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Towards an Erlang formula for multiclass networks

Matthieu Jonckheere* Jean Mairessef

Abstract

Consider a multiclass stochastic network with state dependent service rates and ar-
rival rates describing bandwidth-sharing mechanisms as well as admission control and/or
load balancing schemes. Given Poisson arrival and exponential service requirements, the
number of customers in the network evolves as a multi-dimensional birth-and-death pro-
cess on a finite subset of N*¥. We assume that the death (i.e. service) rates and the
birth rates depending on the whole state of the system, satisfy a local balance condition.
This makes the resulting network a so-called Whittle network and the stochastic process
describing the state of the network is reversible with an explicit stationary distribution
that is in fact insensitive to the service time distribution. Given routing constraints, we
are interested in the optimal performance of such networks. We first construct bounds
for generic performance criteria, that can be evaluated using recursive procedures, these
bounds being attained in the case of a unique arrival process. We then study the case
of several arrival processes, focusing in particular on the instance with admission con-
trol only. Building on convexity properties, we characterize the optimal policy, and give
criteria on the service rates for which our bounds are again attained.

1 Introduction

The Erlang formula [6] has proved to be a central tool of performance evaluation for tele-
phone networks. Its impressive and lasting success in an engineering context can be explained
by both its simplicity and its robustness [1]. The Erlang formula is insensitive to the call
duration distribution and depends on a unique parameter: the traffic intensity. The only as-
sumptions which are required to apply the formula are Poisson arrivals. At the mathematical
level, the key property is the reversibility of the one dimensional birth-and-death process.
On the ground of this early work of Erlang has developed the whole theory of stochastic
networks whose state evolves as a reversible stochastic process. Such networks became very
popular with the seminal work of Kelly [8] further developed by Whittle [15]. The crucial
insensitivity property of the Erlang model extends to circuit-switched networks (without ad-
mission control and dynamic load balancing). More recently, (quasi-)reversible networks have
emerged as a powerful tool to capture the essential dynamics of complex and diverse real-life
telecommunication networks, see for instance [2, 3]. Because the key performance indicators
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of these models are independent of all traffic characteristics beyond the traffic intensity, they
provide simple and robust engineering rules, just like the Erlang formula.

The situation gets more complicated in the presence of admission control and/or load
balancing. The admission control consists in possibly rejecting customers even when the
full capacity of the network is not utilized. Load balancing consists in routing an arriving
customer to one of the queues in a subset of possible target queues. These techniques ensure
an efficient utilization of resources by taking into account the system state to make decisions.
They have become a key component of computer and communication systems.

The corresponding mathematical model can be described by a general multi-dimensional
birth-and-death process on a finite subset of N, where 7 is the finite set of nodes (queues) of
the network. The death (i.e. service) transition rates depend on the whole state of the system.
Defining an admission control and/or a load balancing policy consists in tuning the birth (i.e.
arrival) transition rates. More precisely, let us concentrate on one given class of customers
arriving at rate v. Admission control consists of defining, as a function of the state of the
system x, the rate A(z) < v at which the customers are admitted in the network. Assume
that for this class, the arriving customers can be served by any of the nodes in a subset Z’ of
Z. Load balancing (aka routing) consists in choosing the rates \;(z),i € Z', >, \i(z) = A\(z),
at which the admitted customers are assigned to the different nodes.

The goal is to find the policy which optimizes some performance criterion, typically the
blocking probability of an arriving customer. This leads in many cases to very difficult opti-
mization problems. A discussion of some existing results appears in [2], see also the references
therein. The book of Ross [13] is also devoted to a special instance of this question: the model
considered, known as the stochastic knapsack model, is a model with admission control but
without routing (each class of customer is assigned to a specific and different node). Partial
optimality results in dimension 2 and 3 are obtained, for service rates depending only on the
local number of customers at the node.

In the present paper, we restrict our attention to networks where the service rates sat-
isfy the so-called “balance condition” and we consider the optimization problem within the
restricted subclass of policies for arrivals which satisfy an analogous “balance condition”,
the so-called insensitive policies. Such policies are called insensitive because the resulting
stochastic network is insensitive in the sense that its stationary distribution depends on the
service time distribution only via its mean.

So the questions are three-fold: (1) Is it possible to find the optimal insensitive policy ?
(2) Can we efficiently evaluate the optimal insensitive policy ? (3) Is the performance of the
best insensitive policy close to the one of the best policy 7 Here we address only the first two
questions, having in mind the hope that the answer to the third question is yes for a broad
range of parameters. In any case, the optimal performance of insensitive policies provides a
bound for the optimal performance of general policies. This may bring enough motivation
for studying the former.

Since these questions are difficult to answer in general, we first focus on policies with
an admission region shaped as a rectangular hyper-parallelepiped and give efficient recursive
formulas to evaluate their performance. This provides computable lower and upper bounds
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for the performance of the optimal insensitive policy.

We then study the tightness of our bounds. When there is a unique arrival process, our
bounds are always attained, i.e., the optimal insensitive policy can be described as a specific
rectangular shaped policy.

Later on, we turn our attention to the case of several arrival processes and consider as its
simplest instance, the case of networks with admission control only. This problem is of crucial
importance when looking at the flow level modelling of fixed and wireless data networks [12].
We assume that the state space is coordinate-convex (see Figure 1). A coordinate-convex
policy is a policy with full admission within a coordinate-convex subset of the state space,
and full rejection out of it (see Figure 1). We prove that these policies are extremal within
insensitive policies: any insensitive policy can be decomposed as a convex combination of
coordinate-convex policies. Using this result, we prove that the minimal blocking probability
for insensitive policies is reached by a coordinate-convex policy.

We define a decentralized policy to be a coordinate-convex policy in which the admission
region is the intersection of the whole state space with a rectangular hyper-parallelepiped.
On Figure 1, the left case corresponds to a non-decentralized coordinate-convex policy, while
the other two cases correspond to decentralized policies.

state space

e h

admission region rejection region

Figure 1: Coordinate-convex policy (left) and decentralized policies (middle and right)

Our results show that in general, decentralized policies are not optimal within insensitive
policies. In other terms, there exist instances in which a coordinate-convex policy achieves a
blocking probability which is strictly smaller than the one achieved by the best decentralized
policy, which contrasts with the case of a unique arrival process. We provide a toy example
of a network in which this phenomenon occurs. This emphasizes the intrinsic increased
complexity of models where several classes of customers are competing. To give a complete
picture, we also provide sufficient conditions on the model (monotonicity or light traffic)
under which complete sharing policies (decentralized policies admitting all the traffic inside
the state space) are optimal among insensitive policies.

The paper is organized as follows. Section 2 introduces the model, the notation and
the objectives. In Section 3, we provide computable bounds for a broad set of performance
criteria in the general case. Section 4 is a detailed analysis of networks with admission control
only. In Section 5, we illustrate the concepts and the results on a toy example, which can be
described as the simplest non trivial multiclass model.
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2 General framework

Notation. Let e; be the point of N¥ defined by (e;); = 1, (e;); = 0,5 # i. A Ferrers set is a
finite subset E of N* such that:

[wEE,xi>0] — x—e¢ €F.

In other words, it is a coordinate-wise convex finite set. The set of all Ferrers sets is denoted
by F(NF). The set of Ferrers sets included in £ C N* is denoted by F(E). The notation
x < y is used for the coordinate-wise ordering: Vi, x; < y;. We further denote:

k
|z| iglxz an ( '

We denote by 1g the indicator function of S, that is the map taking value 1 inside .S and 0
outside. We denote respectively by R} and R’ the set of non-negative and positive reals.

2.1 Model

Consider a network with a finite set of servers (nodes) Z. An arriving customer is served by
one of the nodes and then leaves the network. More precisely, Z is partitioned into finitely
many non-empty subsets 7, k € K, each customer has a class which is an element of I, and
a customer of class k£ has to be served by one of the nodes in Z;. The state of the system
is described by a vector in NZ corresponding to the number of customers in each node. The
state space, denoted by X, is assumed to be a Ferrers set:

X e F(N).

Class-k customers arrive according to a Poisson process of intensity v;. The different
arrival processes are mutually independent. An arriving customer of class k is either routed
to a node in Zj, or rejected (recall that the state space is finite). The routing/admission policy
depends on the whole state of the system at the instant of arrival. The service requirements of
the customers are independent and exponentially distributed with parameter 1. The service
rate at a given node depends on the whole state of the system.

Let X be the stochastic process valued in X’ describing the state of the system. The above
assumptions result in X being a continuous-time jump Markov process, on the state space
X, with infinitesimal generator Q = (¢(z,y))sycx given by: Vo € X,

q(x,x—e€;) = ¢i(x) fx—eeX
gz, x+e) = N(z) ifrx+eeX (1)
q(z,y) = 0 fyeX, y#r—e,rv+e.

It is convenient to define ¢;, \;, for all 2 in N%, so we set ¢;(x) = 0if (x—e;) € X, and \;(z) = 0

if (z +e;) € X. The scalars \;(x) define the routing/admission policy. By definition of the
model, they satisfy:

Intensity constraints: Vk € K, 377, Ai(z) < v (2)

4
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By definition, the rejection rate of class-k customers in state x is equal to vy — > ;c7, Ai(x).
The intensity h : X — R of a routing is defined by

h) = Y M) 3)

1€l

The mazimum routing intensity v : X — R is defined by

v(r) = Z Vkl{ElieIk,:c-l—eieX} . (4)
kek

Clearly, the intensity h of any routing satisfies: Vo € X', h(z) < v(x).

Concerning the service rates, we make the following assumption:
Vie I Vre X,xz; >0, ¢i($)>0. (5)

In the paper, the service rates ¢;(x) are assumed to be given and fixed. On the other
hand, the routing rates \;(x) will vary, and the actual state space of the process X will
depend on this. For some choices of the routing rates, @@ will not be irreducible. However,
according to (5), the set of recurrent states of @) is always strongly connected, and belongs
to F(X). In particular, there exists a unique stationary distribution for X that we denote
by .

Performance criterion. Below, the goal is to choose the routing rates in order to optimize
a performance criterion. This criterion can be typically chosen as a given linear combination of
the blocking probabilities of each class of customers. Consider p = (pg)kex, Pk > 0, >, v = 1.

Set:
%ZZM@Z%O—;%ﬁ@> 0

zEX kek Vk

Using the PASTA property, the blocking probability B of an arriving customer is a special
case of this generic criterion: B = By, /p),, where v = 3, vx. When the routing policy is
defined via a balance function A, we denote the associated blocking probability by Bj(A).

We also give results which are valid for any criterion of the form E[f(X)], for a given
f:X—-R.

2.2 Balanced services and routing

The service rates are said to be balanced if there exists ® : X — Ri such that

O(x —e;)

Vi, Ve € X,x; >0, ¢i(x) = @) (7)

Consider the following property:

Vi,j, VexeX,x;>0,z; >0, bi(x)pj(x — e;) = ¢j(z)pi(x —ej) . (8)
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Clearly (7) implies (8). Conversely, assume that (8) holds. Set o = (0,...,0). Consider a
directed path from o to z in N2, that is a sequence of points (xg = 0,21,...,2, = x), such
that xp — 21 = €;,, V1 < k < n. Define ® : X — R* by the formula:

-1
O(x) = Clei, (w1)hiy (w2) -+~ i, (wn)] -

where C' is some positive constant. Using (8), we can prove that the value of ®(x) does not
depend on the chosen directed path from o to z. Formula (7) follows readily.

Similarly, the routing rates are balanced if the following equivalent conditions are satisfied:

JA X — RY, Vi, Ve e X,x+e; € X, N(x) = Az +e;)/A(z). 9)
Vi,j, Vee X,o+e, € X x+e; € X, N(x)hj(x+e) = Nj(z) iz + ¢) .

It is often convenient to define A or ® on N7 instead of X. Of course, the actual rates \;
and ¢; depend only on the restrictions of A and ® to X.

Assume that both the service and the routing rates are balanced. Using (7) and (9), we
get, Ve e X,z +e¢; € X,

O (z)A(z)\i(x) = O(x + ;) A(x + e;)pi(x + €;)

Since \;(z) = q(x,x + ¢;) and ¢;(x + e;) = q(z + €;,x), we conclude that the process X is
reversible and that the stationary distribution is given by
O(z)A(z)
yex @(W)A(y)

The balance conditions are obviously restrictive conditions. For instance, (9) is not sat-
isfied for usual routing policies such as “join-the-shortest-queue”.

m(x) =

(10)

The balance condition goes back to Kelly [8] (the slightly different concept of job-balance
was developed by Hordijk et al [7]). Balance is satisfied for example if the rates at node
i depend on z only via z; or if the service capacities are fairly shared between classes i.e.,
oi(x) = cﬁ—i', or more generally in a bandwidth sharing network operated under the balanced
fairness allocation [5].

It was recently proved that balance conditions are closely related to insensitivity. Assum-
ing that the service rates are balanced, a necessary and sufficient condition for the insensitivity
property to hold is that the routing rates be balanced, see [14, 4].

In the sequel, we always assume that the service rates and the routing rates are balanced
which implies the insensitivity of the studied network. We shall then speak of insensitive
policies to refer to those policies with balanced service and routing rates. The model defined
in Section 2.1 corresponds, at the network level, to exponentially distributed service times.
However, since we restrict our attention to insensitive policies, all the results remain true for
i.i.d. generally distributed service times.
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2.3 Admissible balance functions

From now on, assume that the service rates (¢(z)),cx are balanced (by a balance function
®) and fixed.

Let A be the set of normalized balance functions which satisfy the routing constraints,
ie.,

A={A:N =R VagX, A(x)=0,
ZA(w)q)(w) =1,

(11)
reX
Va,Vi e K, Z Az +ej) <vih(z)} . (12)

JEZ;

Such balance functions are called admissible. To each admissible balance function, we can
associate the routing rates defined by (9). Below, we often identify an admissible balance
function with the routing policy it defines.

In the following, it will often be convenient to relax the normalization condition (11),
when considering a balance function. To differentiate between both cases, we shall use the
notation A instead of A when a balance function is not normalized.

We can characterize the structure of A as follows.

Proposition 2.1. The set A is convex and compact (for the topology of pointwise conver-
gence). The blocking probability B, is a linear function on A:

By(h) =1= 3 @) 23 A +ey).

r€X iek 7t jeT;

Proof. From the constraints (11) and (12), it is easily checked that if A1 and A2 belong to
A, so does tAl + (1 —t)A2 for t € [0,1]. Since A is a set of bounded functions with finite
support X, it is compact. Consider now a balance function A. Expressing the routing rates
as a function of A and using (10), we can rewrite equation (6) as:

B,(A) = Z A(z)®(x) Zpk(l _ L Z W) =1- Z O (x) Z Pk Z Az +e).
rEX kek Yk ic1, r TEX kek Uk iex,

As a consequence, By (tAl + (1 —t)A2) = tB,(Al) + (1 — t)B,(A2). O

3 Rectangular balance functions and performance bounds

In this section, we focus on balance functions characterized by an admission region reduced
to the intersection of X with a rectangular hyper-parallelepiped y! = {z < y}. We show
how to use these balance functions to derive computable lower and upper bounds for the
performance of the optimal insensitive policy.
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3.1 Rectangular balance function

Definition 3.1. Consider a point y € X and a function g : X — R such that g < v,
where v is the maximum routing intensity defined in (4). The rectangular balance function
AY9 . NT — R, associated with y and g is defined by:

1 ifr=y
AI(@) = g(2) P s A9z + o) ifr<yay .
0 otherwise

Any admissible balance function defined on X Ny can be represented as a rectangular
balance function by choosing ¢ appropriately. This can be shown recursively, starting with
the extremal points of the state space, that is: z € X Nyt, Vi, z + e € X Nyt

On the other hand, a normalized rectangular balance function A¥Y is not necessarily
admissible. Consider the rates \;(z) associated with AYY and defined according to (9). We
have > ;c7 Ai(z) = g(x) < v(z). However, the rates may or may not satisfy the intensity
constraints (2). This is an important point, so we illustrate it with an example.

X1 <N
Vl >
X2§N
\'%) >

Figure 2: Network of example 1 : the admission constraints are 1 < N, o9 < N

Example 1. Let Z = £ = {1,2} with Z; = {1} and Z, = {2}. Let the arrival rates be
v1 = vy = 1/2. The routing constraints are given by:

Ai(z) £1/2,
Ao(x) < 1/2,
which for balance functions boil down to:
A(z) > 2A(x + e1),

A(z) > 2A(x + e2).

Consider the state space X = {(z1,x2), 1 < N, 3 < N}. So the maximum routing intensity

is
1 for x1 < N,z9 < N

v(r) =¢1/2 forzy < Nyoo=N or z1=N,z3 <N .
0 for xt1 = N,zo = N
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Consider the point y = (n,n) with n < N, and the function ¢ = v. The corresponding
rectangular balance function is:

1 11 11
4 3 2 1

Ao 0 6 3 1 a13)
20 10 4 1
1

The intensity constraints are not satisfied except on the diagonal {(i,7), 0 <i <n —1}. For
instance, for the point x = (n — 1,n — 2), we have

M(x) = AV (x +e) /A (z) = 1/3, Ao(x) = A¥Y(x + ) /A" (2) = 2/3 >> 1y .

Assume now that 11 = x and v, = 1 — z, for x irrational between 0 and 1. The maximum
routing intensity is unchanged and equal to 1 on y!. So the rectangular balance function
associated with y and v is still given by (13). But now the intensity constraints are violated
at all the points of y!.

We now come up with an explicit expression for rectangular balance functions. An in-
creasing path from z to y,y > x, is a sequence of points (zg = z,x1,...,2x = y) such that
Tjp1 — x; = e;; for all j. Let P(x,y) be the set of increasing paths from z to y.

Lemma 3.2. We have

1 ife=y
Ay,g(x) = ZpeP(:p,y) Hzep,zyéy g(z)il Zfﬂ? <Yz 7é Yy - (14)
0 otherwise

Proof. Denote by H(z,y) the right-hand side of (14). A path from z to y can be decomposed
as a path from = to x + ¢; and a path from x + ¢; to y, for some i such that z; < y;. As a
consequence, we have: H(z,y) = ;.. <, H(x + e;,y)g(z)~'. We conclude that H and Av9
satisfy the same recursive equations and the same initial condition: H(y,y) = 1 = A¥9(y).
O

3.2 Recursive evaluation of rectangular balance functions

We now show how to compute the performance of policies corresponding to rectangular
balance functions.

We hence still assume that the service rates (¢(z))zcx are balanced (by a balance function
®) and fixed. We fix a rectangular balance function A¥Y (y € X) and consider the routing
rates \;(z) associated with the balance function and defined according to (9).

As underlined by the Example 1, the intensity constraints may not be satisfied. However,
let us consider the model operated under this (possibly non-admissible) policy. That is,
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consider the stochastic process X with infinitesimal generator (1) for A, ¢. We first show
how to compute the performance of the policy. Later on, we will use this to bound the
performance of admissible policies.

Define:

g) = Z Ay’g(a;)i)(a:), Pl(y,g) = Z Ay’g(x +¢;)®(x) .

TeX rzeX

Observe that C(y,g) is the normalizing constant, that is, the stationary distribution m, 4
satisfies:

Ve e X, my.9(x) = C(y, 9) " AYI(2)D(x) .

Proposition 3.3. Let B, = B,(AY9) be the blocking probability defined as in (6). We have

Y jexPiv; ' Lier, Py, 9)

B, =1— 15
' C.9) "
The quantities P? and C' can be computed using the recursive schemes:
Cly,9) = )+ Y. Cly—einggly—e) ', (16)
1€Z:y;>0
Ply,9) = ®y—e)ly,s00+ Y., Py—eiggly—e)". (17)
i€ZL:y; >0

Proof. Formula (15) is obtained directly from Prop. 2.1. Let us prove (16). If x < y,z # y,
we have

Ayg Z AV~ ¢ ( _ ei)_l.
1<y
So we get
Cly.9) = Y A(2)0(x
reX
- Ayg )+ Z d(z Z AV~ 9 (x)g(y — e;)” 1
z<y,x#£y 2z <y;
= )+ Z Cly—ei,g9)g(y —e) L.
1:y; >0

The proof of (17) is analogous. O

An equivalent recursive formula implying the service rates instead of the balance function
can be considered instead of (16)-(17). Define P}, j € Z, and " such that Pj(y,g)/C"(y, ) =

Pj(y,9)/C(y,g) and

Cl(yag) = 1+ Z Cl — €9 sz( ) ( _ei)ila

i:y; >0

Pi(y,9) = ¢i(W)ly,s0p+ > Pily—eig)di(y)gly —e) ™"

i:y; >0

10
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Other performance criteria. Consider a performance criterion of the form Py = E[f(X)]
for some function f: X — R..

Proposition 3.4. We have P¢(y) = D(y,9)/C(y,g), where D(y,g) can be evaluated using
the recursive scheme:

D(yag) = + Z D — €3 ) ( _ei)il-
1€Z:y;>0

3.3 Decentralized policies

We introduce a subclass of admissible balanced functions called decentralized balance func-
tions. Let k be a class, define z(®) to be the point such that:

(k) _ Jz; forj eIy
0 otherwise.

Decentralized balance functions correspond to policies having the desirable property that
the routing intensities concerning a given class of customers depend only on the number of
customers of that class present in the network.

Definition 3.5. Consider a point y € NX, not necessarily in X. The decentralized balance
function AY associated with y is defined by:
B —g®y  —jy®) @]
Aoy = { Trer G ) i Jreynd (18)
0 otherwise
The normalized version of AY is easily seen to be an admissible balance function. When
y € X, the decentralized balance function is the rectangular balance function (see Definition
3.1) associated with y and v.

Let us define the decentralized routing policy associated with the decentralized balance
function. The intensity function (see (3)) of the decentralized routing policy is

Vo <y, Z Vk Z x(k Lioteeyinay -
ke ZEIk,

The decentralized policies work as follows. Do not accept customers outside the region
yt. Inside the region y! N X, all possible customers are accepted, except at points z € y* N X
such that

e, F,jET, Tre €y nNX, xte;cytniC. (19)

Therefore, the decentralized policy becomes particularly simple when there exists no such
point. This happens in the following two cases among others:

1. When y € X, implying that y' N X = y!. When |K| = 1, the decentralized policies with
y € X are extremal and boil down to the simple policies described in [2] (see Section

3.6).

11
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2. When |Z| = |K| (each class is assigned to a specific node). In that case, such policies
are sometimes called threshold policies in the literature, with the point y determining
the threshold. We elaborate further on this case in Section 4.

Let us illustrate the above on a few examples.

Example 2. Consider the same model as in Example 1. Consider the point y = (n,n) with
n < N. The decentralized balance function associated with this point is:

2 ... 8 4 2 1
16 8 4 2

re 32 16 8 4 (20)
64 32 16 8

Here we check that we have full admission of customers strictly inside the region y'!NAX = y.

Assume now that n > N. We obtain AY by restricting (20) to the state space X. After
renormalization, we obtain exactly the same function as before. So we still have full admission
strictly inside y! N X. More generally, it is easily seen that full admission would hold for
the decentralized policy associated with any point y. This is consistent with the fact that
\Z] = [K].

X1 <N

X1<N

Figure 3: Network of example 3 : the admission constraints are x1 < N, 2o < N

Example 3. Let Z = {1,2} and K = {1}. Let the arrival rate be v1 = 1. Consider the state
space X = {(x1,x2),11 < N,x9 < N}. Choose y = (y1,y2) € X. Applying (18), we get

1~ 1 1 1 1
4 3 2 1

v, 10 6 3 1 (1)
20 10 4 1
1

12
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Observe that the balance function coincides with the balance function obtained in Example
1. This is natural since the balance function considered in Example 1 corresponds to the
possibility of routing the total traffic indistinctively to both classes which boils down to a
single-class system with two nodes.

For a point x = (x1,22), x € y', x # y, the routing is

A(z) = Y1 — 21

Y2 — T2
- ) )‘2:1j -
Y1 —T1+ Y2 — T2 (@)

oy — Tty — T

So we have \(z) + Xo(x) = 1, and there is full admission at point x for x € y*,x # 1.

X; <N
Vi
Xy +X3 <N
Xy +X3 <N
Vv, >

Figure 4: Network of example 4 : the admission constraints are 1 < N, z9 + a3 < N

Example 4. Let T = {1,2,3} and K = {1,2}, 7 = {1,2}, Zo = {3}. Let the arrival rates
be vy and vo. Consider the state space X = {(x1,x2,23),21 < N,z9 + 23 < N}. Choose
y = (y1,Y2,¥3). Applying (18), we get

|y(1) — x(1)| W (W) T
Ay($) _ (y(l) - x(1) v ly ‘1/2 y3+x3

For a point x = (i,j,k) € X, the routing is

M(z) = VI#L{HISNL Ao(z) = VI#HJ'HHISN}
and
A3(@) = valiryi<ysy 1jrht1<ny -
Hence we have
(@) + Ao(z) =1 (#Hm«v} + #1{#%1@}) :
We do not have full admission at point x when i+1< N and j+k+1> N.

13
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3.4 Recursive evaluation of decentralized policies

When y € X, the decentralized policies are a subclass of the rectangular policies defined in
Section 3.1. So the recursive formula (15) can be applied directly.

If y ¢ X, then the decentralized policy is not rectangular but is however the restriction of
a rectangular policy defined on a larger state space containing both X and y'. By following
the exact same steps, we prove that the results of Proposition 3.3 hold in this generalized
context. More precisely, we have the following.

Let X’ be a finite Ferrers set containing both X and y!. For z € A7, let A% be the
decentralized balance function on X associated with z and defined according to (18). For
z € X/, define:

C(z) = Z A (2)®(x), Pl(z) = Z A (x4 e)P(z) .

zeX rzeX

Define v/ : X' — R by
V(z) = Z VkLl{3ieT), ztecx’} -
kel

Proposition 3.6. Consider y ¢ X. The blocking probability of the decentralized policy on X
associated with AY satisfies

ZjelejVj_l ieT; Pi(y)
Cly) '

The quantities P? and C' can be computed using the recursive schemes:
Clz) = (@) 1geay+ Y, Cla—e)(z—e) ™,
1€L:2;>0

Pj(z) = P(z-— ej)l{z,eje/y} + Z Pj(z —e)V (2 — ei)fl .
i€L:2;>0

By(AY) =1—

3.5 Bounds

We obtain bounds by applying the following simple principle. Consider a routing associated
with the intensity function h. If h < g, then the balance function can be decomposed in
terms of balance functions of rectangular policies with intensity g. We state more formally
this result in the following lemma.

Theorem 3.7. Consider an admissible balance function A with intensity h such that h < g,

we have:
A= Z cy AV,
yeX

with (¢y)yex defined by ¢, = A9 (y)~H(A(y) — g(y) " Yiez Ay +€:))-

14
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Proof. Introduce the frontier of the attainable states under A, H = {z : A(z) # 0, Vi €
Z,A(z + ¢;) = 0}. Since A is admissible, for every reachable state not in H, we have

h(z)™? ZA(Q? +e)=Alx) = g(x)! Z Az +e) < Ax).
= =

Set ¢, = AY¥9(y) L (Ay) — g(y) " * S;er A(y + €;)). We have shown that ¢, is non-negative.
Now define A’ = > yex cyAYY. Using an induction on the state space (starting from the states
in H), we prove that A = A’. O

A direct consequence of the above Proposition is that:

By(A) > min B, (AY9) . (22)
yeX
Corollary 3.8. Denote by B, the minimum value of the blocking probability By, over A. We
have the following bounds:

min B,(AYY) < B < min B,(AY)= min B,(AY).

min By(A™") < B, < Jnin p(AY) B p(AY)
Proof. Since v is an upper bound of the intensity for any admissible policy, we can always
apply (22) with ¢ = v. This provides the lower bound for Bj. The upper bound is clear: it
follows from the fact that the decentralized balance functions AY are admissible. 0O

Remark 3.1. We could have stated the same result for any performance criterion Py : A —
R which is convex, that is, which satisfies:

Vit € [0,1], VA1, As € A, Pf((l —t)Ay +tAg) > (1 — t)Pf(Al) + tpf(Ag) . (23)

3.6 One class of customers

Structural and optimality results for networks with only one arrival process have been given
in [2]. We show that the results from [2] are a special case of the above results. Also the
situation becomes much simpler, and for instance, the bounds of Corollary 3.8 are attained.

The set 7 is defined as before. The set K is reduced to a singleton and we simplify the
notation accordingly. For instance, v is the rate of the unique arrival process.

Consider a rectangular balance function associated with y € X and v. We have by
definition }>;c7 Ai(x) = v. Since there is a single arrival process, the intensity constraint (2)
is satisfied and AY9 is admissible. Also, we have (using (14) and (18))

(\g:i\) vlv=el it eyl

AV () = AY(x) = .
(=) (=) {O otherwise

Therefore any rectangular balance function is decentralized. The decentralized balance func-
tions (also called “simple” balance functions) are in that case ’extremal’ and form a basis to
decompose admissible balance functions. Next result is a corollary of Theorem 3.7 (see also
[2, Theorem 1)).

15
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Corollary 3.9. Consider an admissible balance function A. There exists (cy)pex,Ce >
0,> ., cs =1, such that:
A= Z cyNY . (24)

yeX

This implies in particular, that for the blocking probability B defined in (6), a sim-
ple balance function is optimal. This holds more generally for any convex (see (23))
performance criterion.

Furthermore, the blocking probability can be evaluated very easily. By specializing the
results in Section 3.2, we get that B(AY) = m,(y) = ®(y)/C(y) which can be evaluated
recursively using the formula (16) for C(y):

Bt =1+ Y EWpaiey) (25)

1€ZL:y; >0

with B(A°) = 1.

4 Networks with admission control

We now consider models with more than one arrival process. We restrict ourselves to the
situation where each node is fed by only one arrival process: K = Z. There is no “routing”
but only admission control. The model includes for example bandwidth sharing processor
sharing network operated under balance fairness [5] and subject to admission control schemes.
Note that the service rates can be coupled in a very complex way.

The book of Ross [13] gives a good overview of existing results when the service rates are
“uncoupled” i.e., depend on the local number of customers at each node only: ¢;(x) = ¢;(z;)
(the so-called stochastic knapsack problem). The author studies several types of insensitive
policies under more specific assumptions on the state space and/or the service rates of the
network. The optimality results provided concern the case of locally dependent routing
intensities, \;(x) = \;(x;), and mostly in dimension 2 or 3.

In this Section, we do not restrict ourself to the assumption that ¢;(x) = ¢;(z;) but
consider any balanced service rates (i.e. satisfying (7)). We first give a characterization of
any insensitive policy in terms of coordinate-convex policies, i.e. policies such that customers
are fully accepted in a Ferrers shaped subset of the state space. This allows us to conclude
that an optimal insensitive policy is necessarily coordinate-convex. We then give conditions
for which the optimal policy is the complete sharing policy, i.e. consists in always accepting
customers when possible. In this last case, we will be able to compute efficiently the optimal
performance of the network.

4.1 Extremal stationary measures

Let X, 7 = K, and ® be fixed.

16
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The complete sharing policy is the policy in which customers are admitted whenever it is
possible. It is characterized by the rates :

0 otherwise.

Vo € XVieT, Ai(x):{y Hrtac

We denote by Ay the balance function corresponding to the complete sharing policy:

Vo e X, Ad(x):HVfi.

Observe that Ay coincides with the normalized decentralized balance function AY associated
with a point y such that X C y.

Definition 4.1. Consider a Ferrers set C € F(X). The coordinate-convex balance function
associated with C is defined by,

AC(z) = Ag(2)1pecy -

It corresponds to the following coordinate-convex policy: if x + e; € C, then \j(x) = v, if
x+e; &C, then N\i(x) = 0. In words, customers are accepted in a Ferrers shaped subset of
the state space.

We now state the main result of this section.

Theorem 4.2. An admissible balance function A can be decomposed as:

Az)= > BOA(2),
)

CEF(X
with 3(C) > 0 for all C and Y cecrixy B(C) = 1.

Observe the difference with Theorem 3.7: here all the balance functions A€ are admissi-
ble. Theorem 4.2 is hence similar to the decomposition obtained for the single-class systems
in Corollary 3.9.

Proof. We use an induction on the cardinality of the state space. If the state space contains
one state, the result is obviously true. Suppose it is satisfied for any X € F(N?) of cardinality
less than or equal to n — 1. Consider a state space X € F (NI) of cardinality n and an
admissible balance function A. We are going to show that: A(x) = BAY (x) 4+ G(z), with G
being an admissible balance function defined on a strictly smaller state space X' C X.

Consider H(x) = A(x)/]; 7. Recall the intensity constraints (see (2) and (9)): Vi, Va, A(z+
e;)/A(z) < v;. These inequalities can be rewritten as: Vi,Va, H(z) > H(x + e;).

Now define w as the smallest value of H on X (which is attained on the frontier of X
since H is coordinate-wise decreasing) and z as a point of the frontier such that H(z) = w.
Set G(z) = H(z) — wl{zcxy. We have, Vz € X,

Az) = G(x)HVf’ —i—wHVfi

Az) = G(x) H v+ wAY (z)

17
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Forall z € X,z +¢; € X,
Glz+e)=Hx+e¢)—w<H(z)—w=G(z). (26)

Set G(x) = G(x)[[;»". Using (26), we obtain that G(z + ¢;)/G(z) < v;. Therefore G is
an admissible balance function. By construction G(xo) = 0. Therefore, G is non-zero on a
set of cardinality less than or equal to n — 1. Also, since X" is a Ferrers set and the point xg
belongs to the frontier of X, the set X'\ {zo} is still a Ferrers set. So, G can be viewed as an
admissible balance function on the Ferrers set X'\ {zo} of cardinality n — 1. This concludes
the proof. O

Let the performance criterion be the blocking probability B, defined in (6). We can
deduce from Theorem 4.2 that the optimal insensitive policy is a coordinate-convex policy.

Corollary 4.3. Let B, be the infimum of By, over all insensitive policies. We have:

B* = min B,(A°
b= o, H (A7),

where A€ is introduced in Definition 4.1.

This optimality result extends to any convex criterion. In general, the minimum is not
attained for a decentralized policy. This is illustrated in Section 5.

4.2 Recursive formulas and optimality of a complete sharing policy

We show how to compute the blocking probabilities recursively (Proposition 4.4). We also
provide sufficient conditions to guarantee that the optimal policy is a complete sharing policy.
As in Section 3, for a Ferrers set C, define

C(C)= Y A@D(z),  PIC) =Y A+ e))8(2)

zeC zeC

Proposition 4.4. Consider a Ferrers set C € F(X) and the corresponding coordinate-convex
policy. The blocking probability B,(AC) satisfies

By(A%) =1 — — Zpipf(c) . (27)

The quantities P'(C) and C(C) can be evaluated recursively. For a point x ¢ C such that
CU{z} is also a Ferrers set, we have:

clcufz}) = C(C)
PiCuU{z}) = P

18
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Proof. Let us prove formula (27). Recall that the stationary distribution is given by
(®(z)AC(x))zec. Using \i(z) = AC(x + e;)/AC(x), the blocking probability B;(A€) of cus-

tomers of class 7 satisfies:

_B(ACY — - chc(fH'ez‘)l
Bi(A%) = ng;@( W@
Ly M) M)l - 2@i@ie) 1 PO
e Dyee ®WAC(y)  Ax) Vi T2, @Ay v viC(C)

Formula (27) follows readily.
Consider a Ferrers set C and a point z ¢ C such that C U {z} is also a Ferrers set. We
have:

ceu{e}) = Y M) pecun®(z) = CC) + Au(z)d(2).
ze€CU{z}

Picufz}) = > 1{z+ej€CU{:c}}Ad(z +e5)®(2),
zeCU{z}

Using that C U {z} is a Ferrers set, 2 +¢; € CU {2z} and z € CU {z} implies z € C and
z+ejeCorz=ux—ej Hence:

PiCufz}) = Y 1iieeqihalz +¢))P(2) + Aa(a)P(z — ¢)),
zeC

Pi(CU{z}) = Pi(C)+Aq(2)®(z —¢;).
O

Proposition 4.5. Let X be a r.v. distributed according to the stationary number of cus-
tomers. We have:

B,(A%) = 1= Y PLE[6,(X)]. (30)
i€Z Vi
Let x be a point such that C U {z} € F(X). The blocking probabilities satisfy:
[B,(AC{=}) < B,(A9)] sz Elpi(X szgbz . (31)
iez Vi iez Vi

Proof. Denote by B;(A°) the blocking probability of class i customers. We first prove the
rate conservation law:
vi(1 = Bi(A9)) = E[¢:(X)] .

Let (X(t)); be a Markov process describing the state of the network in stationary behavior.
The processes M; = X;(t) — [1(M\(X(s)) — ¢i(X(s))ds are square integrable martingales, for
all i € Z, see for instance [11]. By Doob’s martingale convergence theorem, M; converges a.s.
to a finite limit as ¢ goes to infinity, so M;/t converges a.s. to 0. Since the state space is
finite, we also have that X;(t)/t converges a.s. to 0. It implies that:

2 [ 0 xrrecer = XEN)s 11 = B(A)) — Bloi(X)] =0
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By summing over 7, we get (30).
Now let us prove (31). Write P,(C) = >;(pi/vi)P;(C) . We have

BCUL)) | BC),
cleuta)) ~ @)

[BP(ACU{I})SBP(AC)] = |

Using Proposition 4.4, simple computations, and (30), this is equivalent to:

3 %qﬁi(x) > ]g’((g)) =1-B,(A%) =) %E[%(X)] :

ieT ieT "t

O

The simple comparison rule (31) allows to conclude that a complete sharing policy is

optimal when the load of the network is small enough, or when the network is work conserving.
We thus have the following results as direct consequences of Proposition 4.5.

Corollary 4.6 (Light traffic regime). Suppose that:

then a complete sharing policy is optimal for the blocking probability B,.

Corollary 4.7 (Work-conserving network). Suppose that:
> dilx) = lipzop, (33)
i

for some constant ¢ € RY.. Then a complete sharing policy is optimal for the blocking proba-
bility of an arrival customer, that is By with p; = v;/(3_;vj).

Finding the optimal routing can be done by using Proposition 4.4. However, the complex-
ity of such an optimization program might be too big to be considered as a practical scheme.
In any case, the results of Section 3 still applies: by focusing on policies having rectangular
hyper-parallelepiped state spaces, we get easily computable upper and lower bounds of the
optimal performance.

5 A four state example

Consider a model with two classes of customers and two nodes (|| = |Z| = 2) and a state
space X = {(0,0),(1,0),(0,1),(1,1)}. The arrival rates of the classes are denoted by A\;
and Ay respectively. The service rates ¢;(x) are supposed to be balanced which means that:
¢1(1,1)p2(0,1) = ¢2(1,1)¢1(1,0). We use the notation

gbl(lao) =a, ¢2(Oa 1) = b, le(l, 0)¢2(1a 1) =cC.

In Figure 5, we have represented all the different coordinate-convex insensitive policies as
well as various sensitive policies (for which the traffic of a given class in a given state is either
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fully accepted or fully rejected). The vertices represent the reachable states for each policy
while the edges correspond to the transitions between states, of intensity Ay for an horizontal
edge and Ag for a vertical one. We denote by P,, Py, Py, the three decentralized policies, and
by P, the unique non-decentralized coordinate-convex policy. The blocking probability of
an arriving customer for the four insensitive policies are given by:

)\1 >\2

. Ao A2
()\1 —i—)\%) (I()\l —1—)\2)(1—1—)\2/&)’

(A1 + A2) * b(A1 4+ X2)(1+ Ay /b)’

B(Pa): B(Pb):

B )\2/a+)\1/b
B(Pab)_ 1_{_)\1/1)_{_)\2/&)

_ Al()\l/b—i-)\l)\g/c) +)\2()\2/a+)\1)\2/(2)

B(Pupe) = (A1 4+ X2) (1 4+ A1 /b+ Aa/a + A /c)
oO——O

Pb
Decentralized policies

o O—0O O0—=O

Insensitive policies

Pab
J) Coordinate—convex non decentralized policy

Oo—=o0O o O O—0O O0O—=0 .
| T ]

Oo—o0O o—0O O O O0——~0

Figure 5: Insensitive policies and sensitive policies

Consider now the rectangular (not necessarily admissible) policies of Sections 3.1 and 3.2.
They are all represented in Figure 6, with the transitions intensities being represented on the
edges. The two policies on the left of Figure 6 are non-admissible (let us call them P; and
P,), while the one on the right is Py,.. The blocking probabilities of an arriving customer for
P, and P, are:

A1 A2

B(P) = by * a(l+ Xa)’

A A
B(P) =5+ 5y o7h)

In particular, we check that it is possible to have
min(B(P), B(P,)) < min(B(Fa), B(F), B(Pab), B(Paye))

in which case the lower bound computed in Corollary 3.8 is not attained.
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Figure 6: Rectangular (not necessarily admissible) policies

We represent in Figure 7 the value of the blocking for each coordinate-convex policy when
¢ = 0.1 (left), ¢ = 2 (right) for a and b varying from 0 to 4. The color code is as follows:
the green curve corresponds to F,, the blue curve corresponds to P, the yellow one to P,
and the red one to Py.. Hence, the optimality of the non-decentralized policy P, can be
observed for ¢ = 0.1, while for ¢ = 2 the complete sharing policy P is always optimal. In
accordance with Corollary 4.6, the complete sharing policy Py, is optimal in light traffic in
both cases.

4\\\\\4\\\\ W
TR
=

IR =T
\\}\\\\\\\ i

A

/
<2
QD g . CCSRRISIRS :g@i 240
EARSRSRS 2

{2

9290 90,

SERALEART

SRR TL
SRR

Figure 7: Blocking probabilities of the coordinate-convex policies

We now compare, for different values of the parameters, the minimum blocking proba-
bilities of the three sets of policies represented in Figure 5: decentralized, coordinate-convex
and sensitive policies, together with the lower bound of Corollary 3.8. The parameters of the
four scenarios are gathered in the following table.

Scenario | a | b | c¢/a | Ao
1 2 2] 2 1
2 0312 2 1
3 2 16| 2 1
4 2 |6 1 1

Table 1: Parameters of the 4 scenarios
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Different observations can be made:

e Scenario 1 falls into a well studied case of a loss network with two circuits and sym-
metric service requirements since ¢1(1,0) = ¢2(0,1) = ¢1(1,1) = ¢2(1,1). The optimal
policy is known to be one of the policies of Figure 5, see [13]. We are in the domain of
application of Proposition 4.6, so the complete sharing policy is optimal among insensi-
tive policies. Since all the service rates are equal, it is clear that this policy is actually
optimal among sensitive policies as well. It explains why all the curves correspond in
Figure 8 (left). The non-monotonicity of the blocking probability with respect to the
load (due to the trade-off between the influences of the two classes) can be observed.

e In the scenarios 2,3, and 4, the asymmetry of the service rates makes the insensitive
policies perform worse than the sensitive ones for some loads. The lower bound of
Corollary 3.8 becomes very loose in light traffic, while it is attained in heavy traffic.

e In scenarios 2 and 3, decentralized policies are optimal among insensitive policies while
a non-decentralized policy is the best insensitive policy in scenario 4 for moderate loads.

A1 A1
0 1 2 3 4 0 1 2 3 4
1 1 1 J 1 1 1 J
—
e -0.34 \
-0.6 \ —
// -0.44 \ "
0.7 / A —
yd -051 A\ L~
-0.8 / 0.6 \ "7
/ - =
7
0.9 / -0.74 4
/ i
/ /
1.0 / 081 /
/ E
/ 094/
1.1+ / /
/ ,
-1.04 .
-1.24 \ / /
l """ Insensitive Decent — - — Bound — - Sensitive ] l """ Insensitive Decent — - — Bound — - Sensitive ]

Figure 8: Blocking probabilities (log scale) for scenarios 1 (left) and 2 (right)

Other numerical studies. Of course, realistic examples have a much larger number of
states. Several recent papers numerically compare insensitive and sensitive policies with
the help of Markov decision process techniques [9, 10]. The example of Section 5 in [9] is
enlightening. It has 4 nodes, Z = {a,b,c,d}, and 3 classes of customers, K = {1,2,3},
with Z; = {a},Zy = {b,c},Z3 = {d}. The service rates are balanced and given by a fair
sharing between classes ( i.e. of the type ¢;(z) = z;/(3_; z;)). The authors show numerically
that decentralized policies are actually optimal in the whole class of insensitive policies,
for the whole range of load parameters, when classes 1 and 3 have the same mean service
requirement. (Note that our results of Section 5 allow to efficiently compute the performance
of these decentralized policies.) This example gives hope that the optimality of decentralized
policies holds more generally under certain, still unknown, conditions.
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Figure 9: Blocking probabilities (log scale) for scenarios 3 (left) and 4 (right)

6 Conclusion

We give efficient recursive formulas to evaluate rectangular policies in the general case. This
enables us to obtain computable bounds for the performance of the optimal insensitive policy.
We then give a precise characterization of the optimal insensitive policies for networks with
admission control. To find conditions ensuring the optimality of decentralized policies is still
a challenging open question for general network topologies. Another important remaining
issue is to determine whether the performance of the best insensitive policy is close to the
one of the best policy.
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