a function of the “scaled time” λα =
Aδ,nt

rα
only. In the following we keep in mind that the

constant Aδ,n depends on n and δ and skip these subscripts. The function P takes then the form

P (λ) =
∫ ∞

0
e−λαξαGn(iξ) ξ

n−1dξ (59)
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To consider large λα = At
rα

>> 1 we can write by introducing the “fast” variable u = λξ, and we
emphasize that 0 < α < 2 and hence 1

α
is a positive exponent, so we can rewrite

P (λ) = λ−n
∫ ∞

0
e−uα

un−1Gn(iλ
−1u)du (60)

and hence the kernel Q = r−nP has the form

Q(r, t) =
1

(At)
n
α

W

(

rα

(At)

)

, 0 < α = δ − (n− 1) < 2 (61)

W (λ−α) =
∫ ∞

0
e−uα

un−1Gn(iλ
−1u)du , λ =

(At)
1

α

r
(62)

and the function Gn depends only on the dimension n of physical space and is defined by (57). We note
that equations (61) with (62) are exact relations. Generally, except in certain cases to be considered,
the integral (62) cannot be obtained in closed form. Despite α = 2 is a forbidden case in our model,
we can formally consider this case for which (61) with (62) can be evaluated in closed form and lead
to a Gaussian distribution

Qg(r, t) =
1

(4πAt)
n
2

e
− r2

4At (63)

where here A = A2 which is not defined by our model as dispersion relation (24) is diverging for
α = 2. Representation (61) is in a sense analogue to the Gaussian distribution (63) where the time
dependence of the normalization factor of (61) is given by (At)−

n
α and exhibits in the Gaussian case

(α = 2) (At)−
n
2 and leading to (63).

Asymptotic regime λα = (At)
rα

>> 1 where λα denotes a scaled time: In this regime, relation
(62) assumes asymptotically the form

Q(r, At >> rα) ∼ Gn(0)

(At)
n
α

(

I(n, α)− r2

(At)
2

α

I(n+ 2, α) + ..O(
r

(At)
1

α

)4
)

∼ Q(t) =
Gn(0)(I(n, α)

(At)
n
α

→ 0

(64)

which decays in the dominant term in time as t−
n
α independent on r and where

I(n, α) =
∫ ∞

0
e−uα

un−1du (65)

and

Gn(0) =
2

(4π)
n
2Γ(n

2
)

(66)

The asymptotic relation (64) describes the manner how the distribution approaches the thermody-
namic Boltzmannian equal distribution. Since (64) does not contain any information about the initial
positions of the particles we can conclude that the leading term Q(t) in (64) is universal and holds
for any initial distribution ρ0(r). This follows also from the asymptotic relation where we assume
that At/Rα >> 1 and R >> 1: The leading contribution to the density in this regime then is (with
Q(r, t) ∼ Q(t))
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ρ(r, t) =
∫

Q(r− r′, t)ρ0(r
′)dnr′ ∼ Q(t)

∫

ρ0(r
′)dnr′ = Q(t) (67)

which leads indeed for any initial distribution ρ0(r) to the identical spatially uniform asymptotics
Q(t) ∼ t−

n
α → 0 where the exponent depends only on the ratio n

α
of the physical dimension n and

the Lévi parameter α and with the restriction n
2
< n

α
< ∞. If t exceeds all limits the system of

diffusing particles “forgets” its past and approaching all the same thermodynamic attractor Q(t) → 0.
However, since the scaled time At/rα is for finite t never a large quantity in the entire space as there is
always a region where At/rα << 1 is still small and hence (64) is not (yet) valid there. In other words:
The spherical region for which the spatially quasi-equal distribution Q(t) of (64) is valid and hence

which is close to thermodynamic equilibrium is expanding in time slower than r(t) ∼ (At)
1

α . The
volume of this expanding region scales as V (t) ∼ rn(t) ∼ (At)

n
α . The asymptotic uniform distribution

Q(t) ∼ 1/V (t) ∼ (At)−
n
α scales as the inverse of the volume V (t) of thermodynamic quasi-equilibrium

where Q(t) is the quasi-equal distribution within this region of “quasi-equilibrium”. The universal
scaling behavior of the type (64) in fractional models of anomalous diffusion was already noted earlier
[21].

For all dimensions n of the physical space holds: The algebraic decay of the kernel Q(r, t) ∼ Q(t)
being independent from r for large scaled times At/rα >> 1 is a necessary consequence of Boltzmann’s
postulate saying that the location of a diffusing particle becomes completely undetermined without
any preferred location in the thermodynamic equilibrium indicating the complete “loss of information”
about the location of the particle. This corresponds to the thermodynamic necessary condition of
approaching maximum (infinite) entropy. We will demonstrate this by the following brief consideration
of the entropy which we define here as negative H-function [12]

S(t) ∼ −
∫

Q(r, t) logQ(r, t) dnr (68)

We are especially interested in this quantity in the large times limit t → ∞. In this regime we can put

S(t) ∼ − log{(At)−n
α}
∫

Q(r, t) dnr ∼ n

α
log(t) → ∞ (69)

which diverges logarithmically and spatially homogenously in time indicating in the stochastic picture
that the state of complete uncertainty about the location of the particle is approached as the global
time t tends to infinity. It follows that (69) is universal and independent from the initial distribution
ρ0(r). In other words relation (69) expresses the validity of the H-theorem due to Boltzmann which
is equivalent to the fact that distributions are broadening in time approaching equal distribution as
time tends towards infinity. The divergence of the maximum entropy in (69) is reflecting the fact that
the available volume for any particle becomes infinite as t → ∞ whereas the particle number remains
a finite constant. The entropy would approach a finite equilibrium value if for t → ∞ the volume
accessible for the particles would be finite. A finite volume, however would be in contradiction to
the self-similarity and as a consequence non-locality of the Laplacian. For a “real” physical system in
nature therefore, self-similarity can only be approximatively fulfilled.

Let us briefly consider the one-dimensional case n = 1: There we have α = δ − (n− 1) = δ with

Q1(r, At >> rδ) ∼ I(1, δ)

π
(At)−

1

δ , 0 < δ < 2 (70)

and

I(1, δ) =
∫ ∞

0
e−uδ

du (71)

Expressions (70) with (71) is in accordance with the asymptotic relation obtained in [16] for the
one-dimensional case. There is one single case remaining, where Q(r, t) can be obtained in closed form:
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From (62) that this is the case for α = n which can be only fulfilled for n < 2. Since n ∈ N the only
case is n = δ = 1. We obtain then

G1(iξ) =
1

π
cos ξ (72)

and (65) yields

W (λ−1) =
1

π

∫

e−u cos (λ−1u) du =
1

π

(At)2

(At)2 + r2
(73)

The distribution (61) is then obtained as (r = |x|)

Q(r, t) =
1

π

At

(At)2 + x2
(74)

which is known as Cauchy distribution [6] which has also the property of diverging even moments.
The Cauchy distribution hence is the result of a Lévi flight for a special Lévi parameter α = δ = 1.
Sometimes this motion is referred to as Cauchy flight. The Cauchy case stands out in the present
model and appears uniquely for n = δ = 1. The Cauchy distribution behaves for large At >> |x| as
Q(t) ∼ 1

π
(At)−1 in accordance with (64) for α = n = 1 (with I(1, 1) = 1 and G1(0) =

1
π
).

6 Conclusions

We have deduced a Laplacian operator for a n-dimensional infinite space with self-similar symmetry.
The Laplacian introduced in this paper fulfils all criteria of ellipticity: linearity, self-adjointness,
isotropic symmetry, negative semi-definiteness, and translational symmetry. The self-similar symmetry
makes this Laplacian operator non-local. We proved that this self-similar Laplacian coincides (up to a
strictly positive prefactor) to the fractional Laplacian. To have a physical picture, the self-similarity can
be conceived as an elastic medium with self-similar scaling invariant harmonic interparticle interactions.
Employing this picture we have deduced the dispersion relation with the density of normal oscillator
modes. The density of normal modes in the frequency space fulfills a scaling law ∼ ω

2n
α
−1 with a

characteristic strictly positive exponent being always greater than n− 1 which would be the exponent
due to a traditional Laplacian of the n-dimensional space.

We analyzed a diffusion problem defined by a Fokker-Planck equation by employing the self-similar
Laplacian. The model describes anomalous diffusion allowing non-local particle jumps where the jump
distances are Lévi-distributed (Lévi flights). The solutions of the Fokker Planck equation are Lévi-
stable distributions with characteristic algebraic decay ∼ t−

n
α in the regime of large scaled times with

the Lévi parameter α being in the interval 0 < α < 2 whatever the dimension n. The present model of
anomalous diffusion could have some applications on physical phenomena dominated by non-Brownian
erratic motions such as for instance in turbulence. We hope the present approach inspires further work
in such directions.

Moreover, the present approach can be used as a starting point to describe continuous field problems
governed by self-similar constitutive laws in statics and dynamics. The physical nature of the fields
can be of any kind, such as of mechanical or electromagnetical nature. A corresponding self-similar
electromagnetic field theory will be presented in a sequel.
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8 Appendix

8.1 Derivation of the vector field (22)

Here we deduce the vector field (“dielectric displacement”) D of relation (22). To this end we start
with the Laplacian (19)

∆(n,δ)u(x) =
hα

2ζ

∫ (u(x+ r) + u(x− r)− 2u(x))

rδ+1
dnr, 0 < δ − (n− 1) < 2 (75)

and use the identity

r−δ−1 =
−1

δ − (n− 1)
∇r · (r−δ−1r) (76)

with ∇ · (ab) = b∇ · a+ a · ∇b. We note that 0 < δ − (n− 1) < 2 is always non-zero. By applying the
Gauss theorem for the boundary integral term we get

∫

r−δ−1 (u(x+ r) + u(x− r)− 2u(x)) dnr =

lim
R→∞

∫

∂V (R)
rn−1dΩ(n) ·

{

−1

δ − (n− 1)
· (r−δ) (u(x+ r) + u(x− r)− 2u(x))

}

+

+
1

δ − (n− 1)

∫

(r−δ−1r) · ∇r (u(x+ r) + u(x− r)− 2u(x)) dnr

(77)

The boundary integral over ∂V (R) scales as R−(δ−(n−1)) → 0 (0 < δ − (n − 1) < 2) and is hence
vanishing as R → ∞ (δ − (n − 1) > 0). When we further use ∇r (u(x+ r) + u(x− r)− 2u(x)) =
∇x (u(x+ r)− u(x− r)) we can write (75) as a divergence

∆(n,δ)u(x) = ∇x ·D (78)

with the vector field D being determined (up to a unimportant rotational field)

D(x) =
1

δ − (n− 1)

hα

2ζ

∫

r−δ−1r {u(x+ r)− u(x− r)}dnr , 0 < δ − (n− 1) < 2 (79)

which is relation (22). We observe that the integrand is an even function of r. Taking into account
that the volume integral over any odd function of r is vanishing we can also write

D(x) =
1

δ − (n− 1)

hα

ζ

∫ r

rδ+1
u(x+ r)dnr , 0 < δ − (n− 1) < 2 (80)

or equivalently (by replacing x+ r → r)

D(x) = − 1

δ − (n− 1)

hα

ζ

∫

x− r

|x− r|δ+1
u(r)dnr , 0 < δ − (n− 1) < 2 (81)

where only the even part of the integrand namely (79)) contributes. All representations (79) and (80)
or (81) exist in the band 0 < δ − (n − 1) < 2 just as the Laplacian (75). (80) can be further written
in the form of a gradient of a scalar potential

D(x) = ∇xΦ(x) (82)

where the scalar potential Φ(x) can be written as
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Φ(x) =
hα

(δ − (n− 1))(δ − 1)ζ

∫

|x− r|1−δu(r)dnr δ 6= 1 0 < δ − (n− 1) < 2 (83)

For n = 1 this expression recovers those obtained in our previous paper ([13]). We note that the
scalar Φ(x) is a convolution of the scalar field u with the convolution kernel being the power function
(“Riesz potential”) |r − x|1−δ where n − 1 < δ < n + 1. The special case of δ = 1 is appears only for
n = 1. For n ≥ 2 we have 1 ≤ n − 1 < δ < n + 1 and hence δ > 1 for dimensions n = 2, 3, ... In
these cases R1−δ is vanishing at infinity and singular at R = 0. Only the case of one dimension n = 1
with 0 < δ < 2 has for 0 < δ < 1 the “anomaly” that the Riesz potential is diverging at infinity and
vanishing in the origin. It follows that

∆n,δu(x) = ∇x · ∇xΦ(x) (84)

where ∇x · ∇x denotes the traditional Laplacian of the n-dimensional space. Relation (84) recovers
for n = 1 the expression we obtained earlier [13].

The case δ = 1 which can only occur for n = 1 furthermore again stands out among all the others.
This case e.g. lead us to the Cauchy-distribution in section 5. Evaluation of (83) for n = δ = 1 yields

Φδ=1,n=1(x) = −h

ζ

∫ ∞

−∞
ln(|x− τ |)u(τ)dτ (85)

which has been already obtained in [13].

8.2 Determination of An,δ

In this appendix we determine the constant An,δ = ω2
n,δ(k = 1) occurring in the dispersion relation

(25) ω2
n,δ(k) = An,δk

α (α = δ − (n − 1)). We introduce r · k = krn1, (n · k = kn1). Then we have to
evaluate (24)

ω2(k = 1)n,δ = An,δ =
1

2
JαA1,α (86)

with

A1,α = ω2
n=1,δ=α(k = 1) =

2hα

ζ

∫ ∞

0

(1− cos(τ))

τα+1
dτ 0 < α = δ − (n− 1) < 2 (87)

In view of (86) we can conclude that the dispersion relation of the n-dimensional space corresponds
to that one in one dimension when we replace δ → α up to a prefactor Jα

2
which depends only on

the exponent α and dimension n of the physical space. The constant A1,α of (87) is nothing but
the dispersion relation for the one-dimensional case ω2

n=1,δ(k = 1) which we already deduced in the
one-dimensional model [16]. For the evaluation we refer to that paper. We obtained there

A1,α =
hαπ

ζα! sin πα
2

> 0 , 0 < α = δ − (n− 1) < 2 (88)

where this constant is strictly positive and finite in the admitted α-range. In (86) occurs a surface
integral on the unit-sphere

Jα =
∫

|n|=1
dΩ(n)|n1|α =

2π
n−1

2 Γ(α+1
2
)

Γ(α+n
2

)
, 0 < α = δ − (n− 1) < 2 (89)

This surface integral is straight-forwardly evaluated from the integral I(n)α =
∫

e−r2|x|αdnr where
x = rn1 and by seperating the surface integration and the radial integration and by decomposing it

17



into a product of n integrals over the Cartesian coordinates. After some cumbersome algebra by using
the doublication formula together with Euper reflection formulas for Γ-functions (see Abramovitz &
Stegun [20], page 256, formulas 6.1.18 where 2z = α+1 and 6.1.17 with z = α

2
), one finally arrives for

the constant (86) at the compact expression

An,δ = An,α =
hα

ζ

π
n
2Γ(1− α

2
)

2α−1αΓ(α+n
2
)
, 0 < α < 2 (90)

which is in accordance with the normalization constant known from literature, e.g. in [23] (and see the
references therein) which occurs by defining the (negative) fractional Laplacian (−∆)

α
2 being defined

as the operator having the Fourier transform kα with 0 < α < 2. It follows from the scaling behavior
of the dispersion relation ω2(k)n,δ = An,δk

α, that the fractional Laplacian −(−∆)
α
2 and self-similar

Laplacian defined by (19), (20) are linked by the relation

∆(n,δ) = −An,α(−∆)
α
2 , 0 < α < 2 (91)

with the strictly postive prefactor An,α which is determined by (90) for any dimension n = 1, 2, 3, ..
of the physical space. We emphasize that the strict positiveness of An,α within 0 < α < 2 indeed
guarantees the ellipticity of ∆(n,δ) represented by (19), (20).

Let us consider briefly n = 1: Then α = δ and Jδ = 2 and so (86) yields then our previously
deduced expression of [16]

A1,δ =
hδπ

ζδ! sin πδ
2

> 0 , 0 < δ < 2 (92)

Let us also evaluate n = 3: α = δ − 2 and the integral (89) yields then

Jα=δ−2 =
4π

δ − 1
(93)

and hence

A3,δ =
2hδ−2π2

ζ(δ − 1)! sin π(δ−2)
2

> 0 , 2 < δ < 4 (94)

In all cases the necessary condition ω2(1) > 0 which follows already from the positiveness of the
integrand of (87).

9 Some useful integrals

In this appendix we deduce a rather remarkable relation when we take into account the following
identities, namely those of equations (48) and (50) being the linear order in t of relation (55). First
we have

∂Q

∂t
(r, t = 0) = ∆n,δδ

n(r) = − An,α

(2π)n

∫

eik·rkαdnk =
hα

ζ

∫

δn(r− r′)

r′α+n dnr′ =
hα

ζ
r−α−n (95)

where the latter integral is obtained by application of the Laplacian on the δ-function for r 6= 0 and
yields (48). The Fourier integral can be rewritten for r 6= 0

∂Q

∂t
(r, t = 0) = −An,α

rα+n

∫ ∞

0
Gn(iτ)τ

δdτ (96)
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where Gn is the surface integral defined in (57) which is evaluated in closed form below. Comparision
with the explicit expression (48) yields the integral relation

∫ ∞

0
Gn(iτ)t

δdτ = − hα

ζAn,α

< 0 (97)

which can be explicitly confirmed by evaluating the left hand side for n = 1 and n = 3.

Surface integrals
We choose a Cartesian coordinate system with and n = (n1, .., nn)

tr with n · n = 1 being a
parameterization of the n-dimensional unit-sphere. Let us then evaluate the integral of an integer
power of any Cartesian coordinate

A(n)
m =

∫

|n|=1
dΩ(n)nm

1 , m = 0, 1, 2, .. ∈ N0 (98)

where we integrate over the surface of the n-dimensional unit-sphere. The superscript (..)(n) indicates
the dimension (n = 1, 2, 3, . ∈ N) of the space. We observe that all integrals of odd powers (odd

functions) A(n)
2m+1 = 0 are vanishing. Only integrals over even powers are non-vanishing and by

applying the Gauss-theorem we find the recursion

A(n)
2m =

(2m− 1)

(2m− 2 + n)
A(n)

2m−2 (99)

where n denotes the dimension of the space n = 1, 2, 3, ... This recursion can be applied m-times

linking A(n)
2m with A(n)

0 = On(1) which is the surface of the unit sphere. In this way we obtain

A(n)
2m =

(2m− 1)..× 3× 1

(2m− 2 + n)..× (n+ 2)× n
A(n)

0 (100)

The products (each containing m factors) in the nominator and the denominator can be written as

(2m− 1)..× 3× 1 =
(2m)!

2mm!
(101)

and

(2m− 2 + n)..× (n+ 2)× n = 2m
(n
2
− 1 +m))!

(n
2
− 1)!

(102)

So we obtain for (100)

A(n)
2m =

(2m)!(n
2
− 1)!

22mm!(n
2
− 1 +m)!

On(1) (103)

where On(1) denotes the surface area of the unit-sphere embedded into the n-dimensional space [20]

On(1) =
2π

n
2

(n
2
− 1)!

=
2π

n
2

Γ(n
2
)

(104)

and hence

A(n)
2m =

2π
n
2 (2m)!

22mm!(n
2
− 1 +m)!

=
2π

n
2 (2m)!

22mm!Γ(n
2
+m)

(105)

So we can perform the unit-sphere surface integral of any sufficiently smooth function f(τ)
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f(ξn1) =
∞
∑

m=0

am
m!

ξmnm
1 (106)

g(ξ) =
∫

|n|=1
dΩ(n)f(ξn1) (107)

where only its even part f(τ)+f(−τ)
2

(even powers) contributes. By using (98)-(105) we obtain for (107)
the series

g(ξ) =
∞
∑

m=0

a2m
A(n)

2m

(2m)!
ξ2m (108)

which is uniquely determined by all even derivatives a2m of f(τ) at τ = 0.

Explicit evaluation of (57)
With (108) we can evaluate the function Gn(iξ) which is defined by surface integral (57). The inte-
grand (106) is f(ξn1) =

1
(2π)n

cos ξn1 (or alternatively f(ξn1) =
1

(2π)n
eiξn1 since any odd function such

as sin ξn1 yields a zero contribution). Then we obtain for Gn(iξ) with (108) the following series

Gn(iξ) =
2

(4π)
n
2

∞
∑

m=0

(−1)m
1

m!Γ(m+ n
2
)

ξ2m

22m
(109)

Taking into account the generalized definition of the Bessel function of the first kind ([20] p. 360,
9.1.10.) for any (integer and non-integer) ν ∈ R

Jν(ξ) =

(

ξ

2

)ν ∞
∑

m=0

1

m!Γ(m+ ν + 1)

(

−ξ2

4

)m

(110)

So we obtain for (57) the closed form expression

Gn(iξ) =
1

(2π)
n
2 ξ

n
2
−1

Jn
2
−1(ξ) (111)

which holds for any dimensions n ∈ N and is even valid for positive non-integer dimensions since (103)
with (104) assume the same form when they are deduced for non-integer n > 0. Let us now look
especially on the physically important cases of dimensions n = 1, 2, 3.

(i) n = 1
We have with

22mm!(m− 1

2
)! = (2m)(2m− 2)..2× (2m− 1)(2m− 3)..3Γ(

1

2
) = (2m)!

√
π (112)

and hence so

J− 1

2

(ξ) =

√

2

ξ
π

∞
∑

m=0

(−1)m
ξ2m

(2m)!
=

√

2

πξ
cos ξ (113)

so that

Gn=1(iξ) =
1

π
cos ξ (114)

which we reverify to be correct by its definition Gn=1(ξ) =
1
2π

(

eiξ + e−iξ
)

.
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(ii) n = 2
Then we have

J0(ξ) =
∞
∑

m=0

(−1)m
ξ2m

22mm!m!
(115)

and

Gn=2(iξ) =
1

(2π)
J0(ξ) (116)

which we can again reverify directly by the definition of G2

G2(iξ) =
1

(2π)2

∫ 2π

0
eiξ cosϕdϕ (117)

by taking into account the definition of J0.

(iii) n = 3
Finally we have

22mm!(m+
1

2
)! = (2m+1)(2m−1)×..3

(

1

2

)

!×2m(2m−2)×..2 = (2m+1)!
(

1

2

)

! = (2m+1)!

√
π

2
(118)

as
(

1
2

)

! = 1
2
Γ(1

2
) =

√
π

2
and hence

J 1

2

(ξ) =

√

2ξ

π

∞
∑

m=0

(−1)m
ξ2m

(2m+ 1)!
=

√

2

πξ
sin ξ (119)

so that we obtain

Gn=3(iξ) =
1

2π2

sin ξ

ξ
(120)

which again is directly verifiable by the definition

G3(iξ) =
1

(2π)3

∫ 2π

0

∫ π

0
eiξ cos θ sin θdθdϕ =

1

(2π)3
4π
∫ 1

0
cos (ξu)du =

1

2π2

sin ξ

ξ
. (121)
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[8] P. Lévi, Processus stochastiques et mouvement Brownien, Reprint, Editions Jacques Gabay, 1965.
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