
HAL Id: hal-00721597
https://hal.science/hal-00721597v2

Submitted on 3 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of a Crank-Nicolson Pressure Correction
Scheme Based on Staggered Discretizations

Franck Boyer, Fanny Dardalhon, Céline Lapuerta, Jean-Claude Latché

To cite this version:
Franck Boyer, Fanny Dardalhon, Céline Lapuerta, Jean-Claude Latché. Stability of a Crank-Nicolson
Pressure Correction Scheme Based on Staggered Discretizations. International Journal for Numerical
Methods in Fluids, 2013, 74 (1), pp.34-58. �10.1002/fld.3837�. �hal-00721597v2�

https://hal.science/hal-00721597v2
https://hal.archives-ouvertes.fr


Stability of a Crank-Nicolson Pressure Correction Scheme Based
on Staggered Discretizations

F. Boyer1, F. Dardalhon1,2, C. Lapuerta2, J.-C. Latché2
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SUMMARY

In the context of Large Eddy Simulation of turbulent flows, the control of kinetic energy seems to be an
essential requirement for a numerical scheme. Designing such an algorithm,i.e. as less dissipative as
possible while being simple, for the resolution of variabledensity Navier-Stokes equations is the aim of
the present work. The developed numerical scheme, based on apressure correction technique, uses a Crank-
Nicolson time discretization and a staggered space discretization relying on the Rannacher-Turek finite
element. For the inertia term in the momentum balance equation, we propose a finite volume discretization,
for which we derive a discrete analogue of the continuous kinetic energy local conservation identity. Contrary
to what was obtained for the backward Euler discretization,the dissipation defect term associated to the
Crank-Nicolson scheme is second order in time. This behaviour is evidenced by numerical simulations.

KEY WORDS: Pressure correction scheme, compressible Navier-Stokes equations, stable convection
operator, low-order finite element approximation

CONTENTS

1 Introduction 2

2 Meshes and discrete spaces 4

3 Construction of a stable convection operator 5
3.1 Construction of the operator . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 5
3.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 7

4 A Crank-Nicolson-like pressure correction scheme 9
4.1 The time-marching algorithm . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9
4.2 The fully discrete scheme . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 11
4.3 The discrete kinetic energy identity . . . . . . . . . . . . . . . .. . . . . . . . . . 12
4.4 Order in time of the dissipation defect . . . . . . . . . . . . . . .. . . . . . . . . . 14

5 Numerical experiments 15
5.1 Convergence and dissipation defect . . . . . . . . . . . . . . . . .. . . . . . . . . 15
5.2 2D laminar flow around a cylinder . . . . . . . . . . . . . . . . . . . . .. . . . . . 18
5.3 3D turbulent mixing layer . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 22

∗Correspondence to: fboyer@latp.univ-mrs.fr



2 F. BOYER, F. DARDALHON, C. LAPUERTA, J.-C. LATCH́E

1. INTRODUCTION

We consider the time-dependent variable density Navier-Stokes equations, posed on a finite time
interval(0, T ) and in an open, connected, bounded domainΩ of Rd (d = 2 or 3), which is supposed
to be polygonal (d = 2) or polyhedral (d = 3):

∣∣∣∣∣
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(u⊗ ρu)− div(τ(u)) +∇p = 0,
(1)

whereu, p andρ are respectively the velocity, the pressure and the densityof the flow. The quantity

τ(u) = µ

[
∇u+∇

Tu−
2

3
(divu) I

]

is the shear stress tensor, withµ the positive kinematic viscosity, andu⊗ ρu is theRd ×Rd-tensor
of components(u⊗ ρu)i,j = ρuiuj , ∀ i, j ∈ {1, · · · , d}. As such, System (1) is not closed. The
simplest assumption yielding a self-contained problem is just supposing thatρ is a given function of
space and time; the mass balance equation (i.e. the first relation of (1)) thus has to be considered as
a constraint on the velocity, as for incompressible flows (and, indeed, choosing a constant value for
ρ yieldsdivu = 0). This equation basically plays the same role in the so-called asymptotic model
for low Mach number flows [19], whereρ is given as a function of an additional unknownθ (usually,
the temperature or a concentration), which satisfies a balance equation:

∂t(ρ θ) + div(ρ θ u)− div(λ∇θ) = 0, ρ = ̺(θ). (2)

The functionθ 7→ ̺(θ) is the given equation of state for the flow under study, andλ is a non-negative
diffusion coefficient.

System (1)-(2) must be supplemented by suitable boundary conditions, for instance Dirichlet
conditions foru andθ, or slip and Neumann conditions:

u · n = 0, ((τ(u)− p I)n) · t = 0, and ∇θ · n = 0 on (0, T )× ∂Ω, (3)

wheren and t are respectively the outward unit normal and tangential vectors to ∂Ω. Initial
conditions are given foru andθ, namelyu = u0 andθ = θ0 in Ω. We suppose that the equation of
state satisfies̺(θ) > 0 for θ > 0, thatθ0 > 0, and that boundary conditions are such thatθ remains
positive for allt ∈ (0, T ).

The densityρ and the velocityu are known to satisfy the so-called kinetic energy identity.This
relation stems from the following formal computation.

Property 1.1(Property K.E.)
Let us assume that

∂tρ+ div(ρβ) = 0,

for a regular fieldβ and that the functionsρ andu are smooth. Then, we have:

(
∂t(ρu) + div(u⊗ ρβ)

)
· u =

1

2
∂t
(
ρ|u|2

)
+

1

2
div
(
ρ|u|2 β

)
. (4)

Integrating this relation overΩ yields, assuming thatβ · n = 0 on∂Ω:
∫

Ω

(
∂t(ρu) + div(u⊗ ρβ)

)
· u dx =

1

2

d

dt

∫

Ω

ρ |u|2 dx. (5)

Applying identity (4), withβ = u, to the inner product of the momentum balance equation
(second relation of (1)) withu yields the so-called (local) kinetic energy identity:

1

2
∂t(ρ |u|

2) +
1

2
div
(
ρ|u|2u) + u ·∇p− div

(
τ(u)

)
· u = 0. (6)
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The first two terms of this relation are the time derivative and the transport term of the kinetic
energy, respectively; the third one corresponds to the power of the pressure forces, and the last term
of the left-hand side reads−div

(
τ(u)

)
· u = −div

(
τ(u)u

)
+ τ(u) : ∇u, which makes appear the

so-called viscous dissipationτ(u) : ∇u. Integrating overΩ, then integrating by parts the viscous
term and using the boundary conditions, we obtain the (global) kinetic energy conservation relation:

1

2

d

dt

∫

Ω

ρ |u|2 dx+

∫

Ω

u ·∇p dx+

∫

Ω

τ(u) : ∇udx = 0. (7)

This relation does not yield, in its present form, a stability estimate, because of the presence of the
pressure term. For incompressible flows, a simple integration by parts shows that it vanishes; for
barotropic compressible flows, it may be recast as the time derivative of an energy term. For the low
Mach number model, the correct way to treat this term is unclear.

Obtaining a scheme satisfying a discrete analogue of (6)-(7) has many advantages.
- First, possibly combined with the above-mentioned additional arguments to control the

pressure term, (7) yields a stability estimate, which is classically observed to considerably
enhance the robustness of the scheme, especially for the computation of convection dominant
flows.

- Second, in the context of Large Eddy Simulation (LES), a subgrid-scale model is introduced
to simulate the (kinetic energy) dissipative role of the small structures in the momentum
balance equation. It is thus crucial that the scheme respects this ”physical” dissipation,i.e.
does not overwhelm the viscous dissipation term in (the discrete counterpart of) Equation (6)
by too large numerical residual terms [21, 2]. Defining theselatter as the “dissipation defect”,
when designing a numerical scheme for LES, one aim should be to minimize the “dissipation
defect”.

The Marker And Cell (MAC) space discretization, first introduced in [13] and now widely used
for the simulation of incompressible flows, applies to Cartesian meshes and is of staggered type, with
the pressure unknowns located at the cell centers and the velocity normal components unknowns at
the face centers. For divergence-free constant density flows, it has been observed since the middle of
the sixties that the natural discrete convection operator associated to this discretization conserves the
discrete kinetic energy [18],i.e. satisfies a discrete analogue of the integral identity (5) (of course,
supposing, in this latter, a constant densityρ). Higher order convection operators, still enjoying the
same property, and also a discrete analogue of the local kinetic energy transport equation (5), have
been proposed in [23, 32, 33, 31]; combined with a suitable discretization of the pressure gradient
term and a suitable time-marching algorithm, these resultsyield (discrete analogues to) the local
and global kinetic energy balances (6) and (7).

Works concerning the MAC scheme for the compressible low Mach number model are more
recent and scarcer. First, [24] generalized the finite difference formula of [23], to obtain a scheme
which appears, from numerical experiments, to satisfy a discrete version of the global identity (7)
up to a second order residual. A similar approach, adapted tocope with cylindrical coordinates,
is proposed in [5]. Recently, a (structured) MAC scheme is presented in [22], followed by a
discussion about its conservation properties: both globaland local kinetic energy conservation are
shown, in both semi-discrete and fully-discrete settings.However, the resulting scheme seems to be
rather expensive, and more efficient alternatives with nonzero but still high order residuals are also
proposed. For related works in the collocated framework, see [6, 8, 12, 10].

In this article, we pursue the development of kinetic energyconserving schemes for low Mach
number flows, with the aim to deal with unstructured staggered discretizations. Precisely speaking,
we build a discrete convection operator satisfying the control of the kinetic energy and the reduction
of the dissipation defect (discrete analogues of (4) and (5)) with high-order numerical residuals. The
approach we adopt is based on a finite volume structure for theconvection operator first introduced
in [1]; the approximation of the convected velocity at the face is centered, and the time-algorithm
is obtained by a Crank-Nicolson technique. Then we implement this discretization in a pressure
correction scheme, and make the expression of the dissipation defect explicit. This quantity appears
to be formally second order in time, but is unsigned (unlike the first order counterpart which would
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arise from a backward Euler discretization). It is plotted in numerical experiments to assess the
performance of the scheme.

The outline of the article is as follows. After introducing the meshes and the discrete spaces
in Section 2, we deal in Section 3 with the construction of theconvection operator (Section 3.1)
and prove its stability (Property K.E., Section 3.2). The pressure correction scheme for low Mach
number flows is presented in Section 4, first in the semi-discrete setting, then in the fully discrete
one (Sections 4.1 and 4.2 respectively). The kinetic energyidentity satisfied by the fully discrete
scheme is established (Section 4.3), then the size of the dissipation defect is evaluated (Section 4.4).
Numerical tests are presented in Section 5; they confirm theoretical results and illustrate the ability
of the scheme to compute quite efficiently turbulent structures for large time steps.

2. MESHES AND DISCRETE SPACES

LetM be a decomposition of the domainΩ into quadrangles (d = 2) or hexahedra (d = 3), supposed
to be regular in the usual sense of the finite element literature [4, conditionsTh1 to Th5, p. 61 and
71]. We denote byE the set of all facesσ of the mesh, byEext the set of faces included in the
boundary ofΩ, by Eint the set of internal faces (i.e. E \ Eext) and byE(K) the faces of a particular
cell K ∈ M. The internal face separating the neighbouring cellsK andL is denoted byσ = K|L.
Moreover, we also use the notationσ = K|ext if the faceσ is included in the boundary of the control
volumeK andσ belongs toEext. For each cellK ∈ M and each faceσ ∈ E(K), nK,σ stands for
the unit normal vector toσ outwardK. By |K| and|σ|, we respectively denote the measures of the
control volumeK and of the faceσ.

The velocityu and the pressurep are discretized using the so-called Rannacher-Turek element
(also called rotated bilinear finite element [27]). The reference element̂K is the unitd-cube (with
faces orthogonal to the coordinate axes); the discrete functional space on̂K is Q̃1(K̂), whereQ̃1(K̂)
is defined as follows:

Q̃1(K̂) = span
{
1, (xi)i=1,...,d, (x

2
i − x2

i+1)i=1,··· ,d−1

}
.

The mappingTK from the reference element̂K to the current oneK is the standardQ1 mapping.
Besides, we choose the version of the element where the nodalfunctionNK,σ on the cellK is the
average of the velocity through the faceσ:

∀K ∈ M, ∀σ ∈ E(K), ∀v ∈ C∞(K), NK,σ(v) =
1

|σ|

∫

σ

v|K dσ.

Thus the discrete spaceXh is defined as:

Xh =
{
v ∈ (L2(Ω))d; ∀K ∈ M, v ◦ TK ∈ Q̃1(K̂)d, and,∀σ = K|L, NK,σ(v) = NL,σ(v)

}
.

The approximation for the velocity is thus non-conforming in H1(Ω)d because the spaceXh is
composed of discrete functions which are discontinuous through a face, and thusXh * H1(Ω)d.
The set of degrees of freedom for the velocity is:

{uσ,i = Nσ(ui), σ ∈ E , 1 ≤ i ≤ d},

whereNσ(ui) = NK,σ(ui) = NL,σ(ui) if σ = K|L. We denote byϕ(i)
σ the vector shape function

associated touσ,i, which, by definition, readsϕ(i)
σ = ϕσ e

(i), whereϕσ is the scalar shape function
ande(i) is theith vector of the canonical basis ofRd, and we defineuσ by uσ =

∑d
i=1 uσ,i e

(i).
With these definitions, we have the identity:

u(x) =
∑

σ∈E

d∑

i=1

uσ,iϕ
(i)
σ (x) =

∑

σ∈E

uσ ϕσ(x), a.e. inΩ.

We respectively denote by∇v and div v the broken gradient and divergence of any function
v ∈ Xh.
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DσK L

|σ|

σ
=

K
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M
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ǫ = D
σ |D

σ ′

Figure 1. Notations for control volumes and diamond cells.

The pressure belongs to the spaceMh composed of piecewise constant functions:

Mh =
{
p ∈ L2(Ω); ∀K ∈ M, p is constant onK

}
.

The degrees of freedom for the pressure are consequently{pK ; K ∈ M}. This pair of finite
elements isinf-supstable [3]. The unknownθ and the density are also approximated by piecewise
constant functions, and their degrees of freedom are denoted by{θK ; K ∈ M} and{ρK ; K ∈ M}.

For the definition of the schemes, we need a dual mesh which is defined as follows. WhenK ∈ M
is a rectangle or a cuboid, forσ ∈ E(K), we defineDK,σ as the cone with basisσ and with vertex the
mass center ofK. We thus obtain a partition ofK in m sub-volumes, wherem is the number of faces
of the cell (i.e. m = 4 for d = 2 andm = 6 for d = 3), each sub-volume having the same measure
|DK,σ| = |K|/m. We extend this definition to general quadrangles and hexahedra, by supposing
that we still have built a partition of equal-volume sub-cells, and with the same connectivities; note
that this is of course always possible, but that such a volumeDK,σ may be no longer a cone, since, if
K is far from a parallelogram, it may not be possible to build a cone havingσ as basis, the opposite
vertex lying inK and a volume equal to|K|/m. The volumeDK,σ is referred to as the half-diamond
cell associated toK andσ. Forσ ∈ Eint, σ = K|L, we now define the diamond cellDσ associated
to σ by Dσ = DK,σ ∪DL,σ (see Figure 1). For an external faceσ ∈ Eext ∩ E(K), Dσ is just the
same volume asDK,σ. We use the following notation for the set of dual faces of thedual mesh thus
built: the set of internal dual faces is referred to asĒint and the set of faces of a particular dual cell
Dσ is denoted bȳE(Dσ); the external faces of the dual mesh coincide with primal faces, and the set
of dual external faces is thus denoted byEext. A dual faceǫ separating the diamond cellsDσ and
Dσ′ is denoted byǫ = Dσ|Dσ′ and a dual face ofDσ included in the boundary of the computational
domain is denoted byDσ|ext.

3. CONSTRUCTION OF A STABLE CONVECTION OPERATOR

The aim of this section is to establish an analogue of Property K.E. for the velocity convection
operator discretized by the Crank-Nicolson time-algorithm.

3.1. Construction of the operator

Let us give the main ideas of this construction, details of which are given in [1, 9], by considering
the problem at a fixed time step. We start from the discrete mass balance equation, supposed to be
obtained by a backward Euler finite volume technique based onthe primal mesh (see Section 4 for
the description of the whole algorithm):

∀K ∈ M,
|K|

δt
(ρK − ρ∗K) +

∑

σ∈E(K)

FK,σ = 0. (8)

In this relation,ρK (resp.ρ∗K) stands for the approximation of the densityρ on the cellK at the end
(resp. at the beginning) of the time step, and the quantityFK,σ is the discrete mass flux through the
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faceσ outwardK, i.e.
FK,σ = |σ| ρ̃σ uσ · nK,σ,

ρ̃σ being some approximation of the density at the faceσ.

Let Dσ be a given dual cell. Our aim is to build approximations of thedensityρσ andρ∗σ and of
the mass fluxes through the dual faces ofDσ, (Fσ,ǫ)ǫ∈Ē(Dσ), such that the following mass balance
equation holds:

|Dσ|

δt
(ρσ − ρ∗σ) +

∑

ǫ∈Ē(Dσ)

Fσ,ǫ = 0. (9)

We first defineρσ by



ρσ|Dσ| = |DK,σ| ρK + |DL,σ| ρL, if σ = K|L ∈ Eint,

ρσ = ρK , if σ = K|ext ∈ Eext.
(10)

Then, we need to build the fluxesFσ,ǫ. The essential idea is to impose the following mass balance
over the half dual cell

FK,σ +
∑

ǫ∈Ē(Dσ)
ǫ⊂K

Fσ,ǫ = −
|DK,σ|

δt
(ρK − ρ∗K). (11)

If we manage to obtain (11) for everyK and σ, then (9) will hold thanks to the following
computations:

- For an external faceσ, using thatρσ = ρK , (11) is exactly (9), provided that we choose the
primal mass fluxFK,σ as the dual mass flux throughσ (remember thatσ is both a primal and
dual face), which we indeed do.

- For an internal faceσ = K|L, combining (11) written forK andL with the definition (10)
of the density and using the conservativity of the primal mass fluxes (i.e. FK,σ + FL,σ = 0)
yields (9) once again.

Let us now use the primal mass balance (8) to rewrite (11) as

FK,σ +
∑

ǫ∈Ē(Dσ)
ǫ⊂K

Fσ,ǫ =
|DK,σ|

|K|

∑

σ′∈E(K)

FK,σ′ =
1

m

∑

σ′∈E(K)

FK,σ′ . (12)

Writing this relation for all the facesσ of K, we obtain a linear system for the dual fluxes
(Fσ,ǫ)ǫ∈Ē(Dσ), which is singular (this fact is easily checked by summing thesem relations and using
the conservativity of the dual mass fluxes). However, thanksto the particular form of the right-hand
side of (12), this system has a solution and we can select the one which is orthogonal to the kernel
of the system. We obtain an expression of the form

Fσ,ǫ =
∑

σ′∈E(K)

αǫ,σ′ FK,σ′ ,

where the coefficients(αǫ,σ′) are real numbers which appear to be independent of the cellK. For
instance, in two dimensions and for a cellK, if we denote byFN, FS, FE andFW the four primal
mass fluxes and byFW|S, FS|E, FE|N andFN|W the four dual mass fluxes, as sketched on Figure 2,
we obtain expressions of these latter of the form

Fσ,ǫ = αWFW + αEFE + αSFS + αNFN, (13)

with the coefficients gathered in Table I.

We are now in position to define a finite volume convection operatorCh for any discrete fieldsu
andu∗ in Xh as follows:

∀σ ∈ E , Ch (u,u
∗)σ =

1

δt
(ρσuσ − ρ∗σu

∗
σ) +

1

|Dσ|

∑

ǫ∈Ē(Dσ)

Fσ,ǫ
uǫ + u∗

ǫ

2
, (14)
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Figure 2. Notation for the mass fluxes.

Table I. Coefficients for the dual mass fluxes in Equation (13).

Fσ,ǫ αW αE αS αN

FW|S − 3/8 1/8 3/8 −1/8

FS|E − 1/8 3/8 −3/8 1/8

FE|N 1/8 −3/8 −1/8 3/8

FN|W 3/8 −1/8 1/8 −3/8

with, for ǫ ∈ Ē , uǫ (resp.u∗
ǫ ) given as a function of(u)σ∈E (resp.(u∗)σ∈E ) by:

uǫ =





1

2
(uσ + uσ′ ), if ǫ = Dσ|Dσ′ ∈ Ēint,

uσ, if ǫ = Dσ|ext ∈ Eext.
(15)

Remark 3.1
With the same arguments, the construction of the convectiveoperator and the dual mass fluxes can
be generalized in three dimensions. For instance, 3D computations are performed in [1].

3.2. Stability analysis

In this section, we prove the discrete counterpart of Property K.E. for the convection operator given
by (14)-(15).

Proposition 3.2
Let us assume that the discrete mass balance (9) holds, for any σ ∈ E . Provided thatFσ,ǫ = 0 for
anyǫ ∈ Eext, we have:

∀σ ∈ E , ∀u,u∗ ∈ Xh,

|Dσ| Ch(u,u
∗)σ ·

(uσ + u∗
σ

2

)

=
1

2δt
|Dσ|

(
ρσ|uσ|

2 − ρ∗σ|u
∗
σ|

2
)
+

1

2

∑

ǫ=Dσ|Dσ′

Fσ,ǫ
uσ + u∗

σ

2
·
uσ′ + u∗

σ′

2
+Rσ ,

whereRσ is a remainder term given by:

Rσ = −
1

8δt
|Dσ| (ρσ − ρ∗σ) |uσ − u∗

σ|
2.
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We recognize at the right-hand side a discrete kinetic energy balance with a conservative finite
volume discretization of the kinetic energy convection terms.

Proof
We have:

|Dσ| Ch(u,u
∗)σ ·

(
uσ + u∗

σ

2

)
= T1 + T2,

with

T1 =
1

δt
|Dσ| (ρσuσ − ρ∗σu

∗
σ) ·

uσ + u∗
σ

2
,

T2 =
u∗
σ + uσ

2
·
( ∑

ǫ∈Ē(Dσ)

Fσ,ǫ
uǫ + u∗

ǫ

2

)
.

The termT1 reads:

T1 =
1

2δt
|Dσ| (ρσ|uσ|

2 − ρ∗σ|u
∗
σ|

2)
︸ ︷︷ ︸

T1,1

+
1

2δt
|Dσ| (ρσ − ρ∗σ) uσ · u∗

σ
︸ ︷︷ ︸

T1,2

. (16)

We now turn toT2. Let us introduce the following notation:

ūσ =
uσ + u∗

σ

2
, ∀σ ∈ E and ūǫ =

uǫ + u∗
ǫ

2
, ∀ǫ ∈ Ē . (17)

We get:

T2 = ūσ ·
( ∑

ǫ∈Ē(Dσ)

Fσ,ǫ ūǫ

)
.

Usingūσ · ūǫ = |ūσ|2 + ūσ · (ūǫ − ūσ), we obtain:

T2 = |ūσ|
2
∑

ǫ∈Ē(Dσ)

Fσ,ǫ

︸ ︷︷ ︸
T2,1

+
∑

ǫ∈Ē(Dσ)

Fσ,ǫ ūσ · (ūǫ − ūσ)

︸ ︷︷ ︸
T2,2

.

Let us consider the second termT2,2. Using the identity2a · (a− b) = |a|2 + |a− b|2 − |b|2, valid
for any real vectorsa andb, we get:

T2,2 = −
1

2
|ūσ|

2
∑

ǫ∈Ē(Dσ)

Fσ,ǫ +
1

2

∑

ǫ∈Ē(Dσ)

Fσ,ǫ (|ūǫ|
2 − |ūσ − ūǫ|

2).

Consequently,

T2 =
1

2
|ūσ|

2
∑

ǫ∈Ē(Dσ)

Fσ,ǫ +
1

2

∑

ǫ∈Ē(Dσ)

Fσ,ǫ (|ūǫ|
2 − |ūσ − ūǫ|

2).

Using the discrete mass balance equation (9), we get:

T2 = −
1

2 δt
|Dσ| (ρσ − ρ∗σ) |ūσ|

2

︸ ︷︷ ︸
T2,2,1

+
1

2

∑

ǫ∈Ē(Dσ)

Fσ,ǫ (|ūǫ|
2 − |ūσ − ūǫ|

2)

︸ ︷︷ ︸
T2,2,2

.

First, the termT2,2,1 may be combined with the termT1,2 in (16), and using the definition (17) of
ūσ, this gives:

T2,2,1 + T1,2 = −
1

8δt
|Dσ| (ρσ − ρ∗σ) |uσ − u∗

σ|
2 = Rσ.
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Second, by the centered definition (15) of the approximationof the convected velocity at the face,
T2,2,2 reads also:

T2,2,2 =
1

2

∑

ǫ=Dσ|Dσ′

Fσ,ǫ ūσ · ūσ′ +
1

2

∑

ǫ=Dσ |ext

Fσ,ǫ |ūσ|
2.

Finally, with Equation (17), we obtain:

T2,2,2 =
1

2

∑

ǫ=Dσ |Dσ′

Fσ,ǫ
(uσ + u∗

σ)

2
·
(uσ′ + u∗

σ′)

2
+

1

8
|uσ + u∗

σ|
2

∑

ǫ=Dσ|ext

Fσ,ǫ,

and we conclude the proof invoking the assumptionFσ,ǫ = 0 for anyǫ = Dσ|ext.

4. A CRANK-NICOLSON-LIKE PRESSURE CORRECTION SCHEME

We now present a pressure correction scheme for the resolution of the low Mach number Navier-
Stokes system (1). We begin by presenting the algorithm in the time semi-discrete setting (Section
4.1), then give the space discretization (Section 4.2). Using the property of the convection operator
proved in Section 3, we then establish the kinetic energy identity satisfied by the scheme (Section
4.3). In this relation, a remainder term appears when the density is not constant, the time order of
which is discussed (Section 4.4).

4.1. The time-marching algorithm

We consider a uniform subdivision of the interval(0, T ) denoted by0 = t0 < t1 < · · · < tN = T .
Let δt be the constant time step, namelyδt = tn+1 − tn for any integern in {0, · · · , N − 1}.

Let n in {0, · · · , N − 1} be fixed and letpn, θn andρn−1, ρn, un be given such that

ρn − ρn−1

δt
+ div(ρnun) = 0.

The Crank-Nicolson-like time splitting algorithm consists in four steps performed successively:

1- Balance equation for θ – Solve forθn+1:
∣∣∣∣∣∣

1

δt
(ρnθn+1 − ρn−1θn) + div(ρnθn+1un)− div(λ∇θn+1) = 0 in Ω,

∇θn+1 · n = 0 on∂Ω.

2- Update of the density – Update the density with the equation of state:

ρn+1 = ̺(θn+1).

3- Velocity prediction – Solve forũn+1:
∣∣∣∣∣∣∣∣∣∣

1

δt
(ρnũn+1 − ρn−1un) + div(ũn+1/2 ⊗ ρnun)− div

(
τ(ũn+1/2)

)

+∇pn = 0 in Ω,

ũ
n+1/2 · n = 0 and

(
τ(ũ

n+1/2
) · n

)
· t = 0 on∂Ω,

(18)

with ũ
n+1/2

= (ũ
n+1

+ un)/2.

4- Velocity and pressure correction – Solve forun+1 andpn+1:
∣∣∣∣∣∣∣∣∣∣

ρn

δt
(un+1 − ũ

n+1) +
1

2
∇(pn+1 − pn) = 0 in Ω,

1

δt
(ρn+1 − ρn) + div(ρn+1un+1) = 0 in Ω,

un+1 · n = 0 on∂Ω.

(19)



10 F. BOYER, F. DARDALHON, C. LAPUERTA, J.-C. LATCH́E

The first step of the algorithm corresponds to the resolutionof the conservation equation forθ
and yieldsθn+1; then, thanks to the equation of state, the second step givesthe densityρn+1 at time
tn+1 = (n+ 1) δt.

The aim of the third step, called velocity prediction step, is to compute an intermediate velocity
field denoted bỹun+1, using the pressurepn and the density fieldsρn andρn−1 already evaluated at
the previous time steps. Since we have in view to use the theory developed in Section 3, we need the
densities and convection field involved in the convection operator to satisfy a (semi-)discrete mass
balance; this latter equation being solved only in Step 4 of the algorithm, we have to rely for this on
the mass balance at the previous time step, and we thus are lead to perform a backward time-shift
of the densities in the time derivative term.

Finally, the fourth step, referred to as the velocity and pressure correction step, and formulated
as a Darcy problem, may seem numerically expensive. In fact,by taking the divergence of the first
equation multiplied byρn+1/ρn and using the second one, we are able to eliminate the end-of-step
velocity and reformulate this step as an elliptic problem for the pressure increment as follows:
∣∣∣∣∣∣
−
δt

2
div

(
ρn+1

ρn
∇(pn+1 − pn)

)
= −

1

δt
(ρn+1 − ρn)− div(ρn+1ũ

n+1) in Ω,

∇(pn+1 − pn) · n = 0 on∂Ω.

(20)

The underlying operator is the Schur complement of the Darcyproblem. This computation is
actually done at the algebraic level (i.e. equations are first discretized in space before making
this computation), which necessitatesa priori to compute the inverse of the velocity mass matrix.
However, since we adopt here a finite volume discretization of the convection operator (see Section
3), the corresponding velocity mass matrix (which is not theusual Rannacher-Turek mass matrix)
is diagonal, see (22). Once the pressure increment is known,we deduce the values of the pressure
and the end-of-step velocity.

The time accuracy of this algorithm is not analyzed in details here. However, we can see that
the system (20) can be understood as a consistent discretization of the following approximate mass
balance equation:

∂ρ

∂t
+ div(ρu)−

δt2

2
∆
∂p

∂t
= 0.

Following the approach proposed in [28] for studying Chorin’s projection methods, this remark can
certainly lead to a suitable convergence analysis that we may develop in future works. Moreover,
we give in Section 5 some numerical evidences that, at least for analytic smooth solutions of the
system, our scheme is actually convergent.

Remark 4.1(Link with a Crank-Nicolson time approximation)
By summing up the velocity prediction (18) and correction (19) equations, we obtain a discrete
momentum balance equation with a Crank-Nicolson-like discretization (i.e. with a middle-of-step
approximation of the unknowns in the convection, diffusionand pressure gradient terms):

1

δt
(ρnun+1 − ρn−1un) + div(ũ

n+1/2 ⊗ ρnun)− div
(
τ(ũ

n+1/2
)
)
+∇pn+1/2 = 0,

with pn+1/2 = (pn+1 + pn)/2.

Remark 4.2(Splitting error in time)
This algorithm is formally first order in time when the density varies with time, thus, even if we have
derived the prediction and correction steps by using a Crank-Nicolson-like technique, we cannot
expect a second order convergence in this case. This would require a more expensive second order
splitting technique. Note that our aim here is only to limit the dissipation defect of the scheme.

Remark 4.3(Convection operator forθ)
At the continuous level,θ satisfies a maximum principle. The essential argument whichyields this
conclusion is that the convection operator in the conservation equation forθ may be recast, using
the mass balance equation, as a transport operator:

∂t(ρθ) + div(ρθu) = ρ
(
∂tθ + u ·∇θ

)
.
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To obtain this property at the discrete level, we thus have tobuild a convection operator consistent
with the mass balance [17] (in other words, which is seen to vanish, invoking the mass balance
equation, for constantθ fields). To this purpose, once again, we have to shift in time the density
fields in the time derivative term. Note however that, at the fully discrete level, we fall short to
obtain a discrete maximum principle in the general case, since the Laplace operator we use enjoys
this property only for specific meshes (see Remark 4.5 below).

4.2. The fully discrete scheme

We now give the fully discrete form of the scheme. The construction of the velocity convection
operator in the discrete momentum balance equation and the form of the discrete mass balance
equation are conform to the developments of Section 3.

Let us assume that(ρn−1
K )K∈M, (ρnK)K∈M, (θnK)K∈M, (un

σ)σ∈E and(pnK)K∈M are known, and
let us suppose that:

∀K ∈ M,
|K|

δt
(ρnK − ρn−1

K ) +
∑

σ∈E(K)

Fn
K,σ = 0.

This relation is the mass balance equation at the previous time step, and the expression of the mass
fluxes (FK,σ)σ∈E(K) as a function of the density and the velocity is given below (Step 4 of the
algorithm).

Then we perform successively:

1− Balance equation for θ – Solve for(θn+1
K )K∈M:

∀K ∈ M,
|K|

δt
(ρnKθn+1

K − ρn−1
K θnK) +

∑

σ∈E(K)

Fn
K,σ θ

n+1
σ −

(
div(λ∇θn+1)

)
K

= 0,

whereθσ is an upwind approximation for the unknownθ at the faceσ and
(
div(λ∇·)

)
K

is
a finite volume approximation of the (variable coefficient) Laplace operator: for admissible
meshes (i.e. here, for structured grids), we use the usual two-point flux approximation, while
the variant of the SUSHI method using only cell centered unknowns [7, 26] is implemented
when the mesh is unstructured.

2− Update of the density – Compute the end-of-step density with the equation of state:

∀K ∈ M, ρn+1
K = ̺(θn+1

K ).

3− Velocity prediction – Disregarding for a while the boundary conditions, this step consists in
solving for the predicted velocity unknowns(ũn+1

σ )σ∈E , the following system:

∀σ ∈ E , for 1 ≤ i ≤ d,

e(i) ·
[ |Dσ|

δt
(ρnσ ũ

n+1
σ − ρn−1

σ un
σ) +

∑

ǫ∈Ē(Dσ)

Fn
σ,ǫ ũ

n+1/2
ǫ + |Dσ| (∇pn)σ

]

+
∑

K∈M

∫

K

τ(ũ
n+1/2

) : ∇ϕ(i)
σ dx = 0, (21)

where we recall thatũn+1/2 = (ũn+1 + un)/2. The convection operator (i.e. the
computation of the density at the facesρσ, of the mass fluxes at the dual faces(Fσ,ǫ) and
the (centered) approximatioñun+1/2

ǫ of the velocity at the dual faces) is described in Section
3.1. The pressure gradient term reads:

|Dσ| (∇pn)σ · e(i) = −
∑

K∈M

∫

K

pn divϕ(i)
σ dx,



12 F. BOYER, F. DARDALHON, C. LAPUERTA, J.-C. LATCH́E

and thus, for internal faces,

|Dσ| (∇pn)σ = |σ| (pnL − pnK)nK,σ, ∀σ ∈ Eint, σ = K|L.

On an external face, the impermeability boundary conditionmust be taken into account by
(possibly,i.e. if the normal of the face is not collinear to a coordinate axis) making a change
of unknowns for the velocity to make appear the component(s)of the velocity tangent and
normal to the boundary, and prescribing this latter to zero;at eachσ ∈ Eext, an equation is
thus suppressed from the system. Since the pressure gradient at a faceσ is normal toσ, it
is thus useless to define it forσ ∈ Eext. Note that, since the Neumann boundary condition
associated to the tangential component(s) is homogeneous,no extra surface term appears
from the integration by parts of the viscous term.

4− Velocity and pressure correction step – Solve for the end-of-step velocity unknowns
(un+1

σ )σ∈E and the pressure unknowns(pn+1
K )K∈M the following system:

∣∣∣∣∣∣∣∣∣∣

∀σ ∈ Eint,
|Dσ|

δt
ρnσ (u

n+1
σ − ũ

n+1
σ ) +

1

2
|Dσ|

(
∇(pn+1 − pn)

)
σ
= 0,

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn+1
K,σ = 0.

(22)

Note that, since the pressure gradient is normal to a face andthe velocity normal to the
boundary is prescribed to zero, the velocity on the boundaryis left unchanged, at this step.
This explains why the system associated to the velocity correction (first equation of (22))
may be restricted to internal faces.

Since the density is given by the equation of state, there is no need to use upwinding in the
mass balance equation (by opposition with compressible flows problem [14], for instance,
where upwinding ensures the positivity ofρ), and we thus use a centered approach:

∀σ ∈ Eint, σ = K|L, Fn+1
K,σ = |σ|

(ρn+1
K + ρn+1

L )

2
un+1
σ · nK,σ,

∀σ ∈ Eext, σ = K|ext, Fn+1
K,σ = 0.

Remark 4.4(Spatial order of accuracy)
Despite the fact that we use a finite volume approximation of the convective operator instead of its
finite element form, the overall accuracy of the method is preserved, see Section 5.1.

Remark 4.5(Maximum principle forθ and positivity of the density)
For structured meshes, the upwind choice forθ in the discrete convection operator of the associated
balance conservation equation, together with the particular form of the Laplace operator, ensure a
discrete maximum principle, and thus the positivity of the density. When the mesh is unstructured,
no such property is known for the SUSHI scheme. However, we did not observe under- or over-
shoots in practical computations.

4.3. The discrete kinetic energy identity

We first define the following density-dependent discrete semi-norm for the pressurep in Mh:

|p|21,M,ρ =
∑

σ∈Eint

1

ρσ|Dσ|
|(∇p)σ|

2 =
∑

σ∈Eint,
σ=K|L

|σ|2

ρσ |Dσ|
(pK − pL)

2. (23)

This semi-norm is well defined as soon as the density is positive, which is always the case in practice
(see Remark 4.5).

The application of the discrete counterpart of the continuous procedure described in introduction
yields the following result.
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Proposition 4.6(Global kinetic energy balance)
Let us assume thatFσ,ǫ = 0 for anyǫ ∈ Eext. Provided that the discrete mass balance (9) holds, we
have, for0 ≤ n ≤ N − 1:

1

2

∑

σ∈E

|Dσ| (ρ
n
σ |u

n+1
σ |2 − ρn−1

σ |un
σ|

2) + δt
∑

K∈M

∫

K

τ(ũ
n+1/2

) : ∇ũ
n+1/2

dx

−
δt

2

∑

K∈M

[
pnK
( ∑

σ∈E(K)

|σ|un
σ · nK,σ

)
+ pn+1

K

( ∑

σ∈E(K)

|σ|un+1
σ · nK,σ

)]
+Dn+1 = 0, (24)

whereDn+1 stands for a numerical remainder term which reads

Dn+1 =
δt2

8
( |pn+1|21,M,ρn − |pn|21,M,ρn)−

1

8

∑

σ∈E

|Dσ| (ρ
n
σ − ρn−1

σ ) |ũn+1
σ − un

σ|
2. (25)

Proof
Let n ∈ {0, . . . , N − 1} and σ ∈ E . Let us multiply the discrete velocity prediction step (21)
associated to the faceσ and the componenti by (ũn+1/2

σ )i for 1 ≤ i ≤ d and then sum overi.
Invoking Proposition 3.2, we get

|Dσ|

2δt

(
ρnσ |ũ

n+1
σ |2 − ρn−1

σ |un
σ|

2
)
+

1

2

∑

ǫ=Dσ |Dσ′

Fn
σ,ǫ ũ

n+1/2
σ · ũ

n+1/2
σ′

+ |Dσ| (∇pn)σ · ũn+1/2
σ + |Dσ|

(
−divτ(ũn+1/2)

)
σ
· ũn+1/2

σ +Rn+1
σ = 0, (26)

where the discrete approximation of the viscous diffusion operator applied tõun+1/2 reads

for 1 ≤ i ≤ d, for σ ∈ E , |Dσ|
(
−divτ(ũn+1/2)

)
σ,i

=
∑

K∈M

∫

K

τ(ũn+1/2) : ∇ϕ(i)
σ dx,

and the remainder termRn+1
σ reads

Rn+1
σ = −

|Dσ|

8 δt
(ρnσ − ρn−1

σ ) |ũn+1
σ − un

σ |
2.

We now recast the first equation of the correction step (22) asfollows:

[ |Dσ| ρnσ
2δt

]1/2
un+1
σ +

[ |Dσ| δt

8ρnσ

]1/2 (
∇pn+1

)
σ
=
[ |Dσ| ρnσ

2δt

]1/2
ũ
n+1
σ +

[ |Dσ| δt

8ρnσ

]1/2 (
∇pn

)
σ
.

Taking the square of the norm of both sides of this relation, we get

|Dσ|

2δt
ρnσ |u

n+1
σ |2 +

1

2
|Dσ|

(
∇pn+1

)
σ
· un+1

σ +
δt

8

|Dσ|

ρnσ
|(∇pn+1)σ|

2

=
|Dσ|

2δt
ρnσ |ũ

n+1
σ |2 +

1

2
|Dσ|

(
∇pn

)
σ
· ũn+1

σ +
δt

8

|Dσ|

ρnσ
|(∇pn)σ|

2.

Summing with (26) and multiplying byδt, we obtain

|Dσ|

2

(
ρnσ |u

n+1
σ |2 − ρn−1

σ |un
σ|

2
)
+

δt

2

∑

ǫ=Dσ |Dσ′

Fn
σ,ǫ ũ

n+1/2
σ · ũ

n+1/2
σ′

+
δt |Dσ|

2

[
(∇pn)σ · un

σ + (∇pn+1)σ · un+1
σ

]

+ |Dσ| δt
(
−divτ(ũn+1/2)

)
σ
· ũn+1/2

σ +Dn+1
σ = 0, (27)
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with

Dn+1
σ = −

|Dσ|

8
(ρnσ − ρn−1

σ ) |ũn+1
σ − un

σ |
2 +

δt2

8

(
|Dσ|

ρnσ
|(∇pn+1)σ|

2 −
|Dσ|

ρnσ
|(∇pn)σ|

2

)
.

We then sum over all the faces. The kinetic energy convectionterm (i.e. the second term at the
left-hand side) vanishes by conservativity (forǫ = Dσ|Dσ′ , Fn

σ,ǫ = −Fn
σ′,ǫ) and by the boundary

conditions (forǫ = Dσ|ext,Fn
σ,ǫ = 0). We make a discrete integration by parts in the gradient terms,

i.e. we use the fact that, thanks to the definition of the pressure gradient and, once again, to the
boundary conditions, for any discrete functionsu andp,
∑

σ∈Eint,
σ=K|L

|Dσ| (∇p)σ · uσ =
∑

σ∈Eint,
σ=K|L

|σ| (pL − pK)nK,σ · uσ = −
∑

K∈M

pK
∑

σ∈E(K)

|σ| uσ · nK,σ.

Finally, we easily get that, by definition,

∑

σ∈E

|Dσ|
(
−divτ(ũn+1/2)

)
σ
· ũn+1/2

σ =
∑

K∈M

∫

K

τ(ũn+1/2) : ∇ũ
n+1/2 dx,

which concludes the proof.

Remark 4.7(Local kinetic energy identity)
Note that Equation (27) is the discrete analogue of the (local) kinetic energy identity (6), to which it
may be identified term by term. Both the kinetic energy flux (second term) and the pressure gradient
term (third one) are consistent with centered in time and space discretizations.

Such a relation may be used for different purposes. For instance, one may find in [14] a way to
exploit such an identity to switch in Euler equations from the total energy to the internal energy
balance without loosing the consistency of the scheme.

4.4. Order in time of the dissipation defect

In the previous subsection, it has been shown (Proposition 4.6) that we are able to write a discrete
equation governing the variation of kinetic energy for the Crank-Nicolson-like pressure correction
scheme presented before. Adding up this relation (i.e. Equation (24)) forn ranging from0 toN − 1,
we get

1

2

∑

σ∈E

|Dσ| (ρ
N−1
σ |uN

σ |2 − ρ−1
σ |u0

σ|
2) + δt

N−1∑

n=0

∑

K∈M

∫

K

τ(ũn+1/2) : ∇ũ
n+1/2 dx

−
δt

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|σ| (pnK un
σ + pn+1

K un+1
σ ) · nK,σ +D = 0, (28)

with

D =
δt2

8

N−1∑

n=0

(
|pn+1|21,M,ρn − |pn|21,M,ρn

)
−

1

8

N−1∑

n=0

∑

σ∈E

|Dσ| (ρ
n
σ − ρn−1

σ ) |ũn+1
σ − un

σ|
2.

Relation (28) does not provide a stability estimate, for three reasons
1 - The third term at the left-hand side is the discrete counterpart of the continuous term∫ T

0

∫

Ω

p divudx dt, the control of which is not possible in the low Mach number model;

for an incompressible flow, this term would simply vanish.

2 - The first term in the remainderD is not non-negative, because of the presence of different
density weights in pressure semi-norms; this problem wouldbe cured if the quantity
|pn|1,M,ρn was replaced by|pn|1,M,ρn−1 , and this can be done by adding to the algorithm
a pressure renormalization step, following the study presented in [11]. This step is not
implemented here, because it does not seem to be crucial for the robustness of our scheme.
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3 - The last term inD can take any sign.
Note that none of these issues occurs when the density is constant (divu = 0 andD = 0), so that
the scheme is unconditionally stable in this case.

The quantityD is a numerical remainder term, which is referred to hereafteras thedissipation
defectof the scheme. We now show thatD is formally second order in time. Indeed, we have, using
Equation (23) and reordering the sum in time

δt2

8

N−1∑

n=0

(
|pn+1|21,M,ρn − |pn|21,M,ρn

)
=

δt2

8

(
|pN |21,M,ρN−1 − |p0|21,M,ρ0

)

+
δt2

8

N−1∑

n=1

∑

σ∈Eint

|Dσ| |(∇pn)σ|
2

(
1

ρn−1
σ

−
1

ρnσ

)
.

Therefore, each sum inD is a product ofδt2 multiplied by a sum that behaves likeO(1) in time.

Remark 4.8(First order backward Euler time discretization)
When approximating the velocity time derivative with first order backward Euler scheme [1], a
similar analysis yields, for0 ≤ n ≤ N − 1

1

2

∑

σ∈E

|Dσ| (ρ
n
σ |u

n+1
σ |2 − ρn−1

σ |un
σ|

2) + δt
∑

K∈M

∫

K

τ(ũ
n+1

) : ∇ũ
n+1

dx

− δt
∑

K∈M

pn+1
K

∑

σ∈E(K)

|σ|un+1
σ · nK,σ +Dn+1

Euler = 0, (29)

where the numerical remainder termDn+1
Euler now reads

Dn+1
Euler =

δt2

2
( |pn+1|21,M,ρn − |pn|21,M,ρn) +

1

2

∑

σ∈E

|Dσ| ρ
n
σ |ũn+1

σ − un
σ|

2. (30)

Summing up Equalities (29) forn ranging from0 to N − 1, we get the following expression for the
dissipation defect of the scheme

DEuler =
δt2

2

N−1∑

n=0

(
|pn+1|21,M,ρn − |pn|21,M,ρn

)
+

1

2

N−1∑

n=0

∑

σ∈E

|Dσ| ρ
n
σ |ũn+1

σ − un
σ|

2,

and, if, as in the Crank-Nicolson-like pressure correctionscheme, the first sum behaves likeO(δt2),
the second one behaves asO(δt) and the dissipation defect is thus first order in time.

5. NUMERICAL EXPERIMENTS

In this section, we report some numerical experiments performed to assess the behaviour of
the Crank-Nicolson-like pressure correction scheme proposed in this paper. To this purpose, we
compare it to a classical pressure correction scheme [1], based on the same space discretization and
on the first order backward Euler approximation in time. The simulations are performed with the
ISIS software [15] based on the development platform and software component library PELICANS
[25], both developed at IRSN (Institut de Radioprotection et de Sûreté Nucléaire).

5.1. Convergence and dissipation defect

We address here a test case with an analytical solution, in order to assess the convergence properties
of the scheme under study. We also check that the behaviour ofthe dissipation defect with respect
to the time step is consistent with the theoretical results of Section 4.4, for both Euler and Crank-
Nicolson time discretizations.
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We consider the system (1)-(2), with the following expression for the densityρ as a function of
the unknownθ:

ρ = ̺(θ) =
1

θ

ρ1
+

1− θ

ρ2

. (31)

With this closure laws, the system at hand may be seen as the setof equations governing a two-
component flow, of component densitiesρ1 andρ2 (here supposed to be two constant positive real
numbers); the unknownθ stands for the mass fraction of the first component.

Let us suppose that the normal velocity is prescribed to zeroon the whole boundary of the
computational domain∂Ω. In this condition, integrating the mass balance overΩ yields the total
mass balance:

d

dt

∫

Ω

ρ dx = 0. (32)

On the other side, the densityρ is given as a function ofθ, itself solution of Equation (2) for
λ = 10−4. Integrating this relation overΩ and supposing that the mass diffusion flux of the first
component vanishes at the boundary,i.e. λ∇θ · n = 0 on∂Ω, we obtain:

d

dt

∫

Ω

ρθ dx = 0. (33)

By an easy manipulation of the equation of state (31), we get:

ρ = ρ2 + (1−
ρ2
ρ1

) ρθ,

and thus, sinceρ appears as an affine function ofρθ, the relations (32) and (33) are fortunately
compatible. With the proposed time-stepping algorithm, this property does not hold anymore,
because of the time shift of the density in the solution of thebalance equation forθ. Consequently,
a renormalisation of the density is necessary to ensure the existence of a solution to the projection
step:

ρn+1(x) =
[

∫

Ω

ρn dx
∫

Ω

̺(θn+1) dx

]
̺(θn+1(x)).

Note that this relation is reminiscent of the scaling of the density obtained through its dependency
versus the so-called thermodynamical pressure in the asymptotic model for low Mach number flows
[19].

We consider now the following solution to System (1)-(2):

ρ(x, t) = 1 +
1

4
cos(πt)

[
sin(πx1) + sin(πx2)

]
,

ρ(x, t)u(x, t) = −
1

4
sin(πt)

[
cos(πx1)
cos(πx2)

]
,

p(x, t) = cos(πt)
[
cos(πx1) + cos(πx2)

]
.

We suppose thatρ1 = 0.25 andρ2 = 2, so relation (31) yieldsθ = (2− ρ)/(7ρ). The viscosity is
supposed to beµ = 0.001. The computational domain isΩ = (0, 1)× (0, 1), so the normal velocity
is always zero at the boundary, and the integral of the density overΩ does not vary with time. With
this choice forρ andρu, the mass balance is satisfied. The right-hand side in the momentum balance
and in theθ transport equation, the initial conditions and the boundary conditions (prescribed value
for u) are chosen to match the analytical solution. The non zero right-hand side for this system is
numerically treated implicitly.

The domain is meshed byn× n regular grids, withn = 16, 32, 64 and128. The discretization
of the convection term forθ is performed by an upwind finite volume scheme. Errors obtained at
t = 0.5 are displayed on figures 3, 4 and 5, in theL2 norm for the velocity and the pressure, and, for
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(b) Crank-Nicolson-like.

Figure 3. Test with a known solution: time convergence inL
2 norm for the velocity, for various meshes.
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(b) Crank-Nicolson-like.

Figure 4. Test with a known solution: time convergence inL
2 norm for the pressure, for various meshes.
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Figure 5. Test with a known solution: time convergence in discreteL2 norm forθ, for various meshes.

θ, in the following discreteL2 norm:

||θ||L2 =

(
∑

K∈M

|K| θ2K

) 1

2

,

which is usual in the finite volume framework.
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(b) Kinetic energy part.

Figure 6. Test with a known solution: magnitude of the two parts of the dissipation defect as a function of
the time step for the Crank-Nicolson and the Euler time discretizations.

For each unknown, we observe a first order in time convergence,until reaching a plateau, the
value of which corresponds to the space accuracy of the method. These figures confirm in particular
the convergence properties of the overall algorithm even though we do not provide any convergence
result in this paper.

We now investigate the behaviour of the dissipation defect for both the Euler and the Crank-
Nicolson schemes. For this study, the mesh is fixed and chosento be the128× 128 regular grid. In
the definition of the dissipation defect given by (25) for Crank-Nicolson and by (30) for Euler, we
distinguish the pressure gradient part, notedDn

P , from the kinetic energy part, notedDn
E , and we

defineDP andDE as the the maximum values in time of each part:

DP = max
0≤n≤N−1

∣∣∣∣∣

n∑

k=0

Dk+1
P

∣∣∣∣∣ , DE = max
0≤n≤N−1

∣∣∣∣∣

n∑

k=0

Dk+1
E

∣∣∣∣∣ .

We draw on Figure 6 the obtained results as a function of the time step for both algorithms. As
predicted by the analysis of Section 4.4, the pressure gradient part is of order two for both schemes
and the kinetic energy part is of order two for the Crank-Nicolson scheme while the order is one
for the Euler discretization. Moreover, it is also observedthat the Crank-Nicolson scheme leads to a
much smaller kinetic energy part (note that, for this scheme,the dissipation defect is multiplied by
102 in the figure).

5.2. 2D laminar flow around a cylinder

We address in this section some test cases which are derived from a benchmark referred to as the
2D-2 case in [30]. The geometry is sketched on Figure 7. A diskof diameterD = 0.1 is located
inside a 2D channel (the axis of the cylinder lying slightly below the centerline of the channel) and
the fluid enters the domain on the left boundary, with an imposed parabolic velocity profile:

ux(0, y) = 4um y
H − y

H2
, uy(0, y) = 0,

whereH = 0.41m is the height of the channel andum = 1.5. The velocity is prescribed to zero
at the other boundaries except for the right-hand side, where the flow leaves the domain; in our
computation, we impose on this latter boundary an homogeneous Neumann boundary condition.

Our study is split into two parts. In the first step, the flow is supposed to be isotherm; the density
ρ is then constant, the flow is incompressible, and we can compare our results to the reference ones
provided in [30]. In the second case, density variations arecreated in the flow by prescribing at the
cylinder boundary a temperature greater than in the bulk.

The coarse mesh (mesh#1) used for the presented computationis given on Figure 8; other meshes
are refined with respect to this one, by setting to smaller andsmaller values the discretization step
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Figure 7. Laminar 2D flow around a cylinder – Geometry.
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Figure 8. The coarse mesh (mesh#1).

Table II. Laminar 2D flow around a cylinder – Description of the meshes used.

Computation mesh#1 mesh#2 mesh#3 mesh#4 mesh#5
Number of cells 4033 12913 43009 76091 106101
Space unknowns 12256 39014 129527 228937 409099
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Figure 9. Laminar 2D flow around a cylinder – First component (x-component) of the velocity.

along some characteristic lines (the boundaries and concentric circles around the cylinder). The
numbers of cells and unknowns for each mesh are reported in Table II.

The flow is unsteady (see Figure 9 for a visualization at a giventime). The characteristic flow
quantities quoted in [30] are the maximum drag coefficientcDmax, the maximum lift coefficient
cLmax, the Strouhal numberSt and an instantaneous pressure difference∆P between the front and
end points of the cylinder,i.e. the points(0.15, 0.20) and(0.25, 0.20) (see [30, section 2.2]). Drag
and lift coefficients are defined as follows. First, the drag and lift forces are expressed as:

FD =

∫

S

(ρν
∂ut

∂n
ny − pnx) dS, FL = −

∫

S

(ρν
∂ut

∂n
nx + pny) dS,
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Table III. Laminar 2D flow around a cylinder, isothermal case– Euler time discretization.

Computation cDmax cLmax St ∆P

mesh#1 3.62 0.75 0.269 2.36
mesh#2 3.40 0.92 0.288 2.45
mesh#3 3.25 0.97 0.294 2.49
mesh#4 3.23 0.98 0.294 2.484
mesh#5 3.22 1.00 0.294 2.478

Reference range [30] 3.22 – 3.24 0.99 – 1.01 0.295 – 0.305 2.46 – 2.50

Table IV. Laminar 2D flow around a cylinder, isothermal case –Crank-Nicolson time discretization.

Computation cDmax cLmax St ∆P

mesh#1 3.66 0.79 0.270 2.30
mesh#2 3.41 0.95 0.294 2.45
mesh#3 3.25 0.98 0.303 2.50
mesh#4 3.23 1.00 0.303 2.49
mesh#5 3.22 1.01 0.303 2.48

Reference range [30] 3.22 – 3.24 0.99 – 1.01 0.295 – 0.305 2.46 – 2.50

whereS stands for the boundary of the cylinder andut for the tangential component of the velocity
(namelyut = u · t with t the tangential vector toS). Then,cD andcL are obtained by scalingFD

andFL by 2/(ρ ū2D). The Strouhal number isSt = Df/ū, f being the frequency of separation,
evaluated from the temporal evolution of the lift coefficient.

Isothermal case The density isρ = 1 and the viscosity isµ = 0.001, so that the Reynolds number,
defined asRe = ρūD/µ, whereū = 2 ux(0, H/2)/3 = 1, is equal to 100. The time step varies from
10−3 for the coarsest mesh to2 10−4 for the finest mesh, in order to keep a constant CFL number.

The computed values (cDmax, cLmax, St and∆P ) are gathered in Tables III (Euler scheme) and
IV (Crank-Nicolson scheme), together with the plausible range for the results derived from the set
of contributions to the benchmark. Values entering this reference interval are typeset in bold. For
the finest mesh, both schemes give results included in the benchmark reference range, except for the
Strouhal number which is underestimated by the Euler scheme; in addition, with coarser meshes,
the Crank-Nicolson scheme is clearly more accurate.

Anisothermal case The cylinder is now heated at a temperatureθh. The fluid enters in the domain
with a lower temperatureθc and the temperature is also fixed atθc at the top and bottom boundaries.
We characterize the deviation from the isothermal case by the parameterε defined by

ε =
θh − θc
θh + θc

.

The Prandtl number is equal to0.7, the viscosity is fixed to0.001 and the specific heat to1000. The
density is given by the following law:

ρ = ρ0
θc
θ
,

with ρ0 = 1. The parameterε varies in our tests fromε = 0 (isothermal case) toε = 0.8, and
thus the ratioρ0/̺(θh) varies from1 (isothermal case) to9 (ε = 0.8), since this ratio is equal to
(ε+ 1)/(ε− 1).

Since the mesh here is unstructured, the SUSHI scheme is usedfor the approximation of the
Laplace operator (see Remark 4.5) and the MUSCL scheme for the convective term [26] in the
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(a) ε = 0.4

(b) ε = 0.6

(c) ε = 0.8

Figure 10. Laminar flow around a heated cylinder – Density field isolines for severalε at timet = 10.

Table V. Laminar flow around a heated cylinder – Drag and lift coefficients, Strouhal number and∆P for
severalε.

Computation cDmax cLmax St ∆P

isotherm 3.22 1 0.303 2.48
ε = 0.4 3.54 0.56 0.316 2.59
ε = 0.6 3.84 0.236 0.342 2.71
ε = 0.8 4.62 0.0055 steady 3.04

balance equation forθ. The (constant) time step satisfies a CFL condition requiredby the MUSCL
scheme and so varies between10−4 and2 10−5 in the computations.

On Figure 10, the density field is represented forε = 0.4, 0.6, 0.8. For small values ofε, as for the
isothermal case, the flow is unsteady and oscillations appear in the wake of the cylinder. Forε = 0.4,
the amplitudes seem to be greater than forε = 0.6. This behaviour is coherent with an increase of
Strouhal number whenε increases (Table V). Forε = 0.8, contrary to the other computations, the
flow is steady and no oscillation appears. Heating the cylinder leads to a depressurization behind
the cylinder which increases withε (Table V). The drag coefficient also increases withε, whereas
the lift coefficient decreases. For the steady case (ε = 0.8), the lift coefficient is very small and its
value is similar to the reference value given in the benchmark [30] for the 2D steady case.
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Figure 11. Turbulent mixing layer – Numerical set-up (frontview).

5.3. 3D turbulent mixing layer

In this section, we address the simulation of an experimentalstudy of a turbulent mixing layer in
a vertical channel, described in [29]. The channel is divided at its bottom in two equal parts by a
vertical plate, and water is injected in both parts with a different velocity. The mean velocity in the
right side of the channel,u1 = 0.61m.s−1, is greater than in the left oneu2 = 0.26m.s−1; a mixing
layer, the thickness of which increases along the flow, is thus generated at the center of the channel
(see Figure 11). The flow is incompressible and the density and the viscosity are respectively fixed
atρ = 103 kg.m−3 andµ = 10−3 Pa.s.

Large Eddy Simulation is used to describe this experiment, and the subgrid scale eddy viscosity
is given by the Smagorinsky model, withCs = 0.12 [20].

The computational domain isΩ = [−0.2; 0.2]× [−0.01; 1.20]× [−0.2; 0.2] (lengthes in meters),
and the top of the plate is taken aty = 0. Slip boundary conditions are prescribed on the lateral
planes ofΩ and outlet boundary conditions on the upper planey = 1.20. The separation plate is
not taken into account in the simulation and mean experimental velocity profiles are imposed on
the bottom planey = −0.01. To generate the turbulent inflow conditions, the vortex method [16] is
used.

The mesh is an uniform grid of90× 90× 270 cells and simulations are carried out with two time
steps,δt = 10−2 s andδt = 10−3 s, over the time interval [0s,20s].

We compare the solutions given by the Crank-Nicolson-like pressure-correction scheme
introduced here to the usual first order Euler pressure-correction scheme. Representations of the
vorticity norm isosurfaces for the isovalue6 are given on Figure 12 for several time steps. For
the time stepδt = 10−2 s, Figure 12 shows that vortices present more complex structures with the
Crank-Nicolson-like scheme (in other words, turbulent vortices are over-damped by the numerical
diffusion generated by the first order Euler discretization). For δt = 10−3 s, both schemes give
similar results.

In the experiment, the (time-averaged) mean and root mean square (rms) axial velocity profiles
are measured along thex-direction at several heights [29]. In our computations, weevaluate these
quantities by averaging over a time-interval[T = 8 s; T ′ = 20 s] for which the fully turbulent state
is reached. LetL be the integer number such thatT ′ = T + L δt. On a cellK, the mean value of a
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(a) Euler,δt = 10
−2s. (b) Crank-Nicolson-like,δt = 10

−2s.

(c) Euler ,δt = 10−3s. (d) Crank-Nicolson-like,δt = 10−3s.

Figure 12. Turbulent mixing layer – Vorticity norm isosurface for the isovalue6 at time20s.

field v, denoted by< v >|K , is thus

< v >|K=
1

T ′ − T

L∑

j=0

δt

|K|

∫

K

v(x, t+ j δt) dx,

the mean axial velocity is given by< uy >|K and the root mean square (rms) axial velocity by:

(uy)rms =< u2
y >|K − < uy >2

|K .

The comparison of experimental and numerical mean velocityprofiles aty = 0.5 (Figure 13) shows
that the time convergence is achieved forδt = 10−2s for both schemes and a good agreement is
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Figure 13. Turbulent mixing layer – Time averaged axial velocity aty = 0.5 andz = 0.
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Figure 14. Turbulent mixing layer – Time rms axial velocity at y = 0.5 andz = 0.

observed with experimental results. Figure 14 shows the same profiles for the rms axial velocity.
For this quantity, a difference is observed between both schemes atδt = 10−2s, the Crank-Nicolson-
like algorithm reproducing correctly the experimental peak, contrary to Euler. Forδt = 10−3s, both
schemes seem to have achieved convergence in time and, once again, results are in reasonable
agreement with the experimental data.
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Schemes and all Speed Barotropic Schemes.Finite Volumes for Complex Applications 6, Prague, 2:39 – 55, 2011.

10. L. Georges, G. Winckelmans, and P. Geuzaine. Improving Shock-Free Compressible RANS Solvers for LES on
Unstructured Meshes.Journal of Computational Applied Mathematics, 215:419–428, 2008.

11. J.-L. Guermond and L. Quartapelle. A Projection FEM for Variable Density Incompressible Flows.Journal of
Computational Physics, 165:167–188, 2000.

12. By F. Ham, K. Mattsson, and G. Iaccarino. Accurate and Stable Finite Volume Operators for Unstructured Flow
Solvers. Techniques, pages 243–261, 2006.

13. F.H. Harlow and J.E. Welch. Numerical Calculations of Time Dependent Viscous Incompressible Flow of Fluid
with a Free Surface.Physics of Fluids, 8:2182 – 2189, 1965.
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26. L. Piar, F. Babik, R. Herbin, and J.-C. Latché. A Formally Second-Order Cell Centered Scheme for Convection-
Diffusion Equations on General Grids.International Journal for Numerical Methods in Fluids, published online
DOI: 10.1002/fld.3688.

27. R. Rannacher and S. Turek. Simple Nonconforming Quadrilateral Stokes Element.Numerical Methods for Partial
Differential Equations, 8:97–111, 1992.

28. Rolf Rannacher. On Chorin’s Projection Method for the Incompressible Navier-Stokes Equations. 1530:167–183,
1992. Proceedings of a Conference held in Oberwolfach, Germany, August 18-24, 1991.

29. V. Roig. Zone de Mélange d’Ecoulements Diphasiques à Bulles. PhD thesis, University of Toulouse, 1993.
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