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Université Paris Diderot, Sorbonne Paris Cité
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Abstract—A dialogue category is a symmetric monoidal category
equipped with a notion of tensorial negation. We establish that the free
dialogue category is a category of dialogue games and total innocent
strategies. The connection clarifies the algebraic and logical nature of
dialogue games, and their intrinsic connection to linear continuations.
The proof of the statement is based on an algebraic presentation of
dialogue categories inspired by knot theory, and a factorization theorem
established by rewriting techniques.

Index Terms—Dialogue games, innocent strategies, linear contin-
uations, string diagrams, ribbon categories, coherence theorems, 2-
dimensional algebra.

I. INTRODUCTION

Tensorial logic. Tensorial logic is a primitive logic of tensor and
negation which refines linear logic by relaxing the hypothesis that
linear negation is involutive. Its purpose is to resolve in this way
the traditional gap between game semantics and linear logic, and to
unify both of them with the monadic theory of linear continuations,
see [24] for details. The logic emerged from the discovery that the
linear distributivity law of linear logic

A ⊗ (BM C) −→ (A ⊗ B)M C (1)

is the “shadow” of a more primitive distributivity law existing in
any logic (typically intuitionistic logic) equipped with a notion of
conjunction ⊗ and of negation. This distributivity law may be written
as

A ⊗ [B,C] −→ [A ⊗ B,C] (2)

where the n-ary connective [A1, ...,An] is syntactic sugar for

[A1, ...,An] = ¬ ( ¬A1 ⊗ ... ⊗ ¬An ).

This observation was the sparkle which lead to the introduction of
tensorial logic, whose sequent calculus is recalled in the Appendix.
Interestingly, the distributive law (2) holds in tensorial logic as an
instance of a more general distributivity law, defined as follows:

A ⊗ [B,C1, . . . ,Cn] −→ [A ⊗ B,C1, . . . ,Cn]

Observe that one recovers in the case n = 0 the well-known principle
which makes the double negation monad a strong monad:

A ⊗ ¬¬ B = A ⊗ [B] −→ [A ⊗ B] = ¬¬ (A ⊗ B).

These considerations indicate the existence of a unified theory of
linear logic and continuations which could benefit from the two
approaches. One purpose of the paper is precisely to substantiate
this idea, by exhibiting an algebraic presentation by generators and
relations of the proofs of tensorial logic. In particular, we will
establish in the course of the paper that all the various distributivity
laws are generated by the following principle

A ⊗ (X � B) −→ X � (A ⊗ B) (3)

where X � B is syntactic sugar for

X � B = ¬ (X ⊗ ¬ B )

This work is partly supported by the ANR project RECRE.

This principle (3) should be seen as a parametric variant of the
tensorial strength, which is recovered when X is the unit of the tensor
product. Note that the principle is provable in tensorial logic by the
derivation tree below:

X ` X

A ` A B ` B Tensor
A , B ` A ⊗ B

Negation
¬ ( A ⊗ B ) , A , B `

Negation
¬ ( A ⊗ B ) , A ` ¬ B

Tensor
X , ¬ ( A ⊗ B ) , A ` X ⊗ ¬ B

Negation
X , ¬ ( A ⊗ B ) , A , ¬ (X ⊗ ¬ B ) `

Negation
A , ¬ (X ⊗ ¬ B ) ` ¬ ( X ⊗ ¬ ( A ⊗ B ) )

Tensor
A ⊗ ¬ (X ⊗ ¬ B ) ` ¬ ( X ⊗ ¬ ( A ⊗ B ) )

Tensorial proof-nets. It appears that this unified view of linear
logic and continuations leads to a compelling notion of proof-net
for tensorial logic, which lies at the converging point of:

• multiplicative proof-nets in linear logic,
• innocent strategies in game semantics,
• string diagrams in low dimensional algebra.

In order to devise this graphical notation for tensorial proofs, we start
from the algebraic approach to proof theory initiated by Lambek [15]
and promoted in his book with Scott [16] using the notion of
cartesian-closed category. We briefly recall this notion, and explain
how to relate it to string diagrams using ideas coming from knot
theory.

Cartesian closed categories. The key idea inspired by Lawvere’s
categorical semantics is to think of the λ-calculus as a syntactic
presentation of a category with structure. Typically, Lambek estab-
lished that the free cartesian closed category free-ccc(X ) on a given
category X has:

• the formulas of minimal logic (constructed with the binary
constructors × and⇒ together with the conjunctive unit 1) with
atoms given by the objects of the category X ,

• the simply-typed λ-terms of type A⇒ B as morphisms from the
formula A to the formula B, considered modulo a suitable notion
of equivalence between λ-terms (that is, β and η conversion and
composition of maps between atoms in X ).

This result enables one to construct denotational models of the
simply-typed λ-calculus in a simple and conceptual way. Consider
the full and faithful functor

X −→ free-ccc(X )

which transports every object of X to the corresponding atomic
formula in free-ccc(X ). The theorem established by Lambek states
that every functor X −→ D to a cartesian-closed category D extends
to a structure-preserving functor

[−] : free-ccc(X ) −→ D



2

making the diagram commute:

free-ccc(X )
[−]

.. D

X

>>YY

This functor [−] is moreover unique up to structure-preserving
isomorphism. The benefit of the construction is that the functor [−]
transports every simply-typed λ-term P to a denotation [P] in the
cartesian closed category D – that is, an invariant of the λ-term P
modulo βη-conversion.

Ribbon categories. This story on cartesian closed categories and in-
tuitionistic logic is well-known among the logicians and the computer
scientists interested in the semantics of proofs and programs. What is
less known is that the very same story occurs in a quite different part
of mathematics – knot theory and representation theory of quantum
groups. There, Turaev defined the notion of a ribbon category as a
monoidal category equipped with combinators for braiding and U-
turns, satisfying a series of expected equations, see for instance [13],
[27], [8], [21] for details. Then, one establishes a similar coherence
theorem, which states that the free ribbon category on a category X
has
• sequences (Aε1

1 , . . . ,A
εn
n ) of signed objects of X as objects,

where each Ai is an object of the category X , and each εi

is either + or −,
• oriented ribbon tangles as morphisms, colored by morphisms

of X , and considered modulo topological deformation.
So, a typical morphism

(A+) −→ (B+,C−,D+)

in the category free-ribbon(X ) looks like this

g

f

D+C−B+

A+

where f : A −→ B and g : C −→ D are morphisms in the
category X . Now, consider the full and faithful functor

X −→ free-ribbon(X )

which transports every object A of the category X to the signed
sequence (A+) in the category free-ribbon(X ). Then, just as in the
case of the free cartesian closed category, every functor from the
category X to a ribbon category D extends to a structure-preserving
functor [−] which makes the diagram below commute:

free-ribbon(X )
[−]

.. D

X

>>[[

The point is that, once properly oriented and colored, every topo-
logical knot P defines a morphism P : I −→ I from the tensorial
unit I = () to itself in the category free-ribbon(X ). From this follows
that the image [P] defines a invariant of the knot P modulo topological

deformation. Among other applications, the method enables one to
establish that the Jones polynomial [P] associated to a knot P defines
indeed a topological invariant, see [13] for details.

Dialogue categories. We have just pointed out a similarity between
the conceptual tools developed in order to study topological knots
and logical proofs. A key difference however is that the definition
of free-ccc(X ) is based on a symbolic calculus, the simply-typed
λ-calculus, instead of a topological notation, as in the definition of
free-ribbon(X ). At this point, it is worth asking oneself whether the
notion of cartesian closed category could be fine-tuned and replaced
by a notion closer to ribbon categories... whose stringy nature could
be then uncovered.

It appears that this question leads again to tensorial logic — and
more specifically to the corresponding notion of dialogue category.
A dialogue category is defined as a symmetric monoidal category D
equipped with an exponentiating object ⊥. Recall that

Definition 1 (exponentiating object): An exponentiating object in
a symmetric monoidal category C is an object ⊥ equipped for every
object a with an object a( ⊥ and with a bijection

D(a ⊗ b,⊥) � D(b, a( ⊥)

natural in the object b.

Definition 2 (dialogue categories): A dialogue category is a sym-
metric monoidal category equipped with an exponentiating object.

Hence, the notion of dialogue category reflects tensorial logic and
its two logical connectives:
• the linear conjunction ⊗ and its unit I,
• the linear negation a 7→ ¬ a defined as a( ⊥

in exactly the same way as the notion of cartesian closed category
reflects (minimal) intuitionistic logic. A typical example of dialogue
category is provided by the category of vector spaces (of finite and
infinite dimension) on a base field k, with ⊥ = k. In that case,
the negation of a vector space V is its dual vector space V∗ of
linear forms from V to k. Another example of dialogue category
is provided by the category Set of sets and functions equipped with a
set ⊥ chosen as return type. More generally, any symmetric monoidal
closed category D equipped with an arbitrary object ⊥ as return type.
Another important class of example is provided by ∗-autonomous
categories with the dualizing object ⊥ as return type. Note that a ∗-
autonomous category may be seen as a degenerate dialogue category
where the canonical map a −→ ¬¬ a is invertible.

Dialogue games. The notion of innocent strategy introduced by
Hyland and Ong in dialogue games [11] provides us with a clean
abstract and combinatorial notion of proof (and program) which
may be formulated in three different styles, with clear transcriptions
between them:
• the traditional syntax of λ-terms, because an innocent strategy

is generated by a (possibly infinite) Bohm tree, whose branches
describe the so-called Proponent views of the innocent strategy,

• the dynamic semantics provided by game semantics, because
an innocent strategy is a particular kind of interactive strategy
which plays according to its current view of the play, rather than
according to the play itself,

• the static semantics provided by relational semantics, because
an innocent strategy is positional in asynchronous games [19]
and thus entirely described by its set of halting positions.

One main observation of our work is that game semantics should be
understood as a syntax of tensorial proofs, expressed at the same time
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graphically as a flow of control. As a matter of fact, we show how to
apply the algebraic principles of knot theory to this flow of control,
and to characterize the free dialogue category free-dialogue(X )
generated by a category X in the same way as one characterizes
the free ribbon category free-ribbon(X ).

Namely, we will exhibit a series of basic logical principles of
tensorial logic (or generating proofs) providing a logical counterpart
to the topological generators of framed tangles (braidings and U-
turns) appearing in the construction of the free ribbon category
free-ribbon(X ). Using this decomposition of tensorial proofs in
basic blocks, we establish that the category free-dialogue(X ) has

• dialogue games as objects, with objects of the category X
considered as atomic games,

• total innocent strategies as morphisms, where the terminal moves
between atomic games are colored by a morphism of X .

We believe that this coherence theorem for dialogue category provides
a firm algebraic foundation to the traditional “full completeness theo-
rems” of game semantics obtained in [1], [11] and to the connection
between innocent strategies and linear continuations stressed in [23],
[24]. This result also demonstrates that game semantics is a syntax
as much as a semantics, since every functor X −→ D to a dialogue
category induces a structure-preserving functor [−] which makes the
diagram below commute:

free-dialogue(X )
[−]

.. D

X

<<\\

In particular, the coherence theorem establishes that every dialogue
category D provides a semantic interpretation of innocent strategies.
A typical illustration of this phenomenon is provided by the dialogue
category D of vector spaces (of a finite or infinite dimension) on a
field k, which provides a denotational semantics of tensorial logic,
where every innocent strategy σ of a dialogue game A is interpreted
as a vector [σ] in the appropriate vector space [A]. This shows that
game theoretical structures appear in somewhat unexpected fields of
mathematics.

Similarly, the category D of coherence space with ⊥ = 1 is a ∗-
autonomous category and thus a dialogue category: the coherence
theorem enables us to extract the static content of an innocent
strategy σ of the dialogue game A by transporting it to a clique
[σ] in the appropriate coherence space [A].

Plan of the paper. We recall the notion of innocent strategy in
dialogue games in § II. We then study in § III the logic of pure
negation (that is, tensorial logic without its tensor product) and
establish that it is generated by the adjunction of negation with itself.
This uncovers the unit η and counit ε of this self-adjunction as our
two first generators of tensorial proof-nets. Once dialogue categories
have been reformulated as dialogue chiralities in § IV, we describe
in § V a pair of distributivity laws κ6 and κ7, alternatively seen as
parametric strengths, which provide the second pair of generators of
tensorial proof-nets. We conclude our algebraic presentation in § VI
with two generators axiom and cut reflecting the axioms and cuts of
tensorial logic. We then establish in § VIII our main technical result: a
factorization theorem, which states that every sequence of generators
factors as a sequence of Opponent combinators: ε, κ7, cut followed
by a sequence of Proponent combinators: η, κ6, axiom, providing a
purely combinatorial account of innocence. The coherence theorem
is then deduced from this factorization property in § IX. We describe
the related works in § X.

II. DIALOGUE GAMES AND INNOCENT STRATEGIES

In this section, we define the category of dialogue games and inno-
cent strategies generated by a category X of atoms. The definition
follows the pattern of [19] except for the careful treatment of the
atomic moves reflecting the objects and morphisms of the underlying
category X .

Dialogue games. A dialogue game is a quadruple

A = (MA,≤A, λA, oA)

consisting of:
• a finite forest (MA,≤A) whose nodes are called the moves of the

game,
• a function λA : MA −→ {−1,+1} which associates to every move

a polarity +1 (for the Player moves) or −1 (for the Opponent
moves),

• a function oA : MA −→ obj(X ) + {•} which associates to every
move a label consisting of an object of the category X or the
tag •.

A move labeled by • is called a regular move, whereas a move labeled
by an object of X is called an atomic move. Three conditions are
moreover required on a dialogue game:
• the nodes at the root of the forest are required to be Opponent

moves,
• the forest is required to be bipartite: the polarities of nodes are

alternating on every branch,
• the atomic moves are required to be at the leaves of the forest.

Note that the converse of the third condition does not hold: a move
at the leaves of the forest is not required to be atomic. We say that
a move m justifies another move n of an arena game A and write
m `A n when m is the immediate predecessor of n, that is, m ≤A n
and for every move p of the arena game,

m ≤A p ≤A n⇒ m ≤A p ≤A n ⇒ m = p or p = n.

Positions. A position of the game is a downward closed set of nodes
of the forest. Every position may be thus seen as a partial exploration
of the forest, starting from the roots.

The asynchronous graph. Every dialogue game A induces a graph
GA:
• its nodes are the positions x, y ∈ DA,
• its edges m : x −→ y are the moves verifying y = x]{m}, where
] denotes disjoint union, or equivalently, that y = x ∪ {m} and
that the move m is not an element of x.

This graph GA is called the asynchronous graph of the dialogue game
A. We write s : x −→−→ y for a path

x
m1
→ x1

m2
→ · · ·

mk−1
→ xk−1

mk
→ y

between two positions x and y.

Alternating paths. A path m1 · · ·mk : x −→−→ y is alternating when:

∀i ∈ {1, ..., k − 1}, λA(mi+1) = −λA(mi).

Legal plays. A legal play is a pair (s, ϕ) consisting of an alternating
path s starting from the empty position ∗A in the asynchronous graph
GA:

∗A
m1
→ x1

m2
→ · · ·

m2k−1
→ x2k−1

m2k
→ x2k

together with a word of length k consisting of the letter • or a
morphism of the category X , such that, for all 0 ≤ i ≤ k − 1:

ϕ(i) = • ⇒ o(m2i−1) = • and o(m2i) = •

ϕ(i) = f : A −→ B ⇒ o(m2i−1) = B and o(m2i) = A.
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In that last case, we find useful to write the morphism f as a double
pointer from the move m2i to the move m2i−1, as follows:

s · m2i−1 · m2i

f

�	
· t

It should be stressed that the double pointer does not mean that the
move m2i is justified by the move m2i−1. This is never the case in
fact, since an atomic move like m2i−1 is a leaf of the dialogue game,
and thus does not justify any other move. The set of legal plays is
noted PA.

Strategy. A strategy σ is a set of legal plays such that:
• the strategy σ contains the empty play,
• σ is closed by even-length prefix:

∀s ∈ PA,∀m,n ∈MA, s ·m · n ∈ σ⇒ s ∈ σ,

• σ is deterministic: ∀s ∈ PA,∀m,n1,n2 ∈MA,

s ·m · n1 ∈ σ and s ·m · n2 ∈ σ ⇒ n1 = n2.

One should be careful here with the fact that a play is defined
as a path s equipped with an additional structure ϕ. In particular,
determinism means that whenever the two plays

s · m · n1

f1

��
s · m · n2

f2

��

are element of the strategy σ, then the two moves n1 and n2 coincide,
as well as the two morphisms f1 and f2 of the category X .

View extraction. The binary relation OP
 is defined as the smallest

relation between alternating plays such that:

s1 ·m · n · s2
OP
 s1 · s2

for every alternating play s1 of even-length, every nonempty alter-
nating path s2, every Opponent move m which does not justify any
move in s2, and every Player move n which does not justify any
move in s2.

Player view. The relation OP
 defines a noetherian and locally conflu-

ent rewriting system on alternating plays. By Newman’s Lemma, the
rewriting system is confluent. Thus, every alternating play s induces
a unique normal form noted d s e and called the Player view of s:

s OP
 s1

OP
 · · ·

OP
 sk

OP
 d s e.

Innocent strategies. A strategy σ is called innocent in a dialogue
game A when for all plays s, t ∈ σ, for every Opponent move m ∈MA

and Player move n ∈MA, the following situation

s ·m · n ∈ σ and t ·m ∈ PA and d s ·m e = d t ·m e

implies that
t ·m · n ∈ σ.

Once again, we should be careful about the additional structure ϕ
equipping the path s. In particular, innocence means that the two
legal plays

s · m · n

f

��
t · m · n

f

��

in the strategy σ are labeled by the same morphism

f : o(n) −→ o(m)

in the underlying category X .

Remark. The careful reader will notice that the morphisms in the
category X go in the reverse direction as the flow of control in the
play. Typically, we will see very soon that the strategy associated to
the cut link of tensorial logic plays the moves in this order:

X 7 R(Y∗) −→ R(false)
R

R
Y∗

X
f

EM

where the morphism f : A −→ B of the category X is indicated
with a pointer from the atomic move A to the atomic move B.

Total strategies. A strategy is total when every maximal play in the
strategy contains all the moves of the underlying dialogue game A.
Note that this notion is stronger than the usual notion of totality, since
it requires that all the moves of the arena game A are eventually
played by the strategy.

Tensor product. The tensor product of two dialogue games A and
B is defined as the dialogue game

MA⊗B = MA + MB, λA⊗B = [λA, λB], oA⊗B = [oA, oB].

Negation. The negation of a dialogue game A is defined as the
dialogue game ¬A where the polarities of moves have been reversed,
lifted by a new initial move m played by Opponent:

M(¬A) = MA + {m}, λ(¬A) = −λA, o(¬A) = oA

together with λ(¬A)(m) = −1 and o(¬A)(m) = •.

The category of dialogue games. The category of dialogue games
generated by the category X is denoted innocent(X ) and defined
as follows:

• its objects are the dialogue games with atoms in X ,
• its morphisms A −→ B are the total innocent strategies of the

game A( B.

Here, the game A( B is defined as the game

MA(B = MA + MB, λA(B = [−λA, λB], oA(B = [oA, oB].

Note in particular that the the polarities of the moves in the game A
have been reversed. From this follows that the game A ( B is not
exactly a dialogue game, since the initial moves in A are Player
moves, instead of Opponent moves. However, an innocent strategy σ
in the game A ( B may be defined as an innocent strategy in the
underlying asynchronous graph GA(B, where we are careful to ask
that the legal plays in GA(B start by an Opponent move (thus in the
component B).

Now, let ⊥ denote the dialogue game with a unique Opponent move
labelled •. Note that the morphisms from any dialogue game A to ⊥
in the category innocent(X ) are the same as the innocent strategies
in the dialogue game ¬A. From this follows that:

Proposition 3: The category innocent(X ) equipped with the sin-
gleton game ⊥ defines a dialogue category. Moreover, there is a
functor

ι : X −→ innocent(X )

which transports

• every object X to the dialogue game ιX consisting of a unique
Opponent move labeled by the object X,
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• every morphism f : X −→ Y to the strategy

ιX −→ ιY
Y

X
f

?G

One main purpose of the following sections is to establish that the
category innocent(X ) coincides with the free dialogue category
generated by the category X .

III. A SELF-ADJUNCTION

A first observation is that every exponentiating object ⊥ in a
symmetric monoidal category induces a pair of functors

L : C −→ C op R : C op
−→ C

transporting an object a into its negation a( ⊥ in the opposite
category. The series of natural bijections

C (a,R(b)) � C (a, b( ⊥)
� C (a ⊗ b,⊥)
� C (b, a( ⊥) � C op(L(a), b)

establishes moreover that the functor L is left adjoint to the func-
tor R. The starting point of our work is the observation that the
adjunction L a R of negation with itself plays in proof theory
the same role as duality in knot theory. In order to establish this
correspondence, we need to shift from string diagrams in monoidal
categories to string diagrams in 2-categories, taking advantage of
Street’s algebraic presentation of adjunctions L a R performed in
the language of 2-categories [28], see also [20]. At this point, we
refer to Selinger’s nice introduction to string diagrams [27] and more
specifically his Section 8 explaining the specific case of 2-categorical
string diagrams.

Now, recall that every adjunction L a R induces a monad R◦L and
a comonad L ◦ R. In Street’s presentation, the two generators of the
adjunction L a R are the unit η of the monad R ◦ L and the counit ε
of the comonad L ◦ R:

ε : L ◦ R(b) −→ b η : a −→ R ◦ L(a)

These two generators of the adjunction L a R are nicely depicted in
the language of string diagrams for 2-categories:

R

L

ε

L

R
η

The main novelty of these string diagrams compared to the familiar
string diagrams of monoidal categories is that they are multi-coloured:

• the blue surface represents the category C ,
• the red surface represents the opposite category C op,
• the negation functors R and L are depicted as oriented strings

separating a blue surface from a red surface.

So, a typical proof from an atomic formula A negated six times to
the same atomic formula A negated four times looks like this:

L

L

L L

L

R

R

RR

R

The correspondence with game semantics is striking at this point: if
one reads the diagram topdown, and understands the orientation of
the negation strands as the intended flow of control, then it appears
that the flow of negations R and L described by the string diagram
implements an interactive strategy playing the negation functors R
as input tokens (or Opponent moves) and the negation functors L as
output tokens (or Proponent moves). The fact that each functor R
and L shifts from the category C to the category C op and conversely
captures the basic intuition that a negation is a turn in the dialogue
game, where control is exchanged between players.

Composition of proofs is then performed by gluing the diagrams
in the expected way:

R

L

The evaluation mechanism of game semantics (sometimes called
interaction plus hiding) is then implemented by the pair of triangular
laws regulating the generators η and ε in the algebraic presentation
of adjunctions, see [28]. Diagrammatically speaking, these relations
are the counterpart of the “zig-zag” relation for dual pairs, and thus
describe the topological deformation of a curve into a straight line:

ε

η
L

L

=
L

(4)

η

ε R

R

=
R

(5)

These two relations imply in particular that the composite proof
depicted above is equal to the generator η. An important observation
is that all the proofs of this pure logic of negation are generated by
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the unit η and the counit ε of the adjunction L a R. This means that
this most elementary fragment of logic is entirely described by the
algebraic fact that negation is adjoint to itself.

IV. DIALOGUE CATEGORIES AS DIALOGUE CHIRALITIES

Every monoidal category C = (C ,⊗, I) induces a monoidal
category noted

C op(0,1) = ( C op(1) , ⊗ op(0) , I )

with the opposite category C op(1) = C op as underlying category,
and with the tensor product ⊗ op(0) defined by permuting the two
components of the original tensor product:

a ⊗ op(0) b = b ⊗ a.

Dialogue categories are governed by a chirality principle which says
that every map in a dialogue category C may be seen at the same
time as a map in the opposite category C op(0,1). This idea leads to the
following notion of refraction chirality which enables to manipulate
the two categories C and C op(0,1) on a symmetric and equal footing,
see [?] for details. A refraction chirality is defined as a pair of
symmetric monoidal categories

(A ,7, true) (B,6, false)

equipped with a symmetric monoidal equivalence

(−)∗ : A // B op(0,1) : ∗(−)

a distributor, or categorical bimodule

〈 − | − 〉 : A op
×B −→ Set

and a family of bijections

χm,a,b : 〈 a 7 m | b 〉 −→ 〈 a | b 6 m∗ 〉

natural in a and b, making the diagram below commute:

〈 a 7 (m 7 n) | b 〉

χm7n

��

associativity // 〈 (a 7 m) 7 n | b 〉

χn
��

〈 a 7 m | b 6 n∗ 〉

χm

��
〈 a | b 6 (m 7 n)∗ 〉 〈 a | (b 6 n∗) 6 m∗ 〉

associativity,
monoidality
o f negationoo

A dialogue chirality is then defined as a refraction chirality whose
distributor comes from an adjunction L a R in the sense that

〈 a | b 〉 = A (a,R(b)).

Note that every dialogue category C induces a dialogue chirality
G(C ) where

A = C B = C op(0,1)

and the two complementary functors (−)∗ and ∗(−) are the identity
functor on the monoidal category C , and the adjunction L a R is
deduced from the negation as in Section III. At this point, it is not
extremely difficult (although it should be done with care) to construct
a suitable 2-category DiaCat of dialogue categories and a suitable
2-category DiaChir of dialogue chiralities, in such a way that this
construction G defines a 2-dimensional equivalence between DiaCat
and DiaChir. In particular, every dialogue chirality is equivalent in
the 2-category DiaChir to the image G(C ) of a dialogue category C .
In other words, every dialogue chirality may be “strictified” into
a dialogue category, this fact establishing the notion of dialogue
chirality as a relaxed but equivalent notion of dialogue category. So,

we will generally confuse the two notions in the sequel, and think
of a dialogue chirality as a properly symmetric way to formulate a
dialogue category.

V. A CHIRAL PAIR OF DISTRIBUTIVITY LAWS

Reformulating dialogue categories as dialogue chiralities enables one
to apply the chirality principle, which states that every generator of
tensorial logic in the category A = C has a “mirror picture” in the
category B = C op, defining a dual generator. This chirality principle
is nicely illustrated by the fact that the generator ε is the mirror
picture in the category B of the generator η in the category A . In
the same way, the chirality principle enables one to “replicate” the
distributivity law (3) mentioned in the introduction

a1 ⊗ ¬ (b ⊗ ¬ a2 ) −→ ¬ ( b ⊗ ¬ ( a1 ⊗ a2 ) )

as a dual pair (κ7, κ6) of distributivity laws, consisting of a “con-
junctive” distributivity law κ7 living in the category A and of a
“disjunctive” distributivity law κ6 living in the category B

a1 7 R(L(a2) 6 b)
κ7(a1 ,a2 ,b) // R(L(a1 7 a2) 6 b)

L(R(b1 6 b2) 7 a)
κ6(b1 ,b2 ,a) // b1 6 L(R(b2) 7 a)

It is worth observing that:
• the conjunctive distributivity law κ7 imports a1 7 − inside the

scope of the two negations R and L,
• the disjunctive distributivity law κ6 exports b1 6 − outside the

scope of the two negations R and L.
On the other hand, the two distributivity laws κ7 and κ6 import a
conjunction 7 inside a disjunction 6, thus explaining why both laws
are identified when one collapses tensorial logic to linear logic by
“removing” the negations.

Just as in the case of ribbon knots in ribbon categories, the
2-dimensional string diagrams of linear negation (in Section III)
describe particles in motion. In order to interpret the tensor product
of tensorial logic, one needs to consider surface diagrams describing
formula trees (rather than simply particles) in motion. These surface
diagrams are performed in the traditional notation for monoidal (or
in that case cartesian) 2-categories, see for instance Street [29]. By
way of illustration, consider the sequent

¬¬ a ⊗ ¬¬ b ` ¬¬ (a ⊗ b)

alternatively written as

RL(a) 7 RL(b) ` RL(a 7 b)

in the style of dialogue chiralities. The left-to-right proof of the
sequent factors then as a composite of three basic combinators:

RL(a) 7 RL(b)
κ7
−→ RL(a 7 RL(b))
κ7
−→ RLRL(a 7 b)
ε
−→ RL(a 7 b)

Accordingly, the proof is depicted in string diagrams as the composite
of the three combinators, describing a formula tree in motion:

κ κ

ε

ba

R

a

b

R

R

LL

L
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Note that the very same proof of tensorial logic may be formulated
in the sequent calculus:

a ` a b ` b Tensor
a , b ` a ⊗ b

Negation
b , ¬ (a ⊗ b) , a `

Negation
¬ (a ⊗ b) , a ` ¬ b

Negation
a , ¬¬ b , ¬ (a ⊗ b) `

Negation
¬¬ b , ¬ (a ⊗ b) ` ¬ a

Negation
¬ (a ⊗ b) , ¬¬ a , ¬¬ b `

Negation
¬¬ a , ¬¬ b ` ¬¬ (a ⊗ b)

Tensor
¬¬ a ⊗ ¬¬ b ` ¬¬ (a ⊗ b)

The flow of negations appearing in the string diagram coincides with
the game-theoretic interpretation of the derivation tree as an innocent
strategy in dialogue games:

RL (a) 7 RL(b) ` RL (a 7 b)

move 1. R
move 2. R
move 3. L
move 4. R
move 5. L
move 6. L

VI. AXIOMS AND CUTS

At this point, we describe the two generators cut and axiom
corresponding to atomic axiom and cut rules in tensorial logic. Every
morphism

f : X −→ Y (6)

of the category X induces a pair of generators

X 7 R(Y∗ 6 b)
cut f ,b // R b

La
ax f ,a // X∗ 6 L (Y 7 a)

which are depicted in the language of string diagrams as

f
X

Y*

R

cut

R L

Y

X*

L

ax f

Here, the white wire X on the category A (blue background) depicts
the functor

a 7→ X 7 a : A −→ A

whereas the white wire Y on the category B (red background) depicts
the functor

b 7→ Y 6 b : B −→ B.

Accordingly, given a morphism (6) in the underlying category X ,
the arrow f tagged on the white wire in A (blue background) depicts
the natural transformation

(X 7 −) ⇒ (Y 7 −) : A −→ A

whereas the arrow f tagged on the white wire in B (red background)
depicts the natural transformation

(Y∗ 6 −) ⇒ (X∗ 6 −) : B −→ B.

Note that the two generators cut and axiom are the chiral transcrip-
tions of the sequent

X ⊗ ¬ ( A ⊗ Y) ` ¬ A

which is provable in tensorial logic by the derivation tree

A ` A
f

X ` Y Tensor
A , X ` A ⊗ Y

Negation
A , X , ¬ ( A ⊗ Y ) `

Tensor
A , X ⊗ ¬ ( A ⊗ Y ) `

Negation
X ⊗ ¬ ( A ⊗ Y ) ` ¬ A

The interaction between the generators axiom and cut is regulated by
two relations for each pair of morphisms f : X −→ Y and g : Y −→ Z
in the category X :

f
X

cut

Z

g

ax

η
g  f

X

Z

η

*

f

X

cutZ

g

ax

ε
(g  f)

X

Z

ε

*

*

*

*

*

*

(7)

The generators axiom and cut together with the two relations above
express that there exists a family of adjunctions

L ( X 7 − ) a R ( X∗ 6 − )

natural in the object X. Note that the equality reduces to the cut-
elimination rule of proof-nets in linear logic in the degenerate case
when L = R = id.

VII. THE MAPS

We describe the very last two generators of our algebra presentation
of the free dialogue category free-dialogue(X ) on a category X .
The idea is that every morphism

f : X −→ Y

of the original category X induces a pair of generators:

X
map( f ) // Y

Y∗
map( f ∗) // X∗

depicted as follows in our string diagrams:

X Y *
map map

ff
Y *X

*

VIII. THE OPPONENT-PROPONENT FACTORIZATION THEOREM

In order to prove our coherence theorem for dialogue categories
in Section IX, we establish that

Theorem 4 (Factorization): Every sequence of generators picked
among

ε η κ7 κ6 cut axiom map

transforming a formula F into a formula G may be reorganized as a
sequence of “Opponent” generators (or combinators)

ε κ7 cut
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transforming the formula F into a formula H1, followed by a sequence
of generators

map

transforming the formula H1 into a formula H2, followed by a
sequence of “Proponent” generators (or combinators)

η κ6 axiom

transforming the formula H2 into the formula G.

The reorganization is achieved thanks to a family of basic rewrite
rules ⇒ which may be seen as the resolution of a critical pair
in another term rewriting system R on tensorial formulas, whose
rewriting rules are:
• the Opponent generators ε, κ7 and cut,
• the Proponent generators η, κ6 and axiom, taken in the reverse

direction: η, κ6 and axiom,
• the map generator map.

By way of illustration, one of these rewriting rules orients the coher-
ence law of the monadic strength, which appears in this way as a local
confluence diagram for the critical pair between the two rewriting
rules η : a1 7 RL(a2)→ a1 7 a2 and κ7 : a1 7 RL(a2)→ RL(a1 7 a2):

a1 a2

R

L

η

η

a1 a2

a1

a2

R

L

κ
(8)

The overlapping patterns of the critical pair in the rewriting rules in R
are colored in the term a1 7 RL(a2). The key observation is that the
rewriting system R is strongly normalizing, at least when one removes
the rewriting rule map, and restricts it to the non trivial instances of
the rewriting rules κ7 and κ6. From this follows that the rewriting
system ⇒ itself is strongly normalizing, and thus reaches a normal
form, which is a properly factorized sequence of transformations
from F to G. This establishes our claim. To this, one should add the
fact that all the rewriting rules ⇒ between paths are commutative
in a dialogue category – this point ensuring that the factorization
procedure preserves the meaning of the morphism in any dialogue
category.

IX. THE COHERENCE THEOREM

Once the Opponent-Proponent factorization theorem is established
for the proof π : F ` G, one may focus on the resulting sequence of
“Opponent” generators from the formula F to the formula H1, and
show by a simple combinatorial argument that every such sequence
of generators factors as

F
κ7 // // J1

cut // // J2
ε // // H1 (9)

where each arrow is labeled by the name κ7, cut and ε of the
generators appearing in it. Symmetrically, one establishes that the
sequence of “Proponent” generators from H2 to G factors as

H2
η // // K2

axiom // // K1
κ6 // // G (10)

This decomposition of the proof π : F ` G provides an algebraic
counterpart to the notion of innocent strategy in dialogue games.
A simple way to explain this connection with game semantics is to
interpret the proof π as an innocent strategy σ in the dialogue category

innocent(X ) defined in Section II. For notational convenience,
we write the associated dialogue games in the same way as the
formulas F and G. Now, the set of Proponent views of the strategy σ
may be organized into a tree denoted d σ e and called the tree of
Proponent views of the strategy σ. Now, every Proponent view s of
the strategy σ projects as

• an Opponent view s � F on the dialogue game F,
• a Proponent view s � G on the dialogue game G.

From this follows that the tree d σ e induces a pair consisting of a
tree of Opponent views d σ e � F in the dialogue game F and a tree of
Proponent views d σ e � G in the dialogue game G. Moreover, every
move in the dialogue games F and G appears once (and exactly once)
in the tree of views, because the strategy σ is total. Hence, the tree
d σ e � F contains all the moves of F and the tree d σ e � G contains
all the moves of G. At this point, a good idea is to think of d σ e � F
and d σ e � G as dialogue games themselves, rather than trees. The
combined fact that d σ e � G has the same moves as G, and that it is
a tree of Proponent views of G leads to the equation:

K1 = d σ e � G

and symmetrically for the Opponent views:

J1 = d σ e � F.

This justifies to think of the combinators κ7 and κ6 as the respective
constructors of the Opponent and Proponent views of the strategy σ.
The strategy τ interpreting the proof between J1 and K1 is simply the
result of the decomposition of the tree of Player views d σ e into the
two dialogue games J1 and K1. In particular, every Proponent view
of the strategy τ is a branch in d σ e, and thus projects as a branch
of J1 and as a branch of K1.

This correspondence between the Opponent-Proponent decompo-
sition of the proof π : F ` G and the structure of Player views d σ e
of the associated innocent strategy σ is so tight that it is reversible:
namely, every innocent strategy σ : F ` G factors as (9) followed by
(10) where J1 and K1 are defined as the dialogue games:

J1 = d σ e � F K1 = d σ e � G.

An easy combinatorial argument (by induction) establishes that the
two strategies

F −→ J1 K1 −→ G

induced from σ are constructed by applying a series of combi-
nators κ7 and κ6 respectively, and another easy combinatorial
argument (by induction again) that the strategy

J1 −→ K1

decomposes as a sequence of cut, ε, map, η and axiom combinators.
This establishes that every functor

F : X −→ D

to a dialogue category D may be lifted as a functor

G : innocent(X ) −→ D

by defining the functor G on the objects by induction on the dialogue
games

• G(¬A) = ¬G(A)
• G(A ⊗ B) = G(A) ⊗ G(B)
• G(ιX) = F (X) for every object X of the category X

and on the morphisms by decomposing every innocent strategy
σ : A −→ B into a sequence of basic combinators and then
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by transporting each of these combinators to the corresponding
combinator in D . This induces a morphism

G(σ) : G(A) −→ G(B)

which is uniquely determined because the factorization of an inno-
cent strategy is unique modulo the series of commutative diagrams
considered in the proof of Opponent-Proponent factorization. From
this follows that the functor G is properly defined, and is moreover a
functor of dialogue categories. From this follows the main result of
the paper:

Theorem 5 (Coherence theorem):
The category innocent(X ) of dialogue games and total innocent
strategies is equivalent (as a dialogue category) to the free dialogue
category free-dialogue(X ) generated by the category X .

It should be mentioned at this point that it would be also possible
to establish the coherence theorem by more traditional techniques
directly adapted from game semantics. The resulting proof would
be simpler but much less informative. In particular, the alternative
proof would not reveal the relationship between game semantics and
string diagrams, nor the algebraic presentation of tensorial proofs
by the generators and relations. This combinatorial and algebraic
aspect would have remained concealed... Note that, on the other
hand, we have recently used this alternative proof technique in
order to establish a coherence theorem for a braided notion of
dialogue categories, where proofs are manipulated in the same way
as topological tangles, see [21], [22] for details.

X. RELATED WORKS

The phenomenon of self-adjunction is mentioned by Kock [14]
and stressed by Thielecke [30] in his work on continuations. The
notion of dialogue category was inspired by the key observation
by Hofmann and Streicher [9] and then Selinger [26] that every
denotational model of classical logic (that is, of the λµ-calculus)
boils down to a continuation model. The formulation of dialogue
categories as dialogue chiralities was inspired by Girard’s work on
polarities in LC [7] and its relationship to dialogue games noticed
by Laurent [17], together with the correspondence between games,
polarities and continuations originally investigated with Selinger [23].
Note that similar ideas of symmetry appeared independently in the
work by Cockett and Seely [4]. The game-theoretic description of the
maps f : X → Y between atoms in X as labelled pointers between
atomic moves is reminiscent of the game-theoretic account of Girard’s
geometry of interaction [1] and of proof-nets [2], [25] together
with the graphical description of the free ribbon category [13]
discussed in the introduction. On the proof-theoretic side, this work
should be compared with similar graphical descriptions of the free
∗-autonomous category [10] and of the free symmetric monoidal
closed category [5]. One main difference with the present work is
that both constructions [10], [5] require to identify diagrams modulo
Trimble’s rewiring equalities [3] and thus to depart from the purely
topological and diagrammatic notion of proof equality underlying
dialogue categories.
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APPENDIX

TENSORIAL LOGIC

The formulas of tensorial logic are defined by the grammar

A,B ::= X | A ⊗ B | 1 | ¬ A | ⊥

where X is an atom of the logic. A sequent of tensorial logic is a
pair

A1, . . . ,An ` B

consisting of a (possibly empty) sequence of formulas A1, ...,An

called the hypothesis of the sequent, and of a (unique) formula B
called the conclusion of the sequent. The derivation trees of tensorial
logic are constructed by the following rules:

Axiom A ` A

Cut
Γ ` A Υ1,A,Υ2 ` B

Υ1,Γ,Υ2 ` B

Right negation
A,Γ ` ⊥
Γ ` ¬A

Left negation Γ ` A
Γ,¬A ` ⊥

Right ⊗ Γ ` A ∆ ` B
Γ,∆ ` A ⊗ B

Left ⊗
Υ1,A,B,Υ2 ` C

Υ1,A ⊗ B,Υ2 ` C

Right 1 ` 1

Left 1
Υ1,Υ2 ` A

Υ1, 1,Υ2 ` A

Exchange
Γ,A,B,∆ ` C
Γ,B,A,∆ ` C

As in the case of minimal logic and of the free cartesian-closed
category generated by a given category X , it is natural to extend
the logic (in that case, tensorial logic) with a rule:

Map[ f ] X ` Y

for each morphism f : X → Y of the category X . An equational
theory on the derivation trees is then defined in a similar way as
in propositional linear logic, see for instance [20]. This equational
theory is inherently justified by the fact that it presents the free
dialogue category free-dialogue(X ) generated by the category X .


