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Goal-oriented error estimation for reduced basis method, with application to
certified sensitivity analysis

Alexandre Janon , Maëlle Nodet , and Clémentine Prieur ∗

Abstract. The reduced basis method is a powerful model reduction technique designed to speed up the com-
putation of multiple numerical solutions of parameterized partial differential equations (PDEs). We
consider a quantity of interest, which is a linear functional of the parameterized PDE solution.
Compared to the original quantity of interest, the quantity of interest computed using the reduced
model is tainted by a reduction error. We present a new, efficiently and explicitly computable bound
for this error, and we show on different examples that this error bound is more precise than existing
ones. We also present an application of our work to certified sensitivity analysis studies.

Key words. reduced basis method, surrogate model, reduced order modelling, response surface method, scien-
tific computation, sensitivity analysis, Sobol index computation, Monte-Carlo method
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Introduction. A large number of mathematical models are based on partial differential
equations (PDEs). These models require input data (e.g., the physical features of the con-
sidered system, the geometry of the domain, the external forces...) which enter in the PDE
as parameters. In many applications (for instance, design optimization, data assimilation, or
uncertainty quantification), one has to numerically compute the solution of a parametrized
partial differential equation for a large number of values of the parameters. In such a case,
it is generally interesting, in terms of computation time, to perform all possible parameter-
independent computations in an offline phase, which is done only once, and to call an online

phase for each required value of the parameter, during which the information gathered in the
offline phase can be used to speed-up the computation of an approximate solution of the PDE,
and, hence, to reduce the marginal (ie., per parameter) computation cost.

The reduced basis method ([7]) is a way of specifying such offline and online phases, which
has been successully applied to various well-known PDEs ([3, 6, 15]). One should note that, in
the reduced basis (RB) method, the online phase does not compute a solution which is strictly
identical to the numerical PDE solution, but an approximation of it, obtained by projecting the
original discretized equations onto a well-chosen basis. In the application cases given above,
however, one is not interested in the solution by itself, but rather in a quantity of interest,
or model output, which is a functional of this solution. Taking this functional into account
when performing the model reduction leads to a so-called goal-oriented method. For instance,
goal-oriented basis choice procedures have been tried with success in the context of dynamical
systems in [17, 4], where the basis is chosen so as to contain the modes that are relevant to
accurately represent the output of interest, and in a general context in [1], where the basis
is chosen so as to minimize the overall output error. All those papers showed that using an
adapted basis could lead to a great improvement of reduction error. This paper is about goal-
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oriented error estimation, that is, the description of a rigorous and computable error bound

between the model output and the reduced one. In [7], the output error bounds are computed
by using an adjoint-based method, which involves the application of the RB method to an
auxiliary (dual) problem in order to correct the output and to compute a goal-oriented error
bound. This method, however, has the drawback of doubling offline and online computational
times. In this paper, we propose a new goal-oriented error bound which does not require a
doubled online computation time, and we show, in numerical examples, that this method, for
a fixed computational budget, outperforms the adjoint-based error bound.

This paper is organized as follows: in the first part, we describe our output error bound
and give its method of computation; in the second part, we see how to apply our error bound
to certified sensitivity analysis studies; finally, the third and fourth parts present the numerical
applications of our method.

1. Methodology.

1.1. Preliminaries. We begin by setting up the context of the reduced basis method for
affine-parameterized linear partial differential equations presented in [7]. Our reference prob-
lem is the following: given a parameter tuple µ ∈ P ⊂ R

p, find u(µ), the solution (in a
discretized functional space X of finite dimension) of:

A(µ)u(µ) = f(µ), (1.1)

where A(µ) is a µ-dependent invertible square matrix of dimension dimX, and f ∈ X; then
compute the output :

s(µ) = s(u(µ)) (1.2)

where s : X → R is a linear form on X.
Problems such as (1.1) usually appear as discretizations of µ-parametrized linear partial

differential equations (PDE); the X space is typically a finite element subspace (for instance,
Lagrange P 1 finite elements), and A(µ) and f are given by Galerkin projection of the weak
form of the PDE onto a suitable basis of X. The boundary conditions of the PDE are usually
either encoded in X or in A(µ).

The dimension of the finite element subspace dimX is generally fairly large, so that the
numerical computation of u(µ) from the inversion of A(µ) is expensive. The reduced basis
aims at speeding up “many queries”, that is, the computation of u(µ) for all parameters µ ∈ P0

where P0 is a finite but “large” subset of the parameter set P. We suppose that A(µ) and f(µ)
admit the following so-called affine decomposition [7]:

∀µ ∈ P, A(µ) =

Q∑

q=1

Θq(µ)Aq, f(µ) =

Q′∑

q′=1

γq′(µ)f
′
q (1.3)

where Q,Q′ ∈ N
∗, Θq : P → R and γq′ : P → R (for q = 1, . . . , Q, q′ = 1, . . . , Q′) are smooth

functions, Aq are square matrices of dimension dimX and fq′ ∈ X.
We suppose that X is endowed with the standard Euclidean inner product: 〈u, v〉 = utv,

with associated norm ‖u‖ =
√

〈u, u〉, and consider a subspace X̃ of X, and a matrix Z whose
columns are the components of a basis of X̃ in a basis of X. This basis of X̃ is called the
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reduced basis in the sequel. We denote by ũ(µ) the components, in the reduced basis, of the
solution of the Galerkin projection of (1.1) onto X̃ , that is, the solution of:

ZtAZũ(µ) = Ztf(µ) (1.4)

(where, for any matrix M , M t is the transpose of M).
The many-query computation can then be split into two parts: the first part (usually called

the “offline phase”), which is done only once, begins by finding a reduced subspace and its basis
(this gives the Z matrix), then the Q parameter-independent matrices:

Ãq = ZtAqZ, q = 1, . . . , Q

and the Q′ vectors:
f̃q′ = Ztfq′ , q′ = 1, . . . , Q′

are computed and stored. In the second part (the “online phase”), we compute, for each value
of the parameter µ:

Ã(µ) =

Q∑

q=1

Θq(µ)Ãq, f̃(µ) =

Q′∑

q′=1

γq(µ)f̃q′ (1.5)

and solve for ũ(µ) satisfying:
Ã(µ)ũ(µ) = f̃(µ). (1.6)

The key point is that the operations in (1.5) and (1.6) are performed on vectors and matrices
of size dim X̃ , and that the complexity of these operations is totally independent from the
dimension of the underlying “truth” subspace X. In many cases, the smoothness of the map
µ 7→ u(µ) allows to find (in a constructive way, ie., compute) X̃ so that dim X̃ ≪ dimX while
keeping ‖u(µ)− Zũ(µ)‖ small, hence enabling significant computational savings.

The output s(µ) can also be approximated from ũ(µ) using an efficient offline-online pro-
cedure: let l ∈ X be so that:

s(u) = 〈l, u〉 ∀u ∈ X;

in the offline phase we compute and store:

l̃ = Ztl

and in the online phase we take:
s̃(µ) = 〈l̃, ũ(µ)〉

as an approximation for s(µ).
Under additional coercivity hypothesis on A, the reduced basis method [7] also provides

an efficient offline-online procedure for computing ǫu(µ) so that the approximation can be
certified :

∀µ ∈ P ‖u(µ)− Zũ(µ)‖ ≤ ǫu(µ).

The online procedure for the computation of ǫ(µ) is also of complexity independent of dimX.
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This online error bound can in turn be used to provide a certification on the output:

∀µ ∈ P |s(µ)− s̃(µ)| ≤ ‖l‖ ǫu(µ)︸ ︷︷ ︸
=:ǫL(µ)

(1.7)

and this bound is clearly “optimal” amongst those depending on µ through ǫu(µ) only. We call
this bound the “Lipschitz” bound, and denote it by ǫL(µ).

We here notice that [7] uses a different approximation of s(µ), which also depends on the
solution of the adjoint equation of (1.1) projected on a suitably selected dual reduced basis.
While this approximation has a better rate of convergence, its computation roughly requires
doubling of both offline and online complexities as well as storage requirements. The aim of
our work is to bound |s(µ)− s̃(µ)| by a quantity which is smaller than the right-hand side of
(1.7) and can be computed using an efficient offline-online procedure which does not require
computation of ǫu(µ) nor any adjoint problem solution during the online phase.

1.2. Theoretical error bound. In this section, we give the expression of our output error
bound. We begin by some notations: let’s denote the residual by r(µ):

r(µ) = A(µ)Zũ(µ)− f(µ) ∈ X,

and the adjoint problem solution (which will naturally appear in the proof of Theorem 1.1) by
w(µ):

w(µ) = A(µ)−tl.

Let, for any orthonormal basis Φ = {φ1, . . . , φN } of X, any N ∈ N
∗, and i = 1, . . . , N ,

Di(µ,Φ) = 〈w(µ), φi〉.

We take a partition {P1, . . . ,PK} of the parameter space P, that is:

P = ∪K
k=1Pk and k 6= k′ → Pk ∩ Pk′ = ∅.

We set, for i = 1, . . . , N and k = 1, . . . ,K:

βmin
i,k (Φ) = min

µ∈Pk

Di(µ), βmax
i,k (Φ) = max

µ∈Pk

Di(µ),

and:

βupi (µ,Φ) =

{
βmax
i,k(µ)(Φ) if 〈r(µ), φi〉 > 0

βmin
i,k(µ)(Φ) else,

βlowi (µ,Φ) =

{
βmin
i,k(µ)(Φ) if 〈r(µ), φi〉 > 0

βmax
i,k(µ)(Φ) else,

where k(µ) is the only k in {1, . . . ,K} so that µ ∈ Pk. We also set:

T low
1 (µ,N,Φ) =

N∑

i=1

〈r(µ), φi〉βlowi (µ,Φ), T up
1 (µ,N,Φ) =

N∑

i=1

〈r(µ), φi〉βupi (µ,Φ),
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T1(µ,N,Φ) = max
(∣∣∣T low

1 (µ)
∣∣∣ , |T up

1 (µ)|
)
.

Finally, we suppose that µ is a random variable on P and set:

T2(N,Φ) = Eµ

(∣∣∣∣∣
∑

i>N

〈w(µ), φi〉〈r(µ), φi〉
∣∣∣∣∣

)
,

where we take, for convenience, φi = 0 for all i > N (so that the sum above is in fact between
N and N ).

We have the following theorem:
Theorem 1.1. For any α ∈]0; 1[ and for any N ∈ N

∗, we have:

P

(
|s(µ)− s̃(µ)| > T1(µ,N,Φ) +

T2(N,Φ)

α

)
≤ α.

Proof: We begin by noticing that:

A(µ)−1r(µ) = Zũ(µ)− u(µ)

so that:

s̃(µ)− s(µ) = 〈l, Zũ(µ)− u(µ)〉 = 〈l, A(µ)−1r(µ)〉 = 〈w(µ), r(µ)〉

We expand the residual in the Φ basis:

r(µ) =
∑

i≥1

〈r(µ), φi〉φi.

Hence:

s̃(µ)− s(µ) =
∑

i≥1

〈l, A(µ)−1φi〉〈r(µ), φi〉 =
∑

i≥1

〈w(µ), φi〉〈r(µ), φi〉. (1.8)

We clearly have that for any N ∈ N
∗,:

N∑

i=1

〈r(µ), φi〉βlowi (µ,Φ) ≤
N∑

i=1

〈r(µ), φi〉〈w(µ), φi〉 ≤
N∑

i=1

〈r(µ), φi〉βupi (µ,Φ)

and this implies:
∣∣∣∣∣

N∑

i=1

〈r(µ), φi〉〈w(µ), φi〉
∣∣∣∣∣ ≤ T1(µ,N,Φ). (1.9)
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So we have:

P

(
|s(µ)− s̃(µ)| > T1(µ,N,Φ) +

T2(N,Φ)

α

)

≤ P

(
|s(µ)− s̃(µ)| >

∣∣∣∣∣

N∑

i=1

〈r(µ), φi〉〈A(µ)−tl, φi〉
∣∣∣∣∣+

T2(N,Φ)

α

)
by (1.9)

= P

(
|s(µ)− s̃(µ)| −

∣∣∣∣∣

N∑

i=1

〈r(µ), φi〉〈A(µ)−tl, φi〉
∣∣∣∣∣ >

T2(N,Φ)

α

)

≤ P

(∣∣∣∣∣
∑

i>N

〈r(µ), φi〉〈A(µ)−tl, φi〉
∣∣∣∣∣ >

T2(N,Φ)

α

)
by (1.8)

≤ α thanks to Markov’s inequality.

Choice of Φ. The error bound given in Theorem 1.1 above is valid for any orthonormal
basis Φ. For efficiency reasons, we would like to choose Φ so that the parameter-independent
part T2(N,Φ) is the smallest possible, for a fixed truncation index N ∈ N

∗.
To our knowledge, minimizing T2(N,Φ) over orthonormal bases of X is an optimization

problem for which no efficient algorithm exists. However, we can minimize an upper bound of
T2(N,Φ).

We define an auto-adjoint, positive operator G : X → X by:

∀φ ∈ X, Gφ =
1

2
Eµ (〈r(µ), φ〉r(µ) + 〈w(µ), φ〉w(µ)) . (1.10)

Let λ1 ≥ λ2 ≥ . . . λN ≥ 0 be the eigenvalues of G. Let, for i ∈ {1, 2 . . . ,N}, φGi be an unit
eigenvector of G associated with the ith eigenvalue, and ΦG = {φG1 , . . . , φGN }.

We can state that:
Theorem 1.2.

T2(N,Φ
G) ≤

∑

i>N

λ2i .

Proof. We have:

T2(N,Φ) ≤
1

2
Eµ

(
∑

i>N

〈(µ), φi〉2 +
∑

i>N

〈r(µ), φi〉2
)

=: T sup
2 (N,Φ) =

∑

i>N

〈Gφi, φi〉

Using Theorem 1.1 of [16], we get that the minimum of T sup
2 (N,Φ) is attained for Φ = ΦG,

and that minimum is
∑

i>N λ2i .
This theorem suggests to use Φ = ΦG, so as to control T2(N,Φ).

1.3. Computable error bound. In this Subsection, we present an implementable offline/online
procedure for the estimation of the upper bound for |s̃(µ)− s(µ)| presented in Theorem 1.1.
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Estimation of φGi . We fix a truncation index N ∈ N
∗, and we estimate {φGi }i=1,...,N by using

a modification of the method of snapshots used in Proper Orthogonal Decomposition [13]. This
estimation is performed during the offline phase. We take a finite (large), subset of parameters
Ξ ⊂ P, randomly sampled from the distribution of the parameter, and we approximate the G
operator by:

Ĝφ =
1

2#Ξ

∑

µ∈Ξ

(〈r(µ), φ〉r(µ) + 〈w(µ), φ〉w(µ))

In other words, Ĝ is a Monte-Carlo estimator of G. We take {φ̂Gi }i=1,...,N as the unit eigen-
vectors associated with the N largest eigenvalues of Ĝ.

The operator Ĝ admits the following matrix representation:

Ĝ =
1

2#Ξ

(
WW t +RRt

)
,

where W (resp. R) is the matrix whose columns are the components of w(µ) (resp. r(µ))
in a basis of X, for µ ∈ Ξ. These two matrices have #Ξ columns and dimX lines, which
means that the matrix above is dimX × dimX. In general, we take #Ξ ≪ dimX, and so it
is computationally advantageous to notice that if φ is an eigenvector of Ĝ associated with a
nonzero eigenvalue λ, then:

1

λ

1

2#Ξ

(
(WW tφ+RRtφ)

)
= φ,

so that φ ∈ Im W + Im R =: V. Hence, if V is the matrix of an orthonormal basis of V, then
there exists ψ so that φ = V ψ and we have:

WW tφ+RRtφ = λφ =⇒
[
V t 1

2#Ξ

(
(WW t +RRt)

)
V

]
ψ = λψ.

As a consequence, it is sufficient to find the dominant eigenvectors ψ̂G
1 , . . . , ψ̂

G
N of the matrix

Σ = 1
2#ΞV

t(WW t+RRt)V (of size 2Ξ), and to deduce φ̂Gi from ψ̂G
i by the relation φ̂Gi = V ψ̂G

i .
Besides, by writing Σ as:

Σ =
1

2#Ξ

(
(V tW )(W tV ) + (V tR)(RtV )

)
,

it is possible to compute and store Σ without storing nor computing any dense dimX×dimX
matrix.

Computation of T1(µ,N,Φ). For i = 1, . . . , N and k = 1, . . . ,K, the reals βmin
i,k (Φ) and

βmax
i,k (Φ) can be computed during the offline phase, as they are parameter-independent. They

can be approximated by a simple discrete minimization:

β̃min
i,k (Φ) = min

µ∈Ξ∩Pk

Di(µ,Φ), β̃max
i,k (Φ) = max

µ∈Ξ∩Pk

Di(µ,Φ),

or, thanks to the availability of the gradient of Di(µ) with respect to µ, by a more elaborate
quasi-Newton optimization such as L-BFGS [18].
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We also compute the following parameter-independent, offline-computable quantities:

〈fq′ , φ̂Gi 〉, 〈Aqζj, φ̂
G
i 〉 (i = 1, . . . , N, j = 1, . . . , n, q = 1, . . . , Q, q′ = 1, . . . , Q′)

where {ζ1, . . . , ζn} is a basis of the reduced space X̃.
Now, let a parameter µ ∈ P be given, and let ũ1(µ), . . . , ũn(µ) be the components of the

reduced solution ũ(µ) in the reduced basis {ζ1, . . . , ζn}.
By using the relation:

〈r(µ), φ̂Gi 〉 =
Q∑

q=1

Θq(µ)

n∑

j=1

ũj(µ)〈Aqζj , φ̂
G
i 〉 −

Q′∑

q′=1

γq′(µ)〈fq′ , φGi 〉,

the dot products between the residual and φ̂Gi can be computed in the online phase, with a
complexity of O(nQ+Q′) arithmetic operations, O(Q) evaluations of Θ functions and O(Q′)
evaluations γ functions, which is independent of dimX. Then, βlowi and βupi can be straight-
forwardly deduced.

Estimation of T2(N,Φ), final error bound. We approximate T2(N,Φ) by computing the
following Monte-Carlo estimator:

T̂2(N,Φ) =
1

2#Ξ

∑

µ∈Ξ

∣∣∣∣∣s̃(µ)− s(µ)−
N∑

i=1

〈w(µ), φi〉〈r(µ), φi〉
∣∣∣∣∣ .

As this quantity is µ-independent, it can be computed once and for all during the offline phase.
By using Theorem 1.1, we get that for ǫ(µ, α,N,Φ) = T1(µ,N,Φ) + T2(N,Φ)/α, we have:

P (|s(µ)− s̃(µ)| ≥ ǫ(µ, α,N,Φ)) ≤ α,

so we may take, as estimated error bound with risk α,

ǫ̂(µ, α,N,Φ) = T1(µ,N,Φ) +
T̂2(N,Φ)

α
. (1.11)

2. Application to sensitivity analysis. Our error estimation method is applied in sensitiv-
ity analysis, so as to quantify the error caused by the replacement of the original model output
by the reduced basis output during the Monte-Carlo estimation of the Sobol indices. For the
sake of self-completeness, we briefly present the aim and the computation of these indices, and
we refer to [12], [11] and [5] for details.

2.1. Definition of the Sobol indices. For i = 1, . . . , p, the ith Sobol index of a function
of p variables s(µ1, . . . , µp) is defined by:

Si =
Var (E(s(µ1, . . . , µp)|µi))

Var (s(µ1, . . . , µp))
, (2.1)

the variances and conditional expectation being taken with respect to a postulated distribution
of the (µ1, . . . , µp) input vector accounting for the uncertainty on the inputs’ value. These
indices are well defined as soon as s ∈ L2(P) and that Var (s(µ1, . . . , µp)) 6= 0. When µ1, . . . , µp
are (stochastically) independent, the ith Sobol index can be interpreted as the fraction of the
variance of the output that is caused by the uncertainty on the ith parameter µi. All the Sobol
indices lie in [0; 1]; the closer to zero (resp., one) Si is, the less (resp., the more) importance
µi’s uncertainty has on s’s uncertainty.
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2.2. Estimation of the Sobol indices. The conditional expectation and variances ap-
pearing in (2.1) are generally not amenable to analytic computations. In those cases, one
can estimate Si by using a Monte-Carlo method which works as follows: from two M -sized
random, independent samples of inputs’ distribution, we compute 2M appropriate evaluations
{sj} and {s′j} of s, and estimate Si by:

Ŝi =

1
M

∑M
j=1 sjs

′
j −

(
1
M

∑M
j=1 sj

)(
1
M

∑M
j=1 s

′
j

)

1
M

∑M
j=1 s

2
j −

(
1
M

∑M
j=1 sj

)2 . (2.2)

When M and/or the required time for the evaluation of the model output are large, it
is computationally advantageous to replace s by its surrogate model s̃. By using (2.2) on s̃
(hence with reduced model outputs {s̃j} and {s̃′j}), one estimates the Sobol indices of the

surrogate model rather than those of the true model. We presented in [5], Sections 3.1 and
3.2, a method to quantify the error made in the Sobol index estimation when replacing the
original model by the surrogate one, we presented in [5], Sections 3.1 and 3.2, two estimators
Ŝm
i,αas/2

and ŜM
i,1−αas/2

relying on output error bound samples {ǫj} and {ǫ′j} so that we have:
Theorem 2.1.If:

∀j = 1, . . . ,M, |sj − s̃j| ≤ ǫj and
∣∣s′j − s̃′j

∣∣ ≤ ǫ′j ,

then we have:

P
(
Si ∈ [Ŝm

i,αas/2
; ŜM

i,1−αas/2
]
)
≥ 1− αas.

In our case, the output error bound ǫ(µ) of Theorem 1.1 does not satisfy the above hy-
pothesis, but satisfies a weaker “probabilistic” statement. This is the object of the following
Corollary:

Corollary 2.2.If:

∀j = 1, . . . ,M, P (|sj − s̃j| ≥ ǫj) ≤ α and ∀j = 1, . . . ,M, P
(∣∣s′j − s̃′j

∣∣ ≥ ǫ′j
)
≤ α,

then we have:

P
(
Si ∈ [Ŝm

i,αas/2
; ŜM

i,1−αas/2
]
)
≥ (1− αas)× (1− α)2M .

Proof. We easily have that:

P
(
Si ∈ [Ŝm

i,αas/2
; ŜM

i,1−αas/2
]
)
≥ P

(
Si ∈ [Ŝm

i,αas/2
; ŜM

i,1−αas/2
] | ∀j, |sj − s̃j| < ǫ(µ)

)

×P (∀j, |sj − s̃j| < ǫ(µ))

≥ (1− αas)× (1− α)2M .

3. Numerical results I: Diffusion equation.
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3.1. Benchmark problem. Our benchmark problem [10] is the following: given a param-
eter vector

µ = (µ1, µ2, µ3) ∈ P = [0.25, 0.5] × [2, 4] × [0.1, 0.2],

we consider the domain Ω = Ω(µ) below:

1

µ1

µ24

µ3

4

ΓN ΓD

Ω

Our continuous field variable ue = ue(µ) ∈ Xe satisfies:




∆ue = 0 in Ω
ue = 0 on ΓD
∂ue

∂n = −1 on ΓN
∂ue

∂n = 0 on ∂Ω \ (ΓN ∪ ΓD)

(3.1)

where
Xe = {v ∈ H1(Ω) s.t. v|ΓD

= 0},
∆ denotes the Laplace operator, and ∂

∂n is the normal derivative with respect to ∂Ω.
This continuous variable denotes the potential of a steady, incompressible flow moving in

a tube whose profile is given by Ω, with open ends on ΓN and ΓD. The Neumann boundary
condition on ΓN states that the fluid enters by ΓN with unit speed, the condition on ∂Ω \
(ΓN ∪ ΓD) states that the velocity field is tangential to the boundary of the tube; finally the
Dirichlet condition on ΓD guarantees well-posedness, as the potential field is determinated up
to a constant.

The problem (3.1) is equivalent to the following variational formulation: find ue = ue(µ) ∈
Xe so that: ∫

Ω
∇ue · ∇v = −

∫

ΓN

v ∀v ∈ Xe.

This variational problem is well-posed, as the bilinear form (u, v) 7→
∫
Ω ∇u · ∇v is coercive on

Xe (see, for instance, [14], lemma A.14).
The above variational problem is discretized using a finite triangulation T of Ω and the

associated P 1(T ) (see [2] or [9]) finite element subspace: find u ∈ X so that
∫

Ω
∇u · ∇v = −

∫

ΓN

v ∀v ∈ X,
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where X = {v ∈ P
1(T ) s.t. v|ΓD

= 0}.
In our experiments, dimX = 525.
The affine decomposition of the matrix of the bilinear form in the left-hand side of the

above equation is obtained by using a piecewise affine mapping from Ω(µ) to a reference domain
Ω̄ as explained in [8], page 11. The number of terms in the obtained affine decompositions are
Q = 9 and Q′ = 1.

Our scalar output of interest is taken to be:

s(µ) =

∫

ΓN

u(µ),

and P is endowed with the uniform distribution.

3.2. Results. We now present the numerical results obtained using our error estimation
procedure on the output of the model described above. We give a comparison with the natural
“Lipschitz” bound ǫL(µ) given in (1.7) and with the dual-based error estimation method [7].
The bound ǫu(µ) on ‖Zũ(µ)− u(µ)‖ is computed using the procedure described in [7]. Note
that we estimated the “lower bound for the inf-sup parameter” “by inspection”, as explained in
[7], Section 3.3.2.

We also compare our goal-oriented error bound with the dual-based error bound method
described in [7] (Section 3.2). This method involves the computation, during the online phase,
of the reduced-basis solution of a linear, output-dependent, adjoint problem. The solution of
this adjoint problem enables correction and estimation of the reduced output, at the expense
of a doubled online computation cost.

For the comparisons to be fair, one should compare the error bounds of same online cost.
It is widely assumed that there exists a constant C so that this cost is C × 2(dim X̃)3 for the
dual-based method, and C(dim X̃)3 for our method, since dual-based method involves online
inversion of two linear systems of size dim X̃ , and one system of the same size for our method.
Hence, the reported reduced basis sizes for the dual method are multiplied by a factor 3

√
2.

In all cases, the reduced bases are computed using POD with snapshot size 80. To compute
Ĝ, we use a snapshot of size 200.

The partition used to split the P set is compound of K = 8 cubes whose edges are parallel
to the axes, and are chosen to contain (approximatively) the same number of points of an
input sample.

In Figure 3.1, we give, for various reduced bases and various target risk levels α, the mean
error bound on the output:

ǭ =
1

#S

∑

µ∈S

ǫ̂(µ, α,N,Φ)

where S is a random subset of P with size 200, ǫ̂(µ, α,N,Φ) is defined at (1.11), and the
truncation index N is taken equal to 15.

For all the graphs, an unique test sample S is kept so as to guarantee fair comparisons.
Note that, due to limited numerical precision, the error bounds have been truncated up-

wards to 9× 10−5.
We observe that our new, goal-oriented, output error bound largely outperforms the non-

goal-oriented Lipschitz bound and is better than the goal-oriented, dual-based error bound.
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Figure 3.1. Comparison of the mean error bounds (for risk α ∈ {0.01, 0.0001}), the mean Lipschitz
bounds and the mean dual-based error bounds.

Finally, we observe that the high concentration of T̂2 around zero allows us to choose a very
low target risk and remain very competitive.

3.3. Application to sensitivity analysis. We estimate confidence intervals for the sensitiv-
ity indices of s(µ) by using the method described in [5], together with the remarks in Section
2.2.

We take M = 1000 as sample size, B = 500 as number of bootstrap replications, dim X̃ =
10 as reduced basis size, α = 0.00001 as output error bound risk, and αas = 0.05 as Monte-
Carlo risk. The level of the combined confidence interval

[
Ŝm
i,αas/2

; ŜM
i,1−αas/2

]
is then (1 −

αas)(1− α)M > 0.93.
The results are gathered in Table 3.1. The spread between Ŝm

i and ŜM
i accounts for

the metamodel-induced error in the estimation of the Sobol indices. The remaining spread
between Ŝm

i,αas/2
and ŜM

i,1−αas/2
is the impact of the sampling error (due to the replacement

of the variances in the definition of the Sobol indices by their empirical estimators). We see
that, in this case, the metamodel-induced error (certified by the use of our goal-oriented error
bound) is very small with regard to the sampling error.

4. Numerical results II: transport equation. We now apply our error bound on a non-
homogeneous linear transport equation. Compared to the previous example, the considered
PDE is of a different kind (hyperbolic rather than elliptic).

4.1. Benchmark problem. In this problem, the continuous field ue = ue(x, t) is the solu-
tion of the linear transport equation:

∂ue
∂t

(x, t) + µ
∂ue
∂x

(x, t) = sin(x) exp(−x)
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Input parameter
[
Ŝm
i ; ŜM

i

] [
Ŝm
i,αas/2

; ŜM
i,1−αas/2

]

µ1 [0.530352;0.530933] [0.48132; 0.5791]
µ2 [0.451537;0.452099] [0.397962;0.51139]
µ3 [0.00300247;0.0036825] [-0.0575764;0.0729923]

Table 3.1

Results of the application of Section 2 to the estimation of the Sobol indices of the output of our
benchmark model.

for all (x, t) ∈]0, 1[×]0, 1[, satisfying the initial condition:

ue(x, t = 0) = x(1− x) ∀x ∈ [0, 1],

and boundary condition:
ue(x = 0, t) = 0 ∀t ∈ [0, 1].

The parameter µ is chosen in P = [0.5, 1] and P is endowed with the uniform measure.
We now choose a spatial discretization step ∆x > 0 and a time discretization step ∆t > 0,

and we introduce our discrete unknown u = (uni )i=0,...,Nx;n=0,...,Nt
where

Nx =
1

∆x
, and Nt =

1

∆t
.

We note here that the considered PDE is hyperbolic and time-dependent, and that we perform
the reduction on the space-time unknown u, of dimension (Nx +1) · (Nt +1). This is different
from reducing the space-discretized equation at each time step.

The u vector satisfies the discretized initial-boundary conditions:

∀i, u0i = (i∆x)(1− i∆x) (4.1)

∀n, un0 = 0 (4.2)

and the first-order upwind scheme implicit relation:

∀i, n un+1
i − uni

∆t
+ µ

un+1
i+1 − un+1

i

∆x
= sin(i∆x) exp(−i∆x). (4.3)

Let’s denote by B = B(µ) (resp. y) the matrix (resp. the vector) so that (4.1),(4.2) and (4.3)
are equivalent to:

Bu = y (4.4)

that is:
BTBu = BTy, (4.5)

so that equation (4.5) is (1.1) with A(µ) = BTB and f = BTy.
The output of interest is: s(µ) = uNt

Nx
. In the following, we take ∆t = 0.02 and ∆x = 0.05.
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Figure 4.1. Comparison between the mean error bound (for risk α = 0.01) and the mean dual-based
error bound, for different reduced basis sizes.

4.2. Results. We took a very low risk level α = 0.0001, a snapshot size of 70, N = 10
retained φ̂Gi vectors and K = 1. The results (Figure 4.1) show that, once again, the error
bound we propose in this paper outperforms the dual-based error bound.

Conclusion. We have presented a new explicitly computable output error bound for the
reduced-basis method. We have shown, on two different practical examples, that this bound is
clearly better than the naive Lipschitz bound and that, at the expense of a slight, controllable
risk, the performances of this new bound are better than the existing dual-based output error
bound.

Acknowledgements. . This work has been partially supported by the French National
Research Agency (ANR) through COSINUS program (project COSTA-BRAVA nÂř ANR-09-
COSI-015).

REFERENCES.

[1] T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Waanders. Goal-oriented,
model-constrained optimization for reduction of large-scale systems. Journal of Compu-

tational Physics, 224(2):880–896, 2007.
[2] P.G. Ciarlet. The finite element method for elliptic problems. Society for Industrial

Mathematics, 2002.
[3] M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis approxima-

tions of parametrized parabolic partial differential equations. Mathematical Modelling

and Numerical Analysis, 39(1):157–181, 2005.
[4] M. Ilak and C.W. Rowley. Modeling of transitional channel flow using balanced proper

orthogonal decomposition. Physics of Fluids, 20:034103, 2008.



GOAL-ORIENTED ERROR ESTIMATION 15

[5] A. Janon, M. Nodet, and C. Prieur. Uncertainties assessment in global
sensitivity indices estimation from metamodels. Preprint available at
http://hal.inria.fr/inria-00567977, 2011, submitted.

[6] D.J. Knezevic, N.C. Nguyen, and A.T. Patera. Reduced basis approximation and a poste-
riori error estimation for the parametrized unsteady boussinesq equations. Mathematical

Models and Methods in Applied Sciences, 2010.
[7] N.C. Nguyen, K. Veroy, and A.T. Patera. Certified real-time solution of parametrized

partial differential equations. Handbook of Materials Modeling, pages 1523–1558, 2005.
[8] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for

parametrized partial differential equations and applications. Journal of Mathematics in

Industry, 1(1):3, 2011.
[9] A.M. Quarteroni and A. Valli. Numerical approximation of partial differential equations.

Springer, 2008.
[10] G. Rozza and Patera A.T. Venturi: Potential flow.

http: // augustine. mit. edu/ workedproblems/ rbMIT/ venturi/ , 2008.
[11] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer

Physics Communications, 145(2):280–297, 2002.
[12] A. Saltelli, K. Chan, and E.M. Scott. Sensitivity analysis. Wiley: New York, 2000.
[13] L. Sirovich. Turbulence and the dynamics of coherent structures. part i-ii. Quarterly of

applied mathematics, 45(3):561–590, 1987.
[14] A. Toselli and O.B. Widlund. Domain decomposition methods–algorithms and theory.

Springer Verlag, 2005.
[15] K. Veroy and A.T. Patera. Certified real-time solution of the parametrized steady in-

compressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds.
International Journal for Numerical Methods in Fluids, 47(8-9):773–788, 2005.

[16] S. Volkwein. Proper orthogonal decomposition and singular value decomposition. 1999.
[17] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decom-

position. AIAA journal, 40(11):2323–2330, 2002.
[18] C. Zhu, R.H. Bryd, and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN

routines for large scale bound constrained optimization, 1997.

http://hal.inria.fr/inria-00567977
http://augustine.mit.edu/workedproblems/rbMIT/venturi/

