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SUMMARY

In the context of Large Eddy Simulation of turbulent flowse #tontrol of kinetic energy seems to be an
essential requirement for a numerical scheme. Designich an algorithm,.e. as less dissipative as
possible while being simple, for the resolution of variabnsity Navier-Stokes equations is the aim of
the present work. The developed numerical scheme, basegressure correction technique, uses a Crank-
Nicolson time discretization and a staggered space dizati@in relying on the Rannacher-Turek finite
element. For the inertia term in the momentum balance eguatie propose a finite volume discretization,
for which we derive a discrete analogue of the continuoustigrenergy local conservation identity. Contrary
to what was obtained for the backward Euler discretizatibae,dissipation defect term associated to the
Crank-Nicolson scheme is second order in time. This belawsoevidenced by numerical simulations.

KEY WORDS: Pressure correction scheme, compressible N&takes equations, stable convection
operator, low-order finite element approximation
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1. INTRODUCTION

We consider the time-dependent variable density Navieke3t equations, posed on a finite time
interval (0, 7) and in an open, connected, bounded donfiaaf R? (d = 2 or 3), which is supposed
to be polygonald = 2) or polyhedral { = 3):

Op + div(pu) =0,
1)

O(pu) + div(u ® pu) — div(r(u)) + Vp =0,

whereu, p andp are respectively the velocity, the pressure and the deokthe flow. The quantity
T, 2.
T(u)=p |Vu+V'iu— 3 (divu) I

is the shear stress tensor, witlthe positive kinematic viscosity, and® pu is theR? x R¢-tensor

of componentgu ® pu); ; = pu;u;, Vi,j € {1,---,d}. As such, System (1) is not closed. The
simplest assumption yielding a self-contained problemass$upposing thatis a given function of
space and time; the mass balance equatienthe first relation of (1)) thus has to be considered as
a constraint on the velocity, as for incompressible flowsl(émdeed, choosing a constant value for
p yieldsdivu = 0). This equation basically plays the same role in the s@daksymptotic model
for low Mach number flows [19], whergis given as a function of an additional unknotvtusually,

the temperature or a concentration), which satisfies a balaguation:

O(p ) + div(pu) — div(A V) =0, p = 0(0). 2
The functiord — o(0) is the given equation of state for the flow under study, &g non-negative
diffusion coefficient.

System (1)-(2) must be supplemented by suitable boundargittons, for instance Dirichlet
conditions foru and#, or slip and Neumann conditions:

u-n=0, ((r(u)—pI)n)-t=0, and VO -n=00n(0,T) x 09, 3)

wheren andt¢ are respectively the outward unit normal and tangentiatorscto 952. Initial
conditions are given fou andd, namelyu = uy andf = 6, in Q2. We suppose that the equation of
state satisfieg(d) > 0 for § > 0, thatd, > 0, and that boundary conditions are such thegmains
positive for allt € (0, 7).

The densityp and the velocityu are known to satisfy the so-called kinetic energy idenfityis
relation stems from the following formal computation.

Property 1.1(Property K.E.)
Let us assume that

dep + div(pB) =0,
for a regular field3 and that the functiong and« are smooth. Then, we have:
. 1 1.
(91(pu) + div(u® pB)) - u = 5 0 (pluf?) + 5 div(plul* B). (@)
Integrating this relation ovef) yields, assuming thad - n = 0 on 94:

1d

/Q(at(pu) + div(u ® p,@)) cu dx = 2% Qp|u|2d:13. (5)

Applying identity (4), with 3 = wu, to the inner product of the momentum balance equation
(second relation of (1)) witlu yields the so-called (local) kinetic energy identity:

%at(p [ul?) + % div(p|u|2u) +u- Vp—div(r(u)) - u=0. (6)
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The first two terms of this relation are the time derivativel dhe transport term of the kinetic
energy, respectively; the third one corresponds to the pofnbe pressure forces, and the last term
of the left-hand side readsdiv(r(u)) - u = —div(7(u) u) + 7(u) : Vu, which makes appear the
so-called viscous dissipatior{u) : Vu. Integrating ovef?, then integrating by parts the viscous
term and using the boundary conditions, we obtain the (d)&irgetic energy conservation relation:

1d p|u|2dm+/u~Vpda:+/T(u):Vuda::O. @)
2dt Jq Q Q

This relation does not yield, in its present form, a stap#istimate, because of the presence of the
pressure term. For incompressible flows, a simple integrdtly parts shows that it vanishes; for
barotropic compressible flows, it may be recast as the timealive of an energy term. For the low
Mach number model, the correct way to treat this term is waicle

Obtaining a scheme satisfying a discrete analogue of (g% many advantages.

- First, possibly combined with the above-mentioned addal arguments to control the
pressure term, (7) yields a stability estimate, which issikzally observed to considerably
enhance the robustness of the scheme, especially for theutation of convection dominant
flows.

- Second, in the context of Large Eddy Simulation (LES), agsigbscale model is introduced
to simulate the (kinetic energy) dissipative role of the $maablictures in the momentum
balance equation. It is thus crucial that the scheme resplieist "physical” dissipationi,e.
does not overwhelm the viscous dissipation term in (therdiscounterpart of) Equation (6)
by too large numerical residual terms [21, 2]. Defining tHater as the “dissipation defect”,
when designing a numerical scheme for LES, one aim should tménimize the “dissipation
defect”.

The Marker And Cell (MAC) space discretization, first intomed in [13] and now widely used
for the simulation of incompressible flows, applies to Csiete meshes and is of staggered type, with
the pressure unknowns located at the cell centers and theityehormal components unknowns at
the face centers. For divergence-free constant densitg fibivas been observed since the middle of
the sixties that the natural discrete convection operasoaated to this discretization conserves the
discrete kinetic energy [18i.e. satisfies a discrete analogue of the integral identity (bgdarse,
supposing, in this latter, a constant dengityHigher order convection operators, still enjoying the
same property, and also a discrete analogue of the locdikimergy transport equation (5), have
been proposed in [23, 32, 33, 31]; combined with a suitalderdtization of the pressure gradient
term and a suitable time-marching algorithm, these regidisl (discrete analogues to) the local
and global kinetic energy balances (6) and (7).

Works concerning the MAC scheme for the compressible low iMagmber model are more
recent and scarcer. First, [24] generalized the finite diffee formula of [23], to obtain a scheme
which appears, from numerical experiments, to satisfy erelis version of the global identity (7)
up to a second order residual. A similar approach, adaptedpe with cylindrical coordinates,
is proposed in [5]. Recently, a (structured) MAC scheme isented in [22], followed by a
discussion about its conservation properties: both glabédllocal kinetic energy conservation are
shown, in both semi-discrete and fully-discrete settikfysvever, the resulting scheme seems to be
rather expensive, and more efficient alternatives with eambut still high order residuals are also
proposed. For related works in the collocated framewonrk[6e8, 12, 10].

In this article, we pursue the development of kinetic enaergyserving schemes for low Mach
number flows, with the aim to deal with unstructured staggjeliecretizations. Precisely speaking,
we build a discrete convection operator satisfying therabof the kinetic energy and the reduction
of the dissipation defect (discrete analogues of (4) andilh high-order numerical residuals. The
approach we adopt is based on a finite volume structure fazdheection operator first introduced
in [1]; the approximation of the convected velocity at thedfas centered, and the time-algorithm
is obtained by a Crank-Nicolson technique. Then we impldrign discretization in a pressure
correction scheme, and make the expression of the dissipdgifect explicit. This quantity appears
to be formally second order in time, but is unsigned (unlliefirst order counterpart which would



4 F. BOYER, F. DARDALHON, C. LAPUERTA, J.-C. LATCH

arise from a backward Euler discretization). It is plottachumerical experiments to assess the
performance of the scheme.

The outline of the article is as follows. After introduciniget meshes and the discrete spaces
in Section 2, we deal in Section 3 with the construction of ¢cbavection operator (Section 3.1)
and prove its stability (Property K.E., Section 3.2). Thegsure correction scheme for low Mach
number flows is presented in Section 4, first in the semi-discsetting, then in the fully discrete
one (Sections 4.1 and 4.2 respectively). The kinetic enilgptity satisfied by the fully discrete
scheme is established (Section 4.3), then the size of tepdison defect is evaluated (Section 4.4).
Numerical tests are presented in Section 5; they confirnrétieal results and illustrate the ability
of the scheme to compute quite efficiently turbulent strregdor large time steps.

2. MESHES AND DISCRETE SPACES

Let M be a decomposition of the domdkinto quadranglesi(= 2) or hexahedrad = 3), supposed

to be regular in the usual sense of the finite element liteed#) conditionsy; 1 to 7,5, p. 61 and
71]. We denote by the set of all faces of the mesh, by, the set of faces included in the
boundary of2, by &;,; the set of internal face$.¢. £ \ £.xt) and by&(K) the faces of a particular
cell K € M. The internal face separating the neighbouring cglland L is denoted byr = K| L.
Moreover, we also use the notatien= K|ext if the faceo is included in the boundary of the control
volume K ando belongs ta.. For each cell € M and each face € £(K), nk, , stands for
the unit normal vector te outwardK . By | K| and|o|, we respectively denote the measures of the
control volumeK and of the face.

The velocityu and the pressurg are discretized using the so-called Rannacher-Turek eleme
(also called rotated bilinear finite element [27]). The refee elemenk is the unltd cube (Wlth

faces orthogonal to the coordinate axes); the discretdifurat space ot is @1( <), Where@l( )
is defined as follows:

Qi (K) = span {1, (Ti)iz1,....d, (TF — 27, 1) Cd— 1}

The mappindl’x from the reference elemeit to the current onéx is the standard); mapping.
Besides, we choose the version of the element where the fuwdalon Nk , on the cellX is the
average of the velocity through the fage

VK e M, Voe&(K), YveC®K), Ngqov ||/dea.

Thus the discrete spacg, is defined as:
X, = {v € (LX(Q)% VK € M, vo Ty € Qy(K)?, and,Yo = K|L, Ni.o(v) = NL,U(U)}.

The approximation for the velocity is thus non-conformimgH!(©2)¢ because the spackg,, is
composed of discrete functions which are discontinuousutiin a face, and thus), ¢ H'(Q)?
The set of degrees of freedom for the velocity is:

{ua,i :Na(ui)v S 57 1<i< d}a

whereN, (u;) = Nk.o(u;) = Ni »(u;) if 0 = K|L. We denote byp!” the vector shape function
associated ta, ;, which, by definition, read&ff) = ¢, e, wherey, is the scalar shape function
ande( is thei*" vector of the canonical basis &, and we defines, by u, = > u,; e.
With these definitions, we have the identity:

Z Zumcp Zug o (@ a.e. inQ.

ce€ i=1 ocel

We respectively denote b¥v and divwv the broken gradient and divergence of any function
v e Xy.
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Figure 1. Notations for control volumes and diamond cells.

The pressure belongs to the spadg composed of piecewise constant functions:
My, = {p € L*(Q); VK € M, pis constant ork } .

The degrees of freedom for the pressure are consequénily K € M}. This pair of finite
elements isnf-supstable [3]. The unknow#f and the density are also approximated by piecewise
constant functions, and their degrees of freedom are deibytd-; K € M} and{px; K € M}.

For the definition of the schemes, we need a dual mesh whidfirsedl as follows. Whek” € M
is a rectangle or a cuboid, fere £(K), we defineDg , as the cone with basisand with vertex the
mass center oK. We thus obtain a partition df in m sub-volumes, where: is the number of faces
of the cell {.e. m =4 for d = 2 andm = 6 for d = 3), each sub-volume having the same measure
|Dk | = |K|/m. We extend this definition to general quadrangles and hekah®ey supposing
that we still have built a partition of equal-volume sublsehnd with the same connectivities; note
that this is of course always possible, but that such a volimag may be no longer a cone, since, if
K is far from a parallelogram, it may not be possible to build aechavings as basis, the opposite
vertex lying inK and a volume equal td<|/m. The volumeD ., is referred to as the half-diamond
cell associated t& ando. Foro € &, 0 = K|L, we now define the diamond cdll, associated
to o by D, = Dk, U Dy, (see Figure 1). For an external fages . N E(K), D, is just the
same volume a® g . We use the following notation for the set of dual faces ofdbal mesh thus
built: the set of internal dual faces is referred ta€as and the set of faces of a particular dual cell
D, is denoted by (D, ); the external faces of the dual mesh coincide with primalfaaad the set
of dual external faces is thus denoteddy;. A dual facee separating the diamond celi3, and
D, is denoted by = D, |D,, and a dual face ab,, included in the boundary of the computational
domain is denoted b, |ext.

3. CONSTRUCTION OF A STABLE CONVECTION OPERATOR

The aim of this section is to establish an analogue of Prgg€iE. for the velocity convection
operator discretized by the Crank-Nicolson time-algonith

3.1. Construction of the operator

Let us give the main ideas of this construction, details oiclwlare given in [1, 9], by considering
the problem at a fixed time step. We start from the discretesrhaance equation, supposed to be
obtained by a backward Euler finite volume technique basati®primal mesh (see Section 4 for
the description of the whole algorithm):

KT
VK eM. (o —pi)+ Y Fre=0. (8)
c€e&(K)

In this relationpx (resp.p3,) stands for the approximation of the densitgn the cellK at the end
(resp. at the beginning) of the time step, and the quadiity, is the discrete mass flux through the
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faces outwardK, i.e.
FK,o’ == |0| ﬁcr Us - MK o,
po being some approximation of the density at the face

Let D, be a given dual cell. Our aim is to build approximations of de@sityp, andp* and of
the mass fluxes through the dual facednf, (F, ).cg(p, ), such that the following mass balance

equation holds:
Do | |
= + Y Fc=0. ©)
e€E(Dy)

We first definep,, by

po|Ds| = |Dk ol px +|DLo| pr, 1 0= KJ|L € &g,
(10)
Po = PK, if 0 = Klext € Eext.

Then, we need to build the fluxds, .. The essential idea is to impose the following mass balance
over the half dual cell
|DK cr|

Fr o+ Z Foe=— (5t7 (P — Pk )- (11)

e€€(Dy)
eCK

If we manage to obtain (11) for everi( and o, then (9) will hold thanks to the following
computations:

- For an external face, using thatp, = pg, (11) is exactly (9), provided that we choose the
primal mass flux'x , as the dual mass flux through(remember that is both a primal and
dual face), which we indeed do.

- For an internal face = K|L, combining (11) written foX and L with the definition (10)
of the density and using the conservativity of the primal sifasxes (.e. Fk , + Fr . = 0)
yields (9) once again.

Let us now use the primal mass balance (8) to rewrite (11) as

|Dk o] 1
F E F, = ’ E Frg o =— E Fg o 12
K,o + / o€ |K| K,o m K,o ( )
ec&(Dy) o'€E(K) o'€€(K)
eCK

Writing this relation for all the faces of K, we obtain a linear system for the dual fluxes
(F.e)ece(n,)» Which is singular (this fact is easily checked by summiregtan relations and using
the conservativity of the dual mass fluxes). However, thankise particular form of the right-hand
side of (12), this system has a solution and we can selectthevbich is orthogonal to the kernel
of the system. We obtain an expression of the form

= E aea’FKUa
o'€E(K

where the coefficient&. ,/) are real numbers which appear to be independent of thescefor
instance, in two dimensions and for a cgl| if we denote byFy, Fs, Fg and Fy the four primal
mass fluxes and b¥yy s, Fs g, Frn and Fyjw the four dual mass fluxes, as sketched on Figure 2,
we obtain expressions of these latter of the form

Fye =awlFw + apfg + asFs + anFn, (13)
with the coefficients gathered in Table I.

We are now in position to define a finite volume convection am®C,, for any discrete fields
andu* in X; as follows:

* 1 * Ue + u
Yo €&, Chlwu)y =< (potts = p3ul) + 157 D Foem—pyts (14)
ec€(Dy)
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Figure 2. Notation for the mass fluxes.

Table I. Coefficients for the dual mass fluxes in Equation.(13)

Fa,e aw Qg as aN
FW\S —3/8 1/8 3/8 —1/8
Fse | —1/8| 3/8 | —3/8 | 1/8

Fon | 1/8 | —=3/8] —1/8 | 3/8
Faw | 3/8 | —1/8 ] 1/8 | =3/8

with, for e € &, u. (resp.u’) given as a function ofu),cs (resp.(u*),ce) by:

1 . =
5 (’U,g -+ ’u,g/), if e = DJ|DJ/ S gint;

Uy, if e = Dylext € Eoxt.

Remark 3.1
With the same arguments, the construction of the conveopeeator and the dual mass fluxes can
be generalized in three dimensions. For instance, 3D catipas are performed in [1].

3.2. Stability analysis

In this section, we prove the discrete counterpart of Ptgg€eE. for the convection operator given
by (14)-(15).

Proposition 3.2
Let us assume that the discrete mass balance (9) holds,yar ar€. Provided thatF,, . = 0 for
anye € E.x, We have:

Vo e &, Yu,u" e Xy,

ug—i—uf;)

Do Chu, ) - (22

1 1 Uy + U, Uy + U,
:_DO'(O' 02_* *2) 5 Fae z z. = = RO’)
557 Dol (polual? = pplus?) +5 Y Foc <+
€=D(7‘Dg/
whereR,, is a remainder term given by:
1 * * 12
Ro = =5 1Dl (po — py) [Ue — ug|”.

86t
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We recognize at the right-hand side a discrete kinetic gnieadance with a conservative finite
volume discretization of the kinetic energy convectiomter

Proof
We have:
* Uy +u¢*7

|Da| Ch(u,u )a : <T> =T, + 1T,

with
1 Uy + U
T = — |Ds| (potte — piul)  ——-2,
1 = 57 Dol (potto = poug) 5

u; +u U +u;
(5 g i)

e€&(Dy)

The termT} reads:

2(5ﬁ D0'|(p0'7p0'>u0"uo" (16)

T11 T1,2

71 = 5 Dol (ol = oz ) +

We now turn td7s. Let us introduce the following notation:

U +u;

Uy, + Ul
Uy = —(—=

. , Vee k. 17)

,Voe& and .=

We get:

ngﬁg~( Z Fg,gae).

e€c&(Dy)
Usinga, - @ = |tu,]? + - (@ — @), We obtain:

|u0'| Z Fo’e+ Z Faeua' e_ﬂa)-

c€E(Dy) ec&(Dy)

T2 T2,2

Let us consider the second teff,. Using the identit@a - (a — b) = |a|? + |a — b|?> — |b|?, valid
for any real vectora andb, we get:

T22—7—|’U,0-|2 Z Fo’e+ Z Fa,e (|ﬁ6|2*|ﬁo’*ﬁe|2)~

ec€(D,) EEE(DO)

Consequently,

7= Lla,? F, 1 F (|ad? — |ue — acl?
2= 2 |u0| Z oe T D) Z o€ (|u6| |u0 usl )-

e€€(Dy) ec&(Dy)

Using the discrete mass balance equation (9), we get:

1

1
_ L el L
o= =55 Dol (oo = p) 8ol 45 5 Foc (fuel’ — ftio —el’).
c€E(Dy)

T3 2,1

T22,2

First, the terntl: 5 1 may be combined with the terffi » in (16), and using the definition (17) of
u,, this gives:

1
T, Tio=—== Dol (ps — p) ltts — uh|* = R,
2,21+ 11,2 o1 |Ds| (p Po) [ ug|
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Second, by the centered definition (15) of the approximatiothe convected velocity at the face,
T5 2,2 reads also:

1 o 1 o
T27272 = 5 Z Fa,e Us - Uy + 5 Z Fa,e |’Ll,g| .
e=Dg|D,1 e=D, |ext
Finally, with Equation (17), we obtain:
1 (us tuy) (uy +uy) 1 |2
Tron=5 Y, Foemg—o +gluo tug? Y Foo

2 2
e=Dg|D_/ e=D,|ext

and we conclude the proof invoking the assumpfign = 0 for anye = D, |ext. O

4. A CRANK-NICOLSON-LIKE PRESSURE CORRECTION SCHEME

We now present a pressure correction scheme for the resolotithe low Mach number Navier-
Stokes system (1). We begin by presenting the algorithmdnithe semi-discrete setting (Section
4.1), then give the space discretization (Section 4.2)ndysie property of the convection operator
proved in Section 3, we then establish the kinetic energgtityesatisfied by the scheme (Section
4.3). In this relation, a remainder term appears when thsityeis not constant, the time order of
which is discussed (Section 4.4).

4.1. The time-marching algorithm

We consider a uniform subdivision of the interyal T') denoted byd = t° < ¢! < ... <tV =T,
Let 5t be the constant time step, naméty= t"*+! — ¢ for any integer in {0,--- , N — 1}.
Letnin {0,---, N — 1} be fixed and lep™, 6™ andp™~1, p", u™ be given such that
pn _ pnfl
5t
The Crank-Nicolson-like time splitting algorithm consigh four steps performed successively:

+ div(p"u") = 0.

1- Balanceequation for # — Solve forgm+1:

1 .
E (pnen-l—l _ pn—len) + div(p'rL97L+1u'rL) _ le()\ Ven-i—l) =0 in Q7

vortl.n =0 onon.

2- Update of the density — Update the density with the equation of state:
P = o(0").

3- Velocity prediction — Solve fora" '

1

E (pnan+1 _ pn—lun) +div(ﬂ"+1/2 ®p”u”) o diV(T(an+1/2))

@n=0 and (r@"?*)-n)t=0 onoQ,

with @172 = (@™ + um)/2.

4- Velocity and pressure correction — Solve foru™+! andp™+!:

" ~ 1 .
P_ (unJrl . un-‘r1> + _V(pn+1 _ pn) =0 in Q,
ot 2

1 .

E (anrl _ pn) T div(pn+1un+1) =0 in Q, (19)

u"tl.n =0 ondn.
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The first step of the algorithm corresponds to the resolutiothhe conservation equation fér
and yieldg9"*1; then, thanks to the equation of state, the second stepthigekensityy"*+! at time
"t = (n +1)6t.

The aim of the third step, called velocity prediction stepta compute an intermediate velocity
field denoted by ', using the pressure® and the density fields® andp™~! already evaluated at
the previous time steps. Since we have in view to use theyltsweloped in Section 3, we need the
densities and convection field involved in the convectioarafor to satisfy a (semi-)discrete mass
balance; this latter equation being solved only in Step feftigorithm, we have to rely for this on
the mass balance at the previous time step, and we thus dreolparform a backward time-shift
of the densities in the time derivative term.

Finally, the fourth step, referred to as the velocity andspuee correction step, and formulated
as a Darcy problem, may seem numerically expensive. Inligdiaking the divergence of the first
equation multiplied by *!/p™ and using the second one, we are able to eliminate the estipf-
velocity and reformulate this step as an elliptic problemtifie pressure increment as follows:

ot ntl ) 1 ) i~n .
—Ediv <p_v(pn+1 _pn)) - _ = (er-l _ pn) _ div(p”"'lu +1) in Q7
pn

St (20)

Vit —p) - n=0 onof.

The underlying operator is the Schur complement of the D@roplem. This computation is
actually done at the algebraic levele( equations are first discretized in space before making
this computation), which necessitag@riori to compute the inverse of the velocity mass matrix.
However, since we adopt here a finite volume discretizatfdheconvection operator (see Section
3), the corresponding velocity mass matrix (which is notdkaal Rannacher-Turek mass matrix)
is diagonal, see (22). Once the pressure increment is knoeleduce the values of the pressure
and the end-of-step velocity.

The time accuracy of this algorithm is not analyzed in dsthiére. However, we can see that
the system (20) can be understood as a consistent distia@tipéthe following approximate mass
balance equation:

5t?
% + div(pu) — 7A% =
Following the approach proposed in [28] for studying Chsrjrojection methods, this remark can
certainly lead to a suitable convergence analysis that wedeeaelop in future works. Moreover,
we give in Section 5 some numerical evidences that, at leastrfalytic smooth solutions of the
system, our scheme is actually convergent.

0.

Remark 4.XLink with a Crank-Nicolson time approximation)
By summing up the velocity prediction (18) and correctiof)(&quations, we obtain a discrete
momentum balance equation with a Crank-Nicolson-like digzation {.e. with a middle-of-step
approximation of the unknowns in the convection, diffusém pressure gradient terms):

1

o (p"u" Tt — pn ™) + div(ﬂ"+1/2 ® p"u") — div(r(ﬂ"+1/2)) +Vpt/2 =,

with pnt1/2 = (pnt1 4 pn) /2,

Remark 4.2Splitting error in time)

This algorithm is formally first order in time when the degsitiries with time, thus, even if we have
derived the prediction and correction steps by using a CNioklson-like technique, we cannot
expect a second order convergence in this case. This woglikeea more expensive second order
splitting technique. Note that our aim here is only to lirhi¢ dissipation defect of the scheme.

Remark 4.3Convection operator fof)

At the continuous level satisfies a maximum principle. The essential argument wyiilds this
conclusion is that the convection operator in the consematquation ford may be recast, using
the mass balance equation, as a transport operator:

D (p9) + div(pbu) = p (9,0 +u - V).
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To obtain this property at the discrete level, we thus havuttil a convection operator consistent
with the mass balance [17] (in other words, which is seen tastainvoking the mass balance
equation, for constartt fields). To this purpose, once again, we have to shift in tineedensity
fields in the time derivative term. Note however that, at thiéyfdiscrete level, we fall short to
obtain a discrete maximum principle in the general casegsine Laplace operator we use enjoys
this property only for specific meshes (see Remark 4.5 below)

4.2. The fully discrete scheme

We now give the fully discrete form of the scheme. The comsimn of the velocity convection
operator in the discrete momentum balance equation andothe d¢f the discrete mass balance
equation are conform to the developments of Section 3.

Let us assume thap’ ) ke m, (0% ) ke, (0%) kem, (ul)oee and(pl) ke are known, and
let us suppose that:

|K| n rL 1 —
VK EeM, (- o+ DL FRe=0
JGS(K)

This relation is the mass balance equation at the previmesdiep, and the expression of the mass
fluxes (Fk.o)-ce(x) @s a function of the density and the velocity is given belote|(S4 of the
algorithm).

Then we perform successively:
1— Balanceequation for 6 — Solve for(0%:H) ke a:
K
VK € M, 1] (prOntt — pnlon) + Z Fe o 007 — (div(AVE™t1))

=0
ot ’
c€e&(K)

K

whered,, is an upwind approximation for the unknowrat the facer and (div(AV+)) . is

a finite volume approximation of the (variable coefficiengplace operator: for admissible
meshesi(e. here, for structured grids), we use the usual two-point fapraximation, while
the variant of the SUSHI method using only cell centered omkas [7, 26] is implemented
when the mesh is unstructured.

2— Update of the density — Compute the end-of-step density with the equation of state:

VK e M, pitt = o(0).

3— Veocity prediction — Disregarding for a while the boundary conditions, thipstensists in
solving for the predicted velocity unknow(m”“)geg, the following system:

Vo e &, forl <i <d,

) DO’ ~n 7n— n n ~n n
e [l (st ity 1 S0 Ep R 4 D) (W),
ec€(D,)
+Z/ @ Ve dz =0, (21)
KeM

where we recall thata""'/? = (@"*' + u")/2. The convection operatori.¢. the

computation of the density at the faces, of the mass fluxes at the dual fadgs, ) and

the (centered) approximatkﬂf“/2 of the velocity at the dual faces) is described in Section
3.1. The pressure gradient term reads:

|Do| (VD)o Z /p dlvcp

KeM
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and thus, for internal faces,
|Do| (VD")o = |o| (], — PE) MKo, VO € Eint, 0 = K|L.

On an external face, the impermeability boundary conditiarst be taken into account by
(possiblyi,i.e. if the normal of the face is not collinear to a coordinate axrisking a change
of unknowns for the velocity to make appear the componenf(f)e velocity tangent and
normal to the boundary, and prescribing this latter to zat@®achs € &, an equation is
thus suppressed from the system. Since the pressure dgratli@ifiaces is normal too, it

is thus useless to define it fere £.. Note that, since the Neumann boundary condition
associated to the tangential component(s) is homogenaousxtra surface term appears
from the integration by parts of the viscous term.

4— Velocity and pressure correction step — Solve for the end-of-step velocity unknowns
(ul*1),ce and the pressure unknows™ ) ke ¢ the following system:

DU n n ~n 1 7 T
vaegin‘m |5t|pa (ua+1_ua+1)+§ |D‘7|(V(pL+1_p ))UZO’

K| g 1 @2
VEEM, i i)+ Y Bl =0,

ce&(K)

Note that, since the pressure gradient is normal to a facettendelocity normal to the

boundary is prescribed to zero, the velocity on the bounialgft unchanged, at this step.
This explains why the system associated to the velocityection (first equation of (22))

may be restricted to internal faces.

Since the density is given by the equation of state, there isaed to use upwinding in the
mass balance equation (by opposition with compressiblesfloblem [14], for instance,
where upwinding ensures the positivity 8f and we thus use a centered approach:

n+1 + n-‘rl)

p p ,
Vo € Ent, 0 = K|L, F}?;l =|o] (KfL uf,”'l ‘MK,

Vo € Eext, 0 = Klext, F}étl =0.

Remark 4.4Spatial order of accuracy)
Despite the fact that we use a finite volume approximatiomefdonvective operator instead of its
finite element form, the overall accuracy of the method is@reed, see Section 5.1.

Remark 4.§Maximum principle ford and positivity of the density)

For structured meshes, the upwind choicetfar the discrete convection operator of the associated
balance conservation equation, together with the padidorm of the Laplace operator, ensure a
discrete maximum principle, and thus the positivity of temsity. When the mesh is unstructured,
no such property is known for the SUSHI scheme. However, wendi observe under- or over-
shoots in practical computations.

4.3. The discrete kinetic energy identity

We first define the following density-dependent discreteigarm for the pressurgin M,:

3 1 3 |o|?
|p|i./\/l,p = P |D | |(Vp>a|2 = P |D | (pK 7pL)2' (23)
ot PolHo o o
m 0€Ent,
o=K|L

This semi-norm is well defined as soon as the density is pesiiihich is always the case in practice
(see Remark 4.5).

The application of the discrete counterpart of the contirsyarocedure described in introduction
yields the following result.
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Proposition 4.6Global kinetic energy balance)
Let us assume thdt, . = 0 for anye € .. Provided that the discrete mass balance (9) holds, we
have, for0 <n < N — 1:

1 (@ Vi
5 D G s P = g ) w0t Y [ @) v e

o€l KeM

*% [p%( > lolug-ns) +pE (Y IUIUZﬁ“~nK,U)]+D”+1:0, (24)
KeM c€E(K) o€E(K)

whereD"t! stands for a numerical remainder term which reads

5t2

D = (" v — PR o) ;'D ol (5 =Py ") lag ™ — g (25)
Proof
Let n € {0,. —1} and o € £. Let us multiply the discrete velocity prediction step (21)

associated to the face and the component by (N”“/Q) for 1 < i < d and then sum ovet.
Invoking Proposition 3.2, we get

|DU| ( ~n+12 L 1 2 1 Y ~n+1/2 ~n+1/2
== (pnlay P — o ul?) + 5 E Flou, “Ugy
25t 2 €_D |D/

+|Do| (Vp")g - a2 + Dy | (—divr(@™*/?)) -yt + R =0, (26)

n+1/2

where the discrete approximation of the viscous diffusiparator applied ta reads

for1<i<d, foroccé&, |Dy| (—diVT('E"Jrl/2 Z / n+1/2 Vel de,
KeM
and the remainder terR”*! reads

_ Do

1\ j~n41
o (o @ — il

n+1 __
R =

We now recast the first equation of the correction step (2®)lbsvs:

|Dg|pn}1/2 - [|DU|6t}1/2 . IDo| p211/2 _oir [|Dy| 6t71/2
Dol Po 17", el V7 (gpntt) = [70} [ ] vpr) .
|: 25t ug + 8pg ( p )o’ 25t o + 8pg ( p )o’

Taking the square of the norm of both sides of this relatiomget

5t |D,|

|D | +112 4 1 1
7 n - Da v n-4 . n+1 V n+1 2

557 P lus T P+ 5 10| (V) g 8p[II( )ol
_ |D¢7| n |~n+1,2 n ~n+1 at |DU| n 2
- 25t po’ |u0' | + 92 |D0'| (Vp )0' ua + 8 |(Vp )0'| .

Summing with (26) and multiplying byt, we obtain
|DU| n+12 —1 n|2 ot n ~n+1/2 ~n+1/2
9 (pa |’U, | |ua| ) + 5 E Fa,e U, * Uy

EIDU‘DGI
g V n "LL” + V n+1 .un—f—l
- — P o Uy p o Uy
+ Dy 6t (—~divr(@™/?)_alt? 4 prtt =0, (27)
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with

n+1 _ |D¢7| n—1y |~n+1 n 2 |D | n+1 2 |D | 2
Dt = =B gyt w4 O (12w - el i ).
We then sum over all the faces. The kinetic energy convedéan (.e. the second term at the
left-hand side) vanishes by conservativity (for= D,|D,/, F. = —F}, ) and by the boundary

conditions (fore = D, |ext, F'. = 0). We make a discrete mtegratlon by parts in the gradiemder

i.e. we use the fact that, thanks to the definition of the presstadignt and, once again, to the
boundary conditions, for any discrete functianandp,

Z |Da| (Vp)cr Us = Z |U| (pL 7pK) NKo* Usg = — Z PK Z |0| Us "MK o-
o€Eint, 0€Eint, KeM o€E(K)
o=K|L o=K|L

Finally, we easily get that, by definition,

ZlD | leT n+1/2)) . ~n+1/2 Z / ~n+1/2 n+1/2 d.fl?,

oe€ KeM
which concludes the proof. O

Remark 4.{Local kinetic energy identity)
Note that Equation (27) is the discrete analogue of the [j&aaetic energy identity (6), to which it
may be identified term by term. Both the kinetic energy fluxc¢sel term) and the pressure gradient
term (third one) are consistent with centered in time andepléscretizations.

Such a relation may be used for different purposes. Forngstaone may find in [14] a way to
exploit such an identity to switch in Euler equations frore thtal energy to the internal energy
balance without loosing the consistency of the scheme.

4.4. Order in time of the dissipation defect

In the previous subsection, it has been shown (Proposit@ntdat we are able to write a discrete
equation governing the variation of kinetic energy for tharik-Nicolson-like pressure correction
scheme presented before. Adding up this relatien Equation (24)) forn ranging from0to N — 1,
we get

1 — ~7 ~rL
S S 1Dl (Nl = Y Y [ @ v

oceE n=0 KeM

Z > Z o] (P wlt + P i) smgo + D=0, (28)

n=0 KeEMoel(K

with
5t? ply 1 N—1
— ~1 +1
D= 3 Z <| 2 Mo |pn|§Mp> -3 Z Z D] (o7 — o) [+ — 2.
n=0 n=0 oc€&

Relation (28) does not provide a stability estimate, foeéhreasons
1- The third term at the left-hand side is the discrete coumrgrpf the continuous term

T
/ /pdivu dz dt, the control of which is not possible in the low Mach numberdaip

0 Q
for an incompressible flow, this term would simply vanish.

2 - The first term in the remainddp is not non-negative, because of the presence of different
density weights in pressure semi-norms; this problem wdddcured if the quantity
|p™[1,Mm,0n Was replaced byp™|; aq,,»-1, @and this can be done by adding to the algorithm
a pressure renormalization step, following the study pregkin [11]. This step is not
implemented here, because it does not seem to be cruci@ld@obustness of our scheme.
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3- The last term irD can take any sign.

Note that none of these issues occurs when the density isatriéive = 0 andD = 0), so that
the scheme is unconditionally stable in this case.

The quantityD is a numerical remainder term, which is referred to hereaitethedissipation
defectof the scheme. We now show ttatis formally second order in time. Indeed, we have, using
Equation (23) and reordering the sum in time

N-1

5t? 5t?
= > (P B st = R ) = 5 (VB agpos = B aa)
n=0
Lo = 1
= 2 2 1D (V). ).
n=1 oc€&Ent Po Po

Therefore, each sum iR is a product ofit? multiplied by a sum that behaves lik&(1) in time.

Remark 4.8First order backward Euler time discretization)
When approximating the velocity time derivative with firader backward Euler scheme [1], a
similar analysis yields, fod <n < N — 1

1 ~fL ""7
5 20 Dol U g ) a3 [ @) v de

oce€ KeM
—5t S o S folultt mg. + Dt =0, (29)
KeM ce&(K)

where the numerical remainder tef?},"}  now reads

at? 1 nt1
D%leer - 7( |pn+1|i./\/l,p” - |pn|i./\/l,p”) + 5 Z |DU| pg |uzr7L - ’U,g|2. (30)

oce

Summing up Equalities (29) for ranging from0 to N — 1, we get the following expression for the
dissipation defect of the scheme

5t2 ey 12 2 +1 2
~n
DEuler = 7 Z ( |pn+ |1,./\/l,p” - |pn|1,./\/l,p”) Z Z |D | pg | g| )
n=0 n=0 c€&

and, if, as in the Crank-Nicolson-like pressure correcticmeme, the first sum behaves 1Réjt?),
the second one behaves@&+t) and the dissipation defect is thus first order in time.

5. NUMERICAL EXPERIMENTS

In this section, we report some numerical experiments pmdd to assess the behaviour of
the Crank-Nicolson-like pressure correction scheme megan this paper. To this purpose, we
compare it to a classical pressure correction scheme [$¢¢dan the same space discretization and
on the first order backward Euler approximation in time. Timeusations are performed with the
ISIS software [15] based on the development platform aniveoé component library PELICANS
[25], both developed at IRSN (Institut de RadioprotectibdeSireté Nucléaire).

5.1. Convergence and dissipation defect

We address here a test case with an analytical solutiongir éo assess the convergence properties
of the scheme under study. We also check that the behavidbedfissipation defect with respect
to the time step is consistent with the theoretical resdlSeaxtion 4.4, for both Euler and Crank-
Nicolson time discretizations.
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We consider the system (1)-(2), with the following expreadior the density as a function of

the unknowry: )

p=0)=5—7=7 (31)
E P2
With this closure laws, the system at hand may be seen as tlé egtiations governing a two-

component flow, of component densitigsand . (here supposed to be two constant positive real
numbers); the unknowf stands for the mass fraction of the first component.

Let us suppose that the normal velocity is prescribed to perahe whole boundary of the
computational domain€. In this condition, integrating the mass balance dveyields the total
mass balance: p

— dxz = 0. 32

Tl (32)
On the other side, the densityis given as a function o, itself solution of Equation (2) for
A = 10~%. Integrating this relation oveR and supposing that the mass diffusion flux of the first
component vanishes at the boundag, AV - n = 0 on 912, we obtain:

d
= | podx = 0. 33
dﬁprO (33)

By an easy manipulation of the equation of state (31), we get:

p=p2+(1—"22)p8,
P1
and thus, since appears as an affine function pf, the relations (32) and (33) are fortunately
compatible. With the proposed time-stepping algorithnis throperty does not hold anymore,
because of the time shift of the density in the solution oftihlance equation fat. Consequently,
a renormalisation of the density is necessary to ensurexiberce of a solution to the projection
step:

/ p"dx
: o0 (@),

| /Q o(6™) da

Note that this relation is reminiscent of the scaling of tleaslty obtained through its dependency
versus the so-called thermodynamical pressure in the asyimmodel for low Mach number flows
[19].

We consider now the following solution to System (1)-(2):

n+1 (:13) _

p

plx,t) =1+ %cos(mﬁ) [sin(ra@1) + sin(ma2)],

cos(wml)] |

plx, tu(z,t) = —i sin(7rt) LOS(W‘EQ)

p(@, t) = cos(nt) [cos(rx1) + cos(mm)].

We suppose that; = 0.25 and p, = 2, so relation (31) yield¥ = (2 — p)/(7p). The viscosity is
supposed to bg = 0.001. The computational domain {3 = (0, 1) x (0, 1), so the normal velocity
is always zero at the boundary, and the integral of the deosér(2 does not vary with time. With
this choice forp andpu, the mass balance is satisfied. The right-hand side in theentum balance
and in thed transport equation, the initial conditions and the boupdanditions (prescribed value
for u) are chosen to match the analytical solution. The non zegta-hiand side for this system is
numerically treated implicitly.

The domain is meshed by x n regular grids, withh = 16, 32, 64 and128. The discretization
of the convection term fof is performed by an upwind finite volume scheme. Errors olethiat
t = 0.5 are displayed on figures 3, 4 and 5, in firenorm for the velocity and the pressure, and, for
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co16x16 5o16x16
i e
- LA X i - LA X
Le-0l T o8x128 i 1e-0% . 128128

1e-Pdoa 1e-03 Te-02 1e0: 1eP&oa 1e-03 1e-02 1le-01
Time step Time step
(a) Euler. (b) Crank-Nicolson-like.

Figure 3. Test with a known solution: time convergenc&imorm for the velocity, for various meshes.

c-016x16 c-016x16
1e-017 35538 ? 1e-0d. 2 30x32
~264x64 2~ 64x64
++128x12§ ++128x124
o 1e-04
=5
2

4

1e-03

1e-Pdoa 1e-03 le-02 1e0. 1ePdoa 1e:03 1e-02 le-01
Time step Time step
(a) Euler. (b) Crank-Nicolson-like.

Figure 4. Test with a known solution: time convergenc&imorm for the pressure, for various meshes.

c016x16 c©016x16

1le-02|=532x32 4 le-02|=232x32 .
-4 64x64 -4 64x64
**128x128 *+128x128

le-04 le-03 le-02 1le-0: le-04 1le-03 le-02 le-01
Time step Time step
(a) Euler. (b) Crank-Nicolson-like.

Figure 5. Test with a known solution: time convergence imiteL.? norm forg, for various meshes.

9, in the following discretd.? norm:

[0l = | D IKI6% |

KeM

N

which is usual in the finite volume framework.
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le-0

1le-02|G—© Crank-Niolson (xl@

1le-02 |G—© Crank-Nicolsol == Euler o
= Euler _ 1e-03

1e-03 / :

le-04

le-04
& Wwie-05
2 1e-03 e -
]
1e-06 D
1le-07
1le-07
1e-08
1e-0§ le.
le-04 le-03 le-02 1le-0: Pé—04 1le-03 le-02 le-01
Time step Time step
(a) Pressure gradient part. (b) Kinetic energy part.

Figure 6. Test with a known solution: magnitude of the twapaf the dissipation defect as a function of
the time step for the Crank-Nicolson and the Euler time diszations.

For each unknown, we observe a first order in time convergamad,reaching a plateau, the
value of which corresponds to the space accuracy of the mett@se figures confirm in particular
the convergence properties of the overall algorithm evendgh we do not provide any convergence
result in this paper.

We now investigate the behaviour of the dissipation defectobth the Euler and the Crank-
Nicolson schemes. For this study, the mesh is fixed and chodemnthel 28 x 128 regular grid. In
the definition of the dissipation defect given by (25) for @¢aNicolson and by (30) for Euler, we
distinguish the pressure gradient part, nof&t, from the kinetic energy part, noted.,, and we
defineDp andDg as the the maximum values in time of each part:

n

Z D§3+1

k=0

n

Z D§+1

k=0

, Dg = max

Dp = max
0<n<N-1

0<n<N-—1

We draw on Figure 6 the obtained results as a function of the step for both algorithms. As
predicted by the analysis of Section 4.4, the pressure gmagart is of order two for both schemes
and the kinetic energy part is of order two for the Crank-Moa scheme while the order is one
for the Euler discretization. Moreover, it is also obsertleat the Crank-Nicolson scheme leads to a
much smaller kinetic energy part (note that, for this scheheedissipation defect is multiplied by
102 in the figure).

5.2. 2D laminar flow around a cylinder

We address in this section some test cases which are deramadaf benchmark referred to as the
2D-2 case in [30]. The geometry is sketched on Figure 7. A dfsttiameterD = 0.1 is located
inside a 2D channel (the axis of the cylinder lying slightsidw the centerline of the channel) and
the fluid enters the domain on the left boundary, with an iredgsarabolic velocity profile:

H—y

ux(oay) = 4umy ?7 uy(07y> = 0;

where H = 0.41m is the height of the channel and, = 1.5. The velocity is prescribed to zero
at the other boundaries except for the right-hand side, evtiez flow leaves the domain; in our
computation, we impose on this latter boundary an homogendeumann boundary condition.

Our study is split into two parts. In the first step, the flowuppgosed to be isotherm; the density
p is then constant, the flow is incompressible, and we can compa results to the reference ones
provided in [30]. In the second case, density variationscegated in the flow by prescribing at the
cylinder boundary a temperature greater than in the bulk.

The coarse mesh (mesh#1) used for the presented compusagioan on Figure 8; other meshes
are refined with respect to this one, by setting to smallersmnaller values the discretization step
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Uy = Uy =0

0.16 Uz = Uy = 0

0.15 Uy = Uy =

Y 2.2

Figure 7. Laminar 2D flow around a cylinder — Geometry.

Figure 8. The coarse mesh (mesh#1).

Table II. Laminar 2D flow around a cylinder — Description of tineshes used.

Computation | mesh#1 mesh#2 mesh#3 mesh#4 mesh#5
Number of cells| 4033 12913 43009 76091 106101
Space unknowns 12256 39014 129527 228937 409099

— N
_—

S

Figure 9. Laminar 2D flow around a cylinder — First componeatgmponent) of the velocity.

along some characteristic lines (the boundaries and ctmceircles around the cylinder). The
numbers of cells and unknowns for each mesh are reported ia Mab

The flow is unsteady (see Figure 9 for a visualization at a giirae). The characteristic flow
guantities quoted in [30] are the maximum drag coefficignt, ..., the maximum lift coefficient
cLmax, the Strouhal numbedt and an instantaneous pressure differefiéebetween the front and
end points of the cylinder,e. the points(0.15,0.20) and(0.25, 0.20) (see [30, section 2.2]). Drag
and lift coefficients are defined as follows. First, the drag Eft forces are expressed as:

Ouy

8’U,t
Fp = /S(pl/%ny —png)dS, Fp= /S(pl/ o " + pny) dS,
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Table Ill. Laminar 2D flow around a cylinder, isothermal cageuler time discretization.

Computation CDmax CLmax St AP
mesh#1 3.62 0.75 0.269 2.36
mesh#2 3.40 0.92 0.288 2.45
mesh#3 3.25 0.97 0.294 2.49
mesh#4 3.23 0.98 0.294 2484
mesh#5 3.22 1.00 0.294 2.478

Reference range [30] 3.22 — 3.24| 0.99 —1.01| 0.295-0.305| 2.46 — 2.50

Table IV. Laminar 2D flow around a cylinder, isothermal cagerank-Nicolson time discretization.

Computation CDmax CLmax St AP
mesh#1 3.66 0.79 0.270 2.30
mesh#2 3.41 0.95 0.294 2.45
mesh#3 3.25 0.98 0.303 2.50
mesh#4 3.23 1.00 0.303 2.49
mesh#5 3.22 1.01 0.303 248

Reference range [30] 3.22 — 3.24| 0.99 —1.01| 0.295-0.305| 2.46 — 2.50

whereS stands for the boundary of the cylinder andor the tangential component of the velocity
(namelyu; = u - t with ¢ the tangential vector t§). Then,cp andc;, are obtained by scalingp
and Fy, by 2/(pu? D). The Strouhal number iSt = Df/u, f being the frequency of separation,
evaluated from the temporal evolution of the lift coeffidien

Isothermal case The density i = 1 and the viscosity is = 0.001, so that the Reynolds number,
defined afke = puD/u, wherei = 2, (0, H/2)/3 = 1, is equal to 100. The time step varies from
10~3 for the coarsest mesh 010~ for the finest mesh, in order to keep a constant CFL number.

The computed valueg § ax, CLmax, St aNdAP) are gathered in Tables Il (Euler scheme) and
IV (Crank-Nicolson scheme), together with the plausiblegefor the results derived from the set
of contributions to the benchmark. Values entering thienexice interval are typeset in bold. For
the finest mesh, both schemes give results included in thehbeark reference range, except for the
Strouhal number which is underestimated by the Euler schemwadition, with coarser meshes,
the Crank-Nicolson scheme is clearly more accurate.

Anisothermal case The cylinder is now heated at a temperatiyeThe fluid enters in the domain
with a lower temperaturé. and the temperature is also fixedbaiat the top and bottom boundaries.
We characterize the deviation from the isothermal case dpénameter defined by

c— H}L_ec
B 9h+9c.

The Prandtl number is equal @or, the viscosity is fixed t0.001 and the specific heat t®)00. The
density is given by the following law:
O
p= Poga
with po = 1. The parametet varies in our tests frome = 0 (isothermal case) te = 0.8, and
thus the ratiapy/o(6,,) varies froml (isothermal case) t6 (¢ = 0.8), since this ratio is equal to

(e+1)/(e=1).
Since the mesh here is unstructured, the SUSHI scheme isfaiséte approximation of the
Laplace operator (see Remark 4.5) and the MUSCL scheme docdhvective term [26] in the
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(b) e=0.6

(c)e=0..8

Figure 10. Laminar flow around a heated cylinder — Densityl figblines for several at timet = 10.

Table V. Laminar flow around a heated cylinder — Drag and b#fticients, Strouhal number amslP for
severak.

Computation| ¢pmax | CLmax St AP

isotherm 3.22 1 0.303 | 2.48
e=0.4 3.54 0.56 | 0.316 | 2.59
e=10.6 3.84 | 0.236 | 0.342 | 2.71
e=0.8 4.62 | 0.0055| steady| 3.04

balance equation fat. The (constant) time step satisfies a CFL condition requisethe MUSCL
scheme and so varies betwe@t* and2 10~° in the computations.

On Figure 10, the density field is represented:fer 0.4, 0.6, 0.8. For small values of, as for the
isothermal case, the flow is unsteady and oscillations appé#ae wake of the cylinder. Far= 0.4,
the amplitudes seem to be greater thansfer 0.6. This behaviour is coherent with an increase of
Strouhal number whenincreases (Table V). Far= 0.8, contrary to the other computations, the
flow is steady and no oscillation appears. Heating the cglingiads to a depressurization behind
the cylinder which increases with(Table V). The drag coefficient also increases witlhivhereas
the lift coefficient decreases. For the steady case ().8), the lift coefficient is very small and its
value is similar to the reference value given in the benchkri&#] for the 2D steady case.
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Mixing zone

Separation plate

fug u1

Figure 11. Turbulent mixing layer — Numerical set-up (fromw).

5.3. 3D turbulent mixing layer

In this section, we address the simulation of an experimestgaly of a turbulent mixing layer in

a vertical channel, described in [29]. The channel is didideits bottom in two equal parts by a
vertical plate, and water is injected in both parts with dedént velocity. The mean velocity in the
right side of the channely; = 0.61m.s™1, is greater than in the left one, = 0.26m.s™!; a mixing
layer, the thickness of which increases along the flow, is tienerated at the center of the channel
(see Figure 11). The flow is incompressible and the densihtlaa viscosity are respectively fixed
atp = 103kg.m™3 andy = 103 Pa.s.

Large Eddy Simulation is used to describe this experimet,the subgrid scale eddy viscosity
is given by the Smagorinsky model, wity = 0.12 [20].

The computational domain 8 = [—0.2;0.2] x [—0.01;1.20] x [-0.2;0.2] (lengthes in meters),
and the top of the plate is taken @t= 0. Slip boundary conditions are prescribed on the lateral
planes of2 and outlet boundary conditions on the upper plane 1.20. The separation plate is
not taken into account in the simulation and mean experiateeiocity profiles are imposed on
the bottom plang = —0.01. To generate the turbulent inflow conditions, the vortexhodt[16] is
used.

The mesh is an uniform grid 80 x 90 x 270 cells and simulations are carried out with two time
stepsgt = 102 s andst = 103 s, over the time intervabp, 20s].

We compare the solutions given by the Crank-Nicolson-likespure-correction scheme
introduced here to the usual first order Euler pressureection scheme. Representations of the
vorticity norm isosurfaces for the isovalieare given on Figure 12 for several time steps. For
the time stepit = 1072 s, Figure 12 shows that vortices present more complex smegtvith the
Crank-Nicolson-like scheme (in other words, turbulenttieas are over-damped by the numerical
diffusion generated by the first order Euler discretizatidfor 6t = 10~3's, both schemes give
similar results.

In the experiment, the (time-averaged) mean and root meaaarsdrms) axial velocity profiles
are measured along thedirection at several heights [29]. In our computations,avaluate these
quantities by averaging over a time-inter{&l= 8 s; 7’ = 20 s] for which the fully turbulent state
is reached. LeL be the integer number such th&at= 7 + L §¢. On a cellK, the mean value of a
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T> ilf%
<>’g </§

0.2 05 02 05

Vy Vy
(@) Euler,6t = 10~ 2s. (b) Crank-Nicolson-likegt = 10~ 2s.
03 0.6 0.3 0.6
HE T . HE = .
0.2 0.5 0.2 0.5
Vy Vy
(c) Euler 6t = 10~ 3s. (d) Crank-Nicolson-likegt = 10—3s.

Figure 12. Turbulent mixing layer — Vorticity norm isoswésfor the isovalué at time20s.

field v, denoted by v >, is thus

1 & 6t

j=0
the mean axial velocity is given by u, > x and the root mean square (rms) axial velocity by:
(Uy)rms =< ui >1x — < Uy >|2K .

The comparison of experimental and numerical mean velpcifiles aty = 0.5 (Figure 13) shows
that the time convergence is achieved §or= 10—2s for both schemes and a good agreement is
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0.2 o—b 5t=10>2
0.1 — Bt=10"
--- Exp
D2 01 0 0.1 0.2 ¥z 01 0 0.1 0.2
X (m) X (m)
(a) Euler. (b) Crank-Nicolson-like.

Figure 13. Turbulent mixing layer — Time averaged axial ggloaty = 0.5 andz = 0.

X (m) ' ’ ’ x (M)
(a) Euler. (b) Crank-Nicolson-like.

Figure 14. Turbulent mixing layer — Time rms axial velocitya= 0.5 andz = 0.

observed with experimental results. Figure 14 shows theeganafiles for the rms axial velocity.
For this quantity, a difference is observed between bothrsels ast = 10~2s, the Crank-Nicolson-
like algorithm reproducing correctly the experimentallgeantrary to Euler. Foft = 10~3s, both
schemes seem to have achieved convergence in time and, gaice @esults are in reasonable
agreement with the experimental data.
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