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SUMMARY

In the context of Large Eddy Simulation of turbulent flows, the control of kinetic energy seems
to be an essential requirement for the numerical scheme. Designing such an algorithm, i.e. as less
dissipative as possible while being simple, for the resolution of variable density Navier-Stokes equations
is the aim of the present work. The developed numerical scheme, based on a pressure correction
technique, uses a Crank-Nicolson time discretization and a staggered space discretization relying on
the Rannacher-Turek finite element. For the inertia term in the momentum balance equation, we
propose a finite volume discretization, for which we derive a discrete analogue of the continuous
kinetic energy local conservation identity. Contrary to what was obtained for the backward Euler
discretization, the dissipation defect term associated to the Crank-Nicolson scheme is second order in
time. This behaviour is evidenced by numerical simulations. Copyright c© 2000 John Wiley & Sons,
Ltd.

key words: Pressure correction scheme, compressible Navier-Stokes equations, stable convection

operator, low-order finite element approximation

1. Introduction

We consider the time-dependent variable density Navier-Stokes equations, posed on a finite
time interval (0, T ) and in an open, connected, bounded domain Ω in Rd (d = 2, or 3), which
is supposed to be polygonal (d = 2) or polyhedral (d = 3):

∣∣∣∣∣
∂tρ + div(ρu) = 0,

∂t(ρu) + div(u ⊗ ρu) − div(τ(u)) + ∇p = 0,
(1)
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where u, p and ρ are respectively the velocity, the pressure and the density of the flow. The
quantity

τ(u) = µ
[
∇u + ∇

T u −
2

3
(divu) I

]
,

is the shear stress tensor, with µ the positive kinematic viscosity, and u ⊗ ρu is the Rd × Rd-
tensor of components (u ⊗ ρu)i,j = ρ uiuj , ∀ i, j ∈ {1, · · · , d}. As such, System (1) is not
closed. The simplest assumption yielding a self-contained problem is just supposing that ρ is
a given function of space and time; the mass balance equation (i.e. the first relation of (1))
thus has to be considered as a constraint on the velocity, as for incompressible flows (and,
indeed, choosing a constant value for ρ yields divu = 0). This equation basically plays the
same role in the so-called asymptotic model for low Mach number flows [21], where ρ is given
as a function of an additional unknown θ (usually, the temperature or a concentration), which
satisfies a balance equation:

∂t(ρ θ) + div(ρ θ u) − div(λ∇θ) = 0, ρ = ̺(θ). (2)

The function θ 7→ ̺(θ) is the given equation of state for the flow under study, and λ is a
nonnegative diffusion coefficient.

System (1)-(2) must be supplemented by suitable boundary conditions, for instance Dirichlet
conditions for u and θ, or slip and Neumann conditions:

u · n = 0, ((τ(u) − p I)n) · t = 0, and ∇θ · n = 0 on (0, T ) × ∂Ω, (3)

where n and t are respectively the outward unit normal and tangential vectors to ∂Ω. Initial
conditions are given for u and θ, namely u = u0 and θ = θ0 in Ω. We suppose that the
equation of state is such that ̺(θ) > 0 if θ > 0, that θ0 > 0, and that boundary conditions are
such that θ remains positive at all times.

The density ρ and the velocity u are known to satisfy the so-called kinetic energy identity.
This relation stems from the following formal computation.

Property 1.1 (Property K.E.) Let us assume that

∂tρ + div(ρβ) = 0,

for a regular field β and that the functions ρ and u are smooth. Then, we have:

(
∂t(ρu) + div(u ⊗ ρ β)

)
· u = ∂t

(1

2
ρ|u|2

)
+ div

(1

2
|u|2 ρβ

)
. (4)

Integrating this relation over Ω yields, assuming that β · n = 0 on ∂Ω:
∫

Ω

(
∂t(ρu) + div(u ⊗ ρ β)

)
· u dx =

1

2

d

dt

∫

Ω

ρ |u|2 dx. (5)

Applying identity (4), with β = u, to the inner product of the momentum balance equation
(second relation of (1)) with u yields the so-called (local) kinetic energy identity:

1

2
∂t(ρ |u|

2) +
1

2
div

(
ρ|u|2u) + u · ∇p − div

(
τ(u)

)
· u = 0. (6)

The first two terms of this relation are the time derivative and the transport term of the kinetic
energy, respectively; the third one corresponds to the power of the pressure forces, and the last
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STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 3

term of the left-hand side stands for the viscous dissipation. Integrating over Ω, integrating
by parts the viscous term and using the boundary conditions, we obtain the (global) kinetic
energy conservation relation:

1

2

d

dt

∫

Ω

ρ |u|2 dx +

∫

Ω

u · ∇p dx +

∫

Ω

τ(u) : ∇udx = 0. (7)

This relation does not yield, in its present form, a stability estimate, because of the presence
of the pressure term. For incompressible flows, a simple integration by parts shows that it
vanishes; it may be recast as the time derivative of an energy term for barotropic compressible
flows. For the low Mach number model, how to treat this term is unclear.

Obtaining a scheme satisfying a discrete analogue of (6)-(7) has many advantages.

- First, combined with additional arguments to control the pressure term, (7) yields a
stability estimate, which is classically observed to considerably enhance the robustness
of the scheme, especially for the computation of convection dominant flows.

- Second, in the context of Large Eddy Simulation (LES), a subgrid-scale model is
introduced to simulate the (kinetic energy) dissipative role of the small structures
in the momentum balance equation. It is thus crucial that the scheme respects this
”physical” dissipation, i.e. not overwhelms the viscous dissipation term in (the discrete
counterpart of) (6) by too large numerical residual terms [23, 2]. Defining these latter
as the “dissipation defect”, when designing a numerical scheme for LES, the aim should
be to minimize the “dissipation defect”.

The Marker And Cell (MAC) space discretization, first introduced in [15] and now widely
used for the simulation of incompressible flow, applies to cartesian meshes and is of staggered
type, with the pressure unknowns located at the cell center and the velocity normal components
unknowns at the face centers. For divergence-free constant density flows, it has been observed
since the middle of the sixties that the natural discrete convection operator associated to this
discretization conserves the discrete kinetic energy [20], i.e. satisfies a discrete analogue of the
integral identity (5) (of course, supposing, in this latter, a constant density ρ). Higher order
convection operators, still enjoying the same property, and also a discrete analogue to the local
kinetic energy transport equation (5), have been proposed in [25, 34, 35, 32]; combined with a
suitable discretization of the pressure gradient term and a suitable time-marching algorithm,
these results yield (discrete analogues to) the local and global kinetic energy balances (6) and
(7).

Still for the MAC scheme, works for the compressible low Mach number case are more recent
and scarcer. First, [26] generalized the finite difference formula of [25], to obtain a scheme which
appears, from numerical experiments, to satisfy a discrete version of the global identity (7) up
to a second order residual. A similar approach, adapted to cope with cylindrical coordinates,
is proposed in [7]. Recently, a (structured) MAC scheme is presented in [24], followed by a
discussion about its conservation properties: both global and local kinetic energy conservation
are shown, in the semi-discrete setting as in the fully discrete one. However, the resulting
scheme seems to be rather expensive, and more efficient alternatives with nonzero but still
high order residuals are also proposed.

For related works in the colocated framework, see [8, 10, 14, 12].

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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In this article, we pursue the development of kinetic energy conserving schemes for low
Mach number flows, with the aim to deal with unstructured staggered discretizations. Precisely
speaking, we build a discrete convection operator satisfying the control of the kinetic energy
and the reduction of the dissipation defect with high-order numerical residuals (discrete
analogues of (4) and (5)). The approach we adopt is based on a finite volume structure for
the convection operator first introduced in [1]; the approximation of the convected velocity at
the face is centered, and the time-algorithm is obtained by a Crank-Nicolson technique. Then
we implement this discretization in a pressure correction scheme, and make the expression
of the dissipation defect explicit. This quantity appears to be formally second order in time,
and is unsigned (unlike the first-order analogue term which would arise from a backward Euler
discretization). It is plotted in numerical experiments, to assess the performance of the scheme.

The outline of the article is as follows. After introducing the meshes and the discrete spaces
in Section 2, we deal in Section 3 with the construction of the convection operator (Subsection
3.1) and prove its stability (Proposition 1.1). The pressure correction scheme for Low Mach
number flows is presented in Section 4, first in the semi-discrete setting, then in the fully
discrete one (Subsections 4.1 and 4.2 respectively). The kinetic energy identity satisfied by the
fully discrete scheme is established (Subsection 4.3), then the size of the dissipation defect is
evaluated (Subsection 4.4). Numerical tests are presented in Section 5, they confirm theoretical
results and illustrate the ability of the scheme to perform turbulent structures for large time
steps.

2. Meshes and discrete spaces

Let M be a decomposition of the domain Ω into quadrangles (d = 2) or hexahedra (d = 3),
supposed to be regular in the usual sense of the finite element literature [5, conditions Th1 to
Th5 p. 61 and 71]. We denote by E the set of all faces σ of the mesh; by Eext the set of faces
included in the boundary of Ω, by Eint the set of internal faces (i.e. E \ Eext) and by E(K) the
faces of a particular cell K ∈ M. The internal face separating the neighbouring cells K and L
is denoted by σ = K|L. Moreover, we also use the notation σ = K|ext if the face σ is in the
control volume K and σ belongs to Eext. For each cell K ∈ M and each face σ ∈ E(K), nK,σ

stands for the unit normal vector to σ outward K. By |K| and |σ| we respectively denote the
measures of the control volume K and the face σ.

The velocity u and the pressure p are discretized using the so-called Rannacher-Turek
element (also called rotated bilinear finite element [29]). The reference element K̂ is the unit d-

cube (with faces colinear to the coordinate axes); the discrete functional space on K̂ is Q̃1(K̂),

where Q̃1(K̂) is defined as follows:

Q̃1(K̂) = span
{
1, (xi)i=1,...,d, (x

2
i − x2

i+1)i=1,··· ,d−1

}
.

The mapping TK from the reference element K̂ to the current one K is the standard Q1

mapping. Besides, we choose the version of the element where the nodal function NK,σ on the
cell K is the average of the velocity through the face σ:

∀K ∈ M, ∀σ ∈ E(K), ∀v ∈ C∞(K), NK,σ(v) =
1

|σ|

∫

σ

v|K dσ.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 5

Thus the discrete space Xh is defined as:

Xh =
{
v ∈ (L2(Ω))d; ∀K ∈ M, v ◦ TK ∈ Q̃1(K̂)d, and, ∀σ = K|L, NK,σ(v) = NL,σ(v)

}
.

The approximation for the velocity is thus non-conforming in H1(Ω)d because the space Xh is
composed of discrete functions which are discontinuous through a face, and thus Xh * H1(Ω)d.
The set of degrees of freedom for the velocity is:

{uσ,i = Nσ(ui), σ ∈ E , 1 ≤ i ≤ d},

where Nσ(ui) = NK,σ(ui) = NL,σ(ui) if σ = K|L. We denote by ϕ
(i)
σ the vector shape

function associated to uσ,i, which, by definition, reads ϕ
(i)
σ = ϕσ e(i), where ϕσ is the scalar

shape function and e(i) is the ith vector of the canonical basis of Rd, and we define uσ by
uσ =

∑d
i=1 uσ,i e(i). With these definitions, we have the identity:

u(x) =
∑

σ∈E

d∑

i=1

uσ,i ϕ(i)
σ (x) =

∑

σ∈E

uσ ϕσ(x), for a.e. x ∈ Ω.

We respectively denote by ∇v and div v the broken gradient and divergence of any function
v ∈ Xh.

The pressure belongs to the space Mh composed of piecewise constant functions:

Mh =
{
p ∈ L2(Ω); ∀K ∈ M, p is constant on K

}
.

The degrees of freedom for the pressure are consequently {pK ; K ∈ M}. This pair of finite
elements is inf-sup stable [3].

The unknown θ and the density are piecewise constant, and their degrees of freedom are
denoted by {θK ; K ∈ M} and {ρK ; K ∈ M}.

For the definition of the schemes, we need a dual mesh which is defined as follows. When
K ∈ M is a rectangle or a cuboid, for σ ∈ E(K), we define DK,σ as the cone with basis σ
and with vertex the mass center of K. We thus obtain a partition of K in m sub-volumes,
where m is the number of faces of the cell (i.e. m = 4 for d = 2 and m = 6 for d = 3), each
sub-volume having the same measure |DK,σ| = |K|/m. We extend this definition to general
quadrangles and hexahedra, by supposing that we still have built a partition of equal-volume
sub-cells, and with the same connectivities; note that this is of course always possible, but
that such a volume DK,σ may be no longer a cone, since, if K is far from a parallelogram, it
may not be possible to built a cone having σ as basis, the opposite vertex lying in K and a
volume equal to |K|/m. The volume DK,σ is referred to as the half-diamond cell associated
to K and σ. For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by
Dσ = DK,σ ∪ DL,σ (see Figure 1). For an external face σ ∈ Eext ∩ E(K), Dσ is just the same
polyhedron as DK,σ. We use the following notations for the set of dual faces of the dual mesh
thus built: the set of internal dual faces is referred to as Ēint and, for a particular dual cell Dσ,
it is denoted by Ē(Dσ); the external faces of the dual mesh coincide with primal faces, and the
set of dual external faces is thus denoted by Eext.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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DσK L

|σ|

σ
=

K
|L

Dσ′

M

σ′ = K|M

ε = D
σ |D

σ ′

Figure 1. Notations for control volumes and diamond cells.

3. Construction of a stable convection operator

The aim of this section is to establish an analogue of Property 1.1 for the velocity convection
operator discretized by the Crank-Nicolson time-algorithm.

3.1. Construction of the convection operator

Let us give the main ideas of this construction, detailed in [1, 11], by considering the problem
at a fixed time step. We start from the discrete mass balance equation, supposed to be obtained
by a backward Euler finite volume technique based on the primal mesh (see Section 4 for the
description of the whole algorithm):

∀K ∈ M,
|K|

δt
(ρK − ρ∗K) +

∑

σ∈E(K)

FK,σ = 0. (8)

In this relation, ρK and ρ∗K stand for the approximation of the density ρ on the mesh K at
the beginning and end of time step respectively, and the quantity FK,σ is the discrete mass
flux through the face σ outward K, i.e.

FK,σ = |σ| ρ̃σ uσ · nK,σ,

ρ̃σ being some approximation of the density at the face σ.

Let Dσ be a given dual cell. Our aim is to build approximations of the density ρσ and ρ∗σ
and of the mass fluxes through the dual faces of Dσ, (Fσ,ε)ε∈Ē(Dσ), such that the following
mass balance equation holds:

|Dσ|

δt
(ρσ − ρ∗σ) +

∑

ε∈Ē(Dσ)

Fσ,ε = 0. (9)

To this purpose, we first define ρσ by:




ρσ|Dσ| = |DK,σ| ρK + |DL,σ| ρL, if σ = K|L ∈ Eint,

ρσ = ρK , if σ ∈ Eext.
(10)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 7

Second, let us turn to the construction of the fluxes Fσ,ε. The essential idea is to impose the
following mass balance over the half dual cell:

FK,σ +
∑

ε∈Ē(Dσ)
ε⊂K

Fσ,ε = −
|DK,σ|

δt
(ρK − ρ∗K). (11)

For an external face σ, using ρσ = ρK , this relation is exactly (9), provided that we choose the
primal mass flux FK,σ as the dual mass flux through σ (remember that σ is both a primal and
dual edge), which we indeed do. For an internal face σ = K|L, combining (11) written for K
and L with the definition (10) of the density and using the conservativity of the primal mass
fluxes (i.e. FK,σ + FL,σ = 0) yields (9) once again. Let us now use the primal mass balance
(8) to write (11) as:

FK,σ +
∑

ε∈Ē(Dσ)
ε⊂K

Fσ,ε =
|DK,σ|

|K|

∑

σ′∈E(K)

FK,σ′ =
1

m

∑

σ′∈E(K)

FK,σ′ . (12)

Writing this relation for all the faces σ of K yields a linear system, which is singular (summing
these m relations and using the conservativity of the dual mass fluxes) and has an infinity
of solutions. Thanks to the form of the right-hand side of (12), selecting the one which is
orthogonal to the kernel of the system, we obtain a relation of the form:

Fσ,ε =
∑

σ′∈E(K)

αε,σ′ FK,σ′ ,

where the coefficients (αε,σ′) are real numbers independent of the cell K. For instance, in
two dimensions, with the notations of Figure 2, we obtain for each dual mass flux Fσ,ε an
expression of the form:

Fσ,ε = αWFW + αEFE + αSFS + αNFN, (13)

with the coefficients gathered in Table I.

Table I. Coefficients for the dual mass fluxes in Equation (13).

Fσ,ǫ αW αE αS αN

FW|S − 3/8 1/8 3/8 −1/8

FS|E − 1/8 3/8 −3/8 1/8

FE|N 1/8 −3/8 −1/8 3/8

FN|W 3/8 −1/8 1/8 −3/8

We are now in position to define a finite volume convection operator Ch for any discrete
fields u and u∗ in Xh as follows:

∀σ ∈ E , Ch (u, u∗)σ =
1

δt
(ρσuσ − ρ∗σu∗

σ) +
∑

ε∈Ē(Dσ)

1

|Dσ|
Fσ,ε

uε + u∗
ε

2
, (14)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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N

FW FEF
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|N

F N
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Figure 2. Notation for the mass fluxes.

with uε (ε ∈ Ē) given by:

uε =





1

2
(uσ + uσ′), if ε = Dσ|Dσ′ ∈ Ēint,

uσ, if ε = Dσ|ext ∈ Eext.
(15)

Remark 1. With the same arguments, the construction of the convective operator and the
dual mass fluxes can be generalized in three dimension. For instance, 3D computations are
performed in [1].

3.2. Stability analysis of the convection operator

In this section, we prove the discrete counterpart of Property 1.1 for the convection operator
given by (14)-(15).

Proposition 3.1. Let us assume that the discrete mass balance (9) holds, for any σ ∈ E.

Provided that Fσ,ε = 0 for any ǫ = Dσ|ext, we have:

∀σ ∈ E , ∀u, u∗ ∈ Xh,

|Dσ| Ch(u, u∗)σ ·
(uσ + u∗

σ

2

)

=
1

2δt
|Dσ|

(
ρσ|uσ|

2 − ρ∗σ|u
∗
σ|

2
)

+
1

2

∑

ε=Dσ |Dσ′

Fσ,ε
uσ + u∗

σ

2
·
uσ′ + u∗

σ′

2
+ Rσ,

where Rσ is a remainder term given by:

Rσ = −
1

8δt
|Dσ| (ρσ − ρ∗σ) |uσ − u∗

σ|
2.

We recognize at the right-hand side a discrete kinetic energy balance with a conservative
finite volume discretization of the kinetic energy convection terms.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 9

Proof. We have:

|Dσ| Ch(u, u∗)σ ·

(
uσ + u∗

σ

2

)
= T1 + T2,

with

T1 =
1

δt
|Dσ| (ρσuσ − ρ∗σu∗

σ) ·
uσ + u∗

σ

2
,

T2 =
u∗

σ + uσ

2
·
( ∑

ε∈Ē(Dσ)

Fσ,ε
uε + u∗

ε

2

)
.

The term T1 reads:

T1 =
1

2δt
|Dσ| (ρσ|uσ|

2 − ρ∗σ|u
∗
σ|

2)
︸ ︷︷ ︸

T1,1

+
1

2δt
|Dσ| (ρσ − ρ∗σ) uσ · u∗

σ
︸ ︷︷ ︸

T1,2

. (16)

We now turn to T2. Let us introduce the following notations:

ūσ =
uσ + u∗

σ

2
, ∀σ ∈ E and ūε =

uε + u∗
ε

2
, ∀ε ∈ Ē . (17)

We get:

T2 = ūσ ·
( ∑

ε∈Ē(Dσ)

Fσ,ε ūε

)
.

Using ūσ · ūε = |ūσ|2 + ūσ · (ūε − ūσ), we obtain:

T2 = |ūσ|
2

∑

ε∈Ē(Dσ)

Fσ,ε

︸ ︷︷ ︸
T2,1

+
∑

ε∈Ē(Dσ)

Fσ,ε ūσ · (ūε − ūσ)

︸ ︷︷ ︸
T2,2

. (18)

Let us consider the second term T2,2. Using the identity 2a · (a − b) = |a|2 + |a − b|2 − |b|2,
valid for any real vectors a and b, we get:

T2,2 = −
1

2
|ūσ|

2
∑

ε∈Ē(Dσ)

Fσ,ε +
1

2

∑

ε∈Ē(Dσ)

Fσ,ε (|ūε|
2 − |ūσ − ūε|

2).

Consequently,

T2 =
1

2
|ūσ|

2
∑

ε∈Ē(Dσ)

Fσ,ε +
1

2

∑

ε∈Ē(Dσ)

Fσ,ε (|ūε|
2 − |ūσ − ūε|

2).

Using the discrete mass balance equation (9), we get:

T2 = −
1

2 δt
|Dσ| (ρσ − ρ∗σ) |ūσ|

2

︸ ︷︷ ︸
T2,2,1

+
1

2

∑

ε∈Ē(Dσ)

Fσ,ε (|ūε|
2 − |ūσ − ūε|

2)

︸ ︷︷ ︸
T2,2,2

.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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First, the term T2,2,1 may be combined with the term T1,2 in (16), and using the definition
(17) of ūσ, this gives:

T2,2,1 + T1,2 = −
1

8δt
|Dσ| (ρσ − ρ∗σ) |uσ − u∗

σ|
2 = Rσ.

Second, by the centered definition (15) of the approximation of the convected velocity at the
face, T2,2,2 reads also:

T2,2,2 =
1

2

∑

ε=Dσ |Dσ′

Fσ,ε ūσ · ūσ′ +
1

2

∑

ε=Dσ |ext

Fσ,ε |ūσ|
2.

Finally, with Equation (17), we obtain:

T2,2,2 =
1

2

∑

ε=Dσ |Dσ′

Fσ,ε
(uσ + u∗

σ)

2
·
(uσ′ + u∗

σ′)

2
+

1

8
|uσ + u∗

σ|
2

∑

ε=Dσ |ext

Fσ,ε,

and we conclude the proof invoking the assumption Fσ,ε = 0 for any ǫ = Dσ|ext. �

4. A Crank-Nicolson-like pressure correction scheme

We now present a pressure correction scheme for the resolution of the low Mach number
Navier-Stokes system (1). We begin by presenting the algorithm in the time semi-discrete
setting (Section 4.1), then give the space discretization (Section 4.2). Using the property of
the convection operator proved in Section 3, we then establish the kinetic energy identity
satisfied by the scheme (Section 4.3). In this relation, a remainder term appears when the
density is not constant, the time order of which is discussed (Section 4.4).

4.1. The time-marching algorithm

We consider an uniform subdivision of the interval (0, T ) denoted by 0 = t0 < t1 < · · · < tN =
T . Let δt be the constant time step, namely δt = tn+1− tn for any integer n in {0, · · · , N −1}.
Let n in {0, · · · , N − 1} be fixed and let pn, θn and ρn−1, ρn, un be given such that

ρn − ρn−1

δt
+ div(ρnun) = 0.

The Crank-Nicolson-like time splitting algorithm consists in four steps performed successively:

1- Balance equation for θ – Solve for θn+1:
∣∣∣∣∣∣

1

δt
(ρnθn+1 − ρn−1θn) + div(ρnθn+1un) − div(λ∇θn+1) = 0 in Ω,

∇θn+1 · n = 0 on ∂Ω.

2- Update of the density – Update the density with the equation of state:

ρn+1 = ̺(θn+1).
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STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 11

3- Velocity prediction – Solve for ũ
n+1:

∣∣∣∣∣∣∣∣∣∣

1

δt
(ρnũ

n+1 − ρn−1un) + div(ũn+1/2 ⊗ ρnun) − div
(
τ(ũn+1/2)

)

+∇pn = 0 in Ω,

ũ
n+1/2 · n = 0 and

(
τ(ũn+1/2) · n

)
· t = 0 on ∂Ω,

(19)

with ũ
n+1/2 = (ũn+1 + un)/2.

4- Velocity and pressure correction – Solve for un+1 and pn+1:

∣∣∣∣∣∣∣∣∣∣

ρn

δt
(un+1 − ũ

n+1) +
1

2
∇(pn+1 − pn) = 0 in Ω,

1

δt
(ρn+1 − ρn) + div(ρn+1un+1) = 0 in Ω,

∇(pn+1 − pn) · n = 0 on ∂Ω.

(20)

Remark 2 (Link with a Crank-Nicolson time approximation) By summing up the
velocity prediction (19) and correction (20) equations, we obtain a discrete momentum balance
equation with a Crank-Nicolson-like discretization (i.e. with a middle-of-step approximation
of the unknowns in the convection, diffusion and pressure gradient terms and of the right-hand
side):

1

δt
(ρnun+1 − ρn−1un) + div(ũn+1/2 ⊗ ρnun) − div

(
τ(ũn+1/2)

)
+ ∇pn+1/2 = 0,

with pn+1/2 = (pn+1 + pn)/2.

The first step of the algorithm corresponds to the resolution of the conservation equation
for θ and yields θn+1 and, through the equation of state (Step 2), the density ρn+1 at time
tn+1 = (n + 1) δt.

The aim of the third step, called velocity prediction step, is to compute an intermediate
velocity field denoted by ũ

n+1, using the pressure pn and the density fields ρn and ρn−1 already
evaluated at the previous time steps. Since we have in view to use the theory developed in
Section 3, we need the densities and convection field involved in the convection operator to
satisfy a (semi-)discrete mass balance; this latter equation being solved only in Step 4 of the
algorithm, we need to rely for this on the mass balance at the previous time step, and we thus
need to perform a backward time-shift of the densities in the time derivative term.

Finally, the fourth step, referred to as the velocity and pressure correction step, and
formulated as a Darcy problem, may seem numerically expensive. In fact, by taking the
divergence of the first equation multiplied by ρn+1/ρn and using the second one, we are
able to eliminate the end-of-step velocity and reformulate this step as an elliptic problem
for the pressure increment, which operator is the Schur complement of the Darcy problem.
This is done at the algebraic level (i.e. equations are first discretized in space before making
this computation), which necessitates to compute the inverse of the velocity mass matrix;
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this is easily done here, since this matrix is diagonal (which is consistent with a finite volume
discretization of the convection operator, as studied in Section 3). Once the pressure increment
is known, we deduce the values of the pressure and the end-of-step velocity.

The time accuracy of this algorithm is analyzed, for a model problem (namely the time-
dependent incompressible Stokes problem) in [6].

Remark 3 (Splitting error in time) This algorithm is formally first order in time when
the density varies with time, thus, even if we have derived the prediction and correction steps
by using a Crank-Nicolson like technique, we cannot expect a second order convergence in this
case. Our aim here is only to limitate the dissipation defect of the scheme.

Remark 4 (Convection operator for θ) At the continuous level, θ satisfies a maximum
principle. The essential argument which yields this conclusion is that the convection operator in
the conservation equation for θ may be recast, using the mass balance equation, as a transport
operator:

∂t(ρθ) + div(ρθu) = ρ
(
∂t(θ) + ∇(θ) · u

)
.

To obtain this property at the discrete level, we thus have to build a convection operator
consistent with the mass balance [19] (in other words, which vanishes because of the mass
balance equation for constant θ fields). To this purpose, once again, we have to shift in time
the density fields in the time derivative term. Note however that, at the fully discrete level,
we fall short to obtain a discrete maximum principle in the general case, since the Laplace
operator we use enjoys this property only for specific meshes (see Remark 5 below).

4.2. Fully discrete scheme

Using the construction of the velocity convection operator presented in Subsection 3.2 in
the discrete momentum and mass balance equations, the fully discrete form of the numerical
algorithm proposed above consists in the following steps.

We assume that (ρn−1
K )K∈M, (ρn

K)K∈M, (θn
K)K∈M, (un

σ)σ∈E and (pn
K)K∈M are known, and

we suppose that:
|K|

δt
(ρn

K − ρn−1
K ) +

∑

σ∈E(K)

Fn
K,σ = 0,

where, for σ ∈ Eext, σ = K|ext, Fn
K,σ = 0 and for σ ∈ Eint, σ = K|L, the mass flux Fn

K,σ is a
given function of ρn

K , ρn
L and un

σ (see the discretization of the mass balance equation in Step
4 below).

Then we perform successively:

1− Balance equation for θ – Solve for (θn+1
K )K∈M:

∀K ∈ M,
|K|

δt
(ρn

Kθn+1
K − ρn−1

K θn
K) +

∑

σ∈E(K)

Fn
K,σ θn+1

σ + λ∆K(θn+1) = 0,

where θσ is an upwind approximation for the unknown θ at the face σ and ∆K is a
finite volume approximation of the Laplace operator: for admissible meshes (i.e. here,
for structured grids), we use the usual two-point flux approximation, while the variant
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STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 13

of the SUSHI method using only cell centered unknowns [9, 28] is implemented when
the mesh is unstructured.

2− Update of the density – Compute the end-of-step density with the equation of state:

∀K ∈ M, ρn+1
K = ̺(θn+1

K ).

3− Velocity prediction – Disregarding for a while the boundary conditions, this step
consists in solving for the predicted velocity unknowns (ũn+1

σ )σ∈E , the following system:

∀σ ∈ E , for 1 ≤ i ≤ d,

e(i) ·
[ |Dσ|

δt
(ρn

σ ũ
n+1
σ − ρn−1

σ un
σ) +

∑

ε∈Ē(Dσ)

Fn
σ,ε ũ

n+1/2
ε + |Dσ| (∇pn)σ

]

+
∑

K∈M

∫

K

τ(ũn+1/2) : ∇ϕ(i)
σ dx = 0, (21)

where we recall that ũ
n+1/2 = (ũn+1 + un)/2. The convection operator (i.e. the

computation of the edges density ρσ, of the mass fluxes at the dual faces (Fσ,ε) and

the (centered) approximation ũ
n+1/2
ε of the velocity at the dual faces) is described in

Section 3.1. The pressure gradient term reads:

|Dσ| (∇pn)σ · e(i) = −
∑

K∈M

∫

K

pn divϕ(i)
σ dx,

and so, for any internal edge:

∀σ ∈ Eint, σ = K|L, |Dσ| (∇pn)σ = |σ| (pn
L − pn

K)nK,σ.

On an external face, the impermeability boundary condition must be taken into account
by (possibly, i.e. if the normal of the face is not colinear to a coordinate axis) making
a change of unknowns for the velocity to make appear the component(s) of the velocity
tangent and normal to the boundary, and this latter is prescribed to zero; at each
σ ∈ Eext, an equation is thus suppressed from the system. Since the pressure gradient
at a face σ is normal to σ, it is thus useless to define it for σ ∈ Eext. Note that, since
the Neumann boundary associated to the tangential component(s) is homogeneous, no
extra surface term appears from the integration by part of the viscous term.

4− Velocity and pressure correction step – Find the end-of-step velocity unknowns
(un+1

σ )σ∈E and the pressure unknowns (pn+1
K )K∈M such that

∣∣∣∣∣∣∣∣∣∣

∀σ ∈ Eint,
|Dσ|

δt
ρn

σ (un+1
σ − ũ

n+1
σ ) +

1

2
|Dσ|

(
∇(pn+1 − pn)

)
σ

= 0,

∀K ∈ M,
|K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

Fn+1
K,σ = 0.

(22)

Note that, since the pressure gradient is normal to a face and the velocity normal to the
boundary is prescribed to zero, the velocity on the boundary is left unchanged, at this
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step. This explains why the system associated to the velocity correction (first equation
of (22)) may be restricted to internal faces.

Since the density is given by the equation of state, there is no need to use upwinding
in the mass balance equation (by opposition with compressible flows problem [16], for
instance, where upwinding ensures the positivity of ρ), and we thus use a centered
approach:

∀σ ∈ Eint, σ = K|L, Fn+1
K,σ = |σ|

(ρn+1
K + ρn+1

L )

2
un+1

σ · nK,σ,

∀σ ∈ Eext, σ = K|ext, Fn+1
K,σ = 0.

Remark 5 (Maximum principle for θ and positivity of the density) For structured
meshes, the upwind choice for θ in the discrete convection operator of the associated balance
conservation equation, together with the particular form of the Laplace operator, ensures
a discrete maximum principle, and thus the positivity the density. When the mesh is
unstructured, no such property is known for the SUSHI scheme. However, we did not observe
under- or overshoots in practical computations.

4.3. Kinetic energy identity

We first define the following discrete semi-norm for the pressure p in Mh:

|p|21,M,ρ =
∑

σ∈Eint

1

ρσ|Dσ|
|(∇p)σ|

2 =
∑

σ∈Eint,
σ=K|L

|σ|2

ρσ |Dσ|
(pK − pL)2. (23)

This norm is well defined if the density is positive, which is always the case in practice (see
Remark 5).

The application of the discrete counterpart of the continuous procedure described in
introduction yields to the following result.

Proposition 4.1 (Global kinetic energy balance) Let us assume that Fσ,ε = 0 for any

ǫ = Dσ|ext. Provided that the discrete mass balance (9) holds, we have, ∀n ∈ {0, · · · , N − 1}:

1

2

∑

σ∈E

|Dσ| (ρ
n
σ |un+1

σ |2 − ρn−1
σ |un

σ|
2) + δt

∑

K∈M

∫

K

τ(ũn+1/2) : ∇(ũn+1/2) dx

−
δt

2

∑

K∈M

∑

σ∈E(K)

|σ| (pn+1
K un+1

σ + pn
K un

σ) · nK,σ + Dn+1 = 0,

where Dn+1 stands for a numerical remainder term which reads:

Dn+1 =
δt2

8
( |pn+1|21,M,ρn − |pn|21,M,ρn) −

1

8

∑

σ∈E

|Dσ| (ρ
n
σ − ρn−1

σ ) |ũn+1
σ − un

σ|
2. (24)

Proof. Let 0 ≤ n ≤ N−1 and σ ∈ E . Let us multiply the discrete velocity prediction step (21)

associated to the face σ and the component i by (ũn+1/2
σ )i for 1 ≤ i ≤ d and then sum over i.
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STABILITY OF A CRANK-NICOLSON PRESSURE CORRECTION SCHEME 15

Invoking Proposition 3.1, we get:

|Dσ|

2δt

(
ρn

σ |ũn+1
σ |2 − ρn−1

σ |un
σ|

2
)

+
1

2

∑

ε=Dσ |Dσ′

Fn
σ,ε ũ

n+1/2
σ · ũ

n+1/2
σ′

+ |Dσ| (∇pn)σ · ũn+1/2
σ + |Dσ| (−∆ũ

n+1/2) · ũn+1/2
σ + Rn+1

σ = 0, (25)

where the discrete approximation of the Laplace operator applied to ũ
n+1/2 reads:

for 1 ≤ i ≤ d, |Dσ| (−∆ũ
n+1/2)i =

∑

K∈M

∫

K

τ(ũn+1/2) : ∇ϕ(i)
σ dx,

and the remainder term Rn+1
σ reads:

Rn+1
σ = −

|Dσ|

8 δt
(ρn

σ − ρn−1
σ ) |ũn+1

σ − un
σ |

2.

We now recast the first Equation of the correction step (22) as:

[ |Dσ| ρn
σ

2δt

]1/2

un+1
σ +

[ |Dσ| δt

8ρn
σ

]1/2 (
∇pn+1

)
σ

=
[ |Dσ| ρn

σ

2δt

]1/2

ũ
n+1
σ +

[ |Dσ| δt

8ρn
σ

]1/2 (
∇pn

)
σ
.

Taking the square of the norm of both sides of this relation, we get:

|Dσ|

2δt
ρn

σ |un+1
σ |2 +

1

2
|Dσ|

(
∇pn+1

)
σ
· un+1

σ +
δt

8

|Dσ|

ρn
σ

|(∇pn+1)σ|
2

=
|Dσ|

2δt
ρn

σ |ũn+1
σ |2 +

1

2
|Dσ|

(
∇pn

)
σ
· ũn+1

σ +
δt

8

|Dσ|

ρn
σ

|(∇pn)σ|
2.

Summing with (25) and multiplying by δt, we obtain:

|Dσ|

2

(
ρn

σ |un+1
σ |2 − ρn−1

σ |un
σ |

2
)

+
δt

2

∑

ε=Dσ |Dσ′

Fn
σ,ε ũ

n+1/2
σ · ũ

n+1/2
σ′

+
δt |Dσ|

2

[
(∇pn)σ · un

σ + (∇pn+1)σ · un+1
σ

]
+ |Dσ| δt (−∆ũ

n+1/2) · ũn+1/2 + Dn+1
σ = 0,

(26)

with:

Dn+1
σ = −

|Dσ|

8
(ρn

σ − ρn−1
σ ) |ũn+1

σ − un
σ|

2 +
δt2

8

(
|Dσ|

ρn
σ

|(∇pn+1)σ|
2 −

|Dσ|

ρn
σ

|(∇pn)σ|
2

)
.

We then sum over the edges. The kinetic energy convection fluxes (i.e. the second term at the
left-hand side) vanish by conservativity (for ε = Dσ|Dσ′ , Fn

σ,ε = −Fn
σ′,ε) and by the boundary

conditions (for ε = Dσ|ext, Fn
σ,ε = 0). We make a discrete integration by parts in the gradient

terms, i.e. we use the fact that, thanks to the definition of the pressure gradient and, once
again, to the boundary conditions, for any discrete functions u and p:

∑

σ∈Eint,

σ=K|L

|Dσ| (∇p)σ ·uσ =
∑

σ∈Eint,

σ=K|L

|σ| (pL − pK)nK,σ ·uσ = −
∑

K∈M

pK

∑

σ∈E(K)

|σ| uσ ·nK,σ.
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Finally, we easily get that, by definition:

∑

σ∈E

|Dσ| (−∆ũ
n+1/2) · ũn+1/2 =

∑

K∈M

∫

K

τ(ũn+1/2) : ∇ũ
n+1/2 dx,

which concludes the proof. �

Remark 6 (Local kinetic energy identity) Note that Equation (26) is the discrete
analogue of the (local) kinetic energy identity (6), to which it may be identified term by
term. Both the kinetic energy flux (second term) and the pressure gradient term (third one)
are consistent with centered in time and space discretizations.

Such a relation may be used for different purposes. For instance, one may find in [16] a way
to exploit such an identity to switch in Euler equations from the total energy to the internal
energy balance without loosing the consistency of the scheme.

4.4. Order in time of the dissipation defect

In the previous subsection, it has been shown (Proposition 4.1) that we are able to write a
discrete equation governing the variation of kinetic energy for the Crank-Nicolson-like pressure
correction scheme presented before. By adding up the relation established in Proposition 4.1
for n ranging from 0 to N − 1, we get:

1

2

∑

σ∈E

|Dσ| (ρ
N−1
σ |uN

σ |2 − ρ−1
σ |u0

σ|
2) + δt

N−1∑

n=0

∑

K∈M

∫

K

τ(ũn+1/2) : ∇ũ
n+1/2 dx

−
δt

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|σ| (pn
K un

σ + pn+1
K un+1

σ ) · nK,σ + D = 0, (27)

with:

D =
δt2

8

N−1∑

n=0

(
|pn+1|21,M,ρn − |pn|21,M,ρn

)
−

1

8

N−1∑

n=0

∑

σ∈E

|Dσ| (ρ
n
σ − ρn−1

σ ) |ũn+1
σ − un

σ|
2.

Relation (27) does not provide a stability estimate, for three reasons:

1 - The third term at the left-hand side is the discrete counterpart of the continuous term∫ T

0

∫

Ω

p divudx dt, the control of which is not possible in the low Mach number model;

for an incompressible flow, this term would simply vanish.

2 - The first term in the remainder D is not non-negative, because of the presence of
different density weights in pressure semi-norms; this problem would be cured if the
quantity |pn|1,M,ρn were replaced by |pn|1,M,ρn−1 , and this can be done by adding to
the algorithm a pressure renormalization step, following the study presented in [13]. This
step is not implemented here, because it does not seem to be crucial for the robustness
of our scheme.

3 - The last term in D can take any sign.

Note that none of these issues occurs when the density is constant (divu = 0 and D = 0), so
that the scheme is unconditionally stable in this case.
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The quantity D is a numerical remainder term, which is referred to in the sequel as the
dissipation defect of the scheme. We now show that D is formally second order in time. Indeed,
we have, using Equation (23) and reordering the sum in time:

δt2

8

N−1∑

n=0

(
|pn+1|21,M,ρn − |pn|21,M,ρn

)
=

δt2

8

(
|pN |21,M,ρN−1 − |p0|21,M,ρ0

)

+
δt2

8

N−1∑

n=1

∑

σ∈Eint

|Dσ| |(∇pn)σ|
2

(
1

ρn−1
σ

−
1

ρn
σ

)
.

So each sum in D is a product of δt2 multiplied by a sum that behaves like O(1) in time.

Remark 7 (First order backward Euler time discretization) When approximating the
velocity time derivative with first order backward Euler scheme [1], a similar analysis yields,
for 0 ≤ n ≤ N − 1:

1

2

∑

σ∈E

|Dσ| (ρ
n
σ |un+1

σ |2 − ρn−1
σ |un

σ|
2) + δt

∑

K∈M

∫

K

τ(ũn+1) : ∇ũ
n+1 dx

− δt
∑

K∈M

pn+1
K

∑

σ∈E(K)

|σ|un+1
σ · nK,σ + Dn+1

Euler = 0, (28)

where the numerical remainder term Dn+1
Euler now reads:

Dn+1
Euler =

δt2

2
( |pn+1|21,M,ρn − |pn|21,M,ρn) +

1

2

∑

σ∈E

|Dσ| ρn
σ |ũn+1

σ − un
σ|

2. (29)

Summing up Equalities (28) for n ranging from 0 to N − 1, we get the following expression for
the dissipation defect of the scheme:

DEuler =
δt2

2

N−1∑

n=0

(
|pn+1|21,M,ρn − |pn|21,M,ρn

)
+

1

2

N−1∑

n=0

∑

σ∈E

|Dσ| ρn
σ |ũn+1

σ − un
σ|

2,

and, if, as in the Crank-Nicolson-like pressure correction scheme, the first sum behaves like
O(δt2), the second one behaves as O(δt) and the defect dissipation is thus first order in time.

5. Numerical experiments

In this section, we describe some numerical experiments performed to assess the behaviour of
the Crank-Nicolson-like pressure correction scheme proposed in Section 4. To this purpose, we
compare it to a classical pressure correction scheme [1], based on the same space discretization
and on the first order backward Euler in time. The simulations are performed with the ISIS
software [17] based on the development platform and software component library PELICANS
[27], both developed at IRSN (Institut de Radioprotection et de Sûreté Nucléaire).
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periodic conditions

x

y

2H

4H

u · n = 0

u · n = 0

Figure 3. Vorticity decrease test case – Configuration of the test case.

5.1. Vorticity decrease in a 2D laminar channel flow

For this test case, we propose to study the decreasing rate of vortices in a 2D channel. The
computational domain Ω is (−2H, 2H) × (−H, H), with H = 1. The flow is supposed to be
periodic in the x-direction and perfect slip boundary conditions are prescribed at the lower
and upper sides of the domain, as shown on Figure 3. It is initialized by two contrarotative
vortices. The expression of the velocity for one vortex centered at (0, 0) is:

u = y sin(πr)/r

v = −x sin(πr)/r

with r =
√

x2 + y2 and the velocity is zero outside the vortex (for r > 1). By translation of
this last formula, we get the expression of two vortices centered respectively at (−1, 0) and
(1, 0) with an opposite sign. The initial velocity is defined as the sum of both vortices.

Both cases are studied here with constant and with variable densities.
The mesh is a regular grid composed of 500 × 250 cells. Even if there is no pressure initial

condition in the Navier-Stokes system, an initial value for the pressure needs to be given to
the algorithm (even if its value is not crucial for the computation, since the seminal non-
incremental projection scheme [4, 33] is known to converge with a first order rate with time).
We choose here to set p0 = 0.

5.1.1. Constant density test case We begin the study with a simulation for a constant density
(i.e. incompressible) flow, with ρ = 1kg.m−3. The viscosity is set to µ = 10−4Pa.s, so, taking
umax = 1m/s for reference value for the velocity, we get for the Reynolds number:

Re =
ρubH

µ
= 104.

Kinetic energy – The vortices slowly damp in time. Consequently, the kinetic energy
decreases too (see Figure 4). Graphs showing the kinetic energy evolution for the various
considered time discretizations are gathered below for time steps δt = 0.1 and δt = 0.005
(Figure 4); in addition, the results of the simulation carried out with a small time step δt = 10−3

are given as a reference computation.
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(b) δt = 0.005

Figure 4. Vorticity decrease test case, with a constant density – Kinetic energy for Crank-Nicolson
and Euler time discretizations.

For large time steps, Euler scheme dissipates more than Crank-Nicolson scheme as the kinetic
energy decreases faster. For δt = 0.005 both schemes give similar results and are converged in
time.

Dissipation defect – The goal of this paragraph is to illustrate the fact that the proposed
time marching algorithm provides a lower dissipation defect than Euler scheme. In the
definition of dissipation defect given by (24) for Crank-Nicolson and (29) for Euler, we
distinguish the pressure gradient part, noted Dn

P , from the kinetic energy part, noted Dn
E .

We draw on Figure 5 the maximum values in time DP and DE of each part as functions of
the time step for both algorithms, where DP and DE are defined by (N0 = 0 for the constant
density case):

DP = max
N0≤n≤N−1

∣∣
n∑

k=N0

Dk+1
P

∣∣,

DE = max
N0≤n≤N−1

∣∣
n∑

k=N0

Dk+1
E

∣∣.
(30)

Since the density is constant, the kinetic energy part for Crank-Nicolson scheme is zero. As
expected by analysis given in Section 4.4, the pressure gradient part of the dissipation defect
is of order two for both schemes and the kinetic energy part for Euler scheme is of order one.

5.1.2. Variable density test case We now turn to a variable density case. For this case, we
consider θ as a mass fraction and use, for the equation of state, a mixture law standard in
diphasic flows modelling:

ρ =
1

θ

ρ1
+

1 − θ

ρ2

,
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Figure 5. Vorticity decrease test case, with a constant density – Size of the dissipation defect parts as
functions of time step for Crank-Nicolson and Euler time discretizations.
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(b) δt = 0.005

Figure 6. Vorticity decrease test case, with a variable density – Kinetic energy for Crank-Nicolson and
Euler time discretizations.

where ρ1 = 1 and ρ2 = 5 stand for the phase densities. The initial value for θ in each vortex
is:

θ =
1 + cos(πr)

2
.

Kinetic energy – The time evolution of the kinetic energy on the time interval (0, 2) is
represented on Figure 6, for two time steps and a reference solution obtained with δt = 10−3.
For large time step, it seems that the Crank-Nicolson-like scheme is still less dissipative than
the Euler one. For the smallest time step δt = 0.005, the kinetic energy evolution is very similar
for both schemes.
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Figure 7. Vorticity decrease test case, with a variable density – Size of the dissipation defect parts for
different N0 (Equation (30)) as functions of time step for Crank-Nicolson time discretizations.

1e-03 1e-02
Time step

1e-06

1e-05

1e-04

1e-03

D
P

slope 2

Crank-Nicolson
Euler

(a) Pressure gradient part.

1e-03 1e-02
Time step

1e-07

1e-06

1e-05

1e-04

1e-03

D
E

slope 2

slope 1

Crank-Nicolson (x 10
4
)

Euler

(b) Kinetic energy part.

Figure 8. Vorticity decrease test case, with a variable density – Size of the dissipation defect parts as
functions of time step for Crank-Nicolson and Euler time discretizations.

Dissipation defect – Here, in the definition (30), N0 is taken large enough (N0 = 0.5/δt)
to have no impact of the initial condition. Indeed, if N0 is chosen equal to zero, the time order
of the dissipation defect parts for the Crank-Nicolson-like scheme is only one, whereas the two
order is obtained for N0 = 0.5/δt.

We plot the dissipation defect as a function of the time step on Figure 8. As in the constant
density case, we observe a second-order behaviour for both schemes for the pressure gradient
part of the dissipation defect. The kinetic energy part is of order one for Euler scheme and of
order two for Crank-Nicolson one. It is very small using the Crank-Nicolson scheme (observe
that the dissipation defect is multiplied by 104 in Figure 8).
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5.2. 2D laminar flow around cylinder

We address in this section some test cases which are derived from a benchmark proposed in
[31]. The considered case is two-dimensional, and we decompose the study in two parts: first,
the flow is supposed to be homogeneous and isotherm (ρ is constant), and second the cylinder
is heated. We give here a brief description of the data and refer to [31] (2D-2 case) for a
complete presentation.

The geometry for both tests is sketched on Figure 9. A circle of diameter D = 0.1m is
included in a channel. The fluid enters the domain on the left boundary, with an imposed
velocity profile:

ux(0, y) = 4um y
H − y

H2
, uy(0, y) = 0,

where H = 0.41m is the height of the channel and um = 1.5m/s; a zero velocity is prescribed
at the other boundaries except for the right side, where we use an outlet boundary condition.

0.15m

0.15m

0.16m

0.1m

2.2m

ux = uy = 0

ux = uy = 0

ux = uy = 0

Figure 9. Geometry for the flow around a cylinder test case.

The coarse mesh (mesh#1) used for the presented computation is given on Figure 10; other
meshes are refined with respect to this one, by diminishing the discretization step along some
characteristic lines (the boundaries and the concentric circles around the cylinder), as reported
on Table II.

Table II. Laminar flow around a cylinder – Description of the meshes used.

Computation mesh#1 mesh#2 mesh#3 mesh#4 mesh#5
Number of cells 4033 12913 43009 76091 106101

Space unk. 12256 39014 129527 228937 409099

The flow is unsteady (see Figure 11 for a visualization at a given time), and the main
characteristic flow quantities quoted in [31] are the maximum drag coefficient cDmax, the
maximum lift coefficient cLmax, the Strouhal number St and an instantaneous pressure
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Figure 10. The coarse mesh (mesh#1).
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Figure 11. Laminar flow around a cylinder – First component (x-component) of the velocity.

difference ∆P between the front and end points of the cylinder, i.e. the points (0.15m, 0.20m)
and (0.25mm, 0.20m) (see [31, section 2.2]). Drag and lift coefficients are defined as follows:
denoting by S the circle and by ut the tangential component of the velocity (namely ut = u · t
if t designates the tangential vector to S), we first consider the corresponding forces

FD =

∫

S

(ρν
∂ut

∂n
ny − pnx) dS, FL = −

∫

S

(ρν
∂ut

∂n
nx + pny) dS.

Then, cD and cL are obtained by scaling FD and FL by 2/(ρ ū2 D). Moreover, the Strouhal
number is St = Df/ū, f being the frequency of separation. This frequency is assessed from
temporal evolution of the lift coefficient.

Isothermal case The density is ρ = 1kg.m−3 and the viscosity is µ = 0.001 Pa.s, so the
Reynolds number, defined as Re = ρūD/µ, where ū = 2 ux(0, H/2)/3 = 1, is equal to 100.

The time step varies between 10−3 for the coarse mesh and 2 10−4 for the thinnest mesh to
keep a constant CFL number.

The computed values (cDmax, cLmax, St and ∆P ) are gathered in Table III, as well as a
plausible range for the results derived from the set of the contributions to the benchmark.
Values entering this reference interval are typeset in bold.

According to Tables III and IV, both schemes give results included in the benchmark
reference range, except for the Strouhal number which is underestimated by Euler scheme.
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Table III. Laminar flow around a cylinder, isothermal case – Crank-Nicolson time discretization.

Computation cDmax cLmax St ∆P

mesh#1 3.66 0.79 0.270 2.30
mesh#2 3.41 0.95 0.294 2.45
mesh#3 3.25 0.98 0.303 2.50
mesh#4 3.23 1.00 0.303 2.49
mesh#5 3.22 1.01 0.303 2.48

Reference range [31] 3.22 – 3.24 0.99 – 1.01 0.295 – 0.305 2.46 – 2.50

Table IV. Laminar flow around a cylinder, isothermal case – Euler time discretization.

Computation cDmax cLmax St ∆P

mesh#1 3.62 0.75 0.269 2.36
mesh#2 3.40 0.92 0.288 2.45
mesh#3 3.25 0.97 0.294 2.49
mesh#4 3.23 0.98 0.294 2.484
mesh#5 3.22 1.00 0.294 2.478

Reference range [31] 3.22 – 3.24 0.99 – 1.01 0.295 – 0.305 2.46 – 2.50
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Anisothermal case In this part, with the same configuration as in the previous part, the
cylinder is heated at a temperature Th. The fluid enters in the domain with a cold temperature
Tc and the wall temperature is also fixed at Tc.

We propose to study the influence of the parameter ǫ defined by:

ǫ =
Th − Tc

Th + Tc
.

The parameter varies between 0 (isothermal case) to 0.8. For this study, the Prandtl number
is equal to 0.7, the viscosity is fixed to 0.001 Pa.s and the specific heat to 1000 J.kg−1.K−1.

Here, the scalar θ is the temperature T and the density verifies the dilatable gas law:

ρ = ρ0
T0

T
,

where T0 = Tc and ρ0 = 1 kg.m−3. As the mesh is unstructured, the SUSHI scheme is used
for the approximation of the Laplace operator (see Remark 5) and the MUSCL scheme for the
convective term [28] in the balance equation for θ. The time step satisfies a CFL condition
required by MUSCL scheme and varies between 2 10−5 and 10−4 during the computations.
The computations are performed with the thinnest mesh of the isothermal case (mesh#5).

On Figure 12, the density field is represented for ǫ = 0.4, 0.6, 0.8. For small values of ǫ, as
for the isothermal case, the flow is unsteady and oscillations appear in the wake of the cylinder.
For ǫ = 0.4, the amplitudes seem to be greater than for ǫ = 0.6. This behavior is coherent with
an increase of Strouhal number when ǫ increases (see Table V). For ǫ = 0.8, contrary to the
other computations, the flow is steady and no oscillation appears.

Heating the cylinder leads to a depressurization behind the cylinder greater than for
isothermal case. The pressure difference between two points of the cylinder increases with
ǫ (see Table V).

The drag coefficient increases with ǫ whereas the lift coefficient decreases. For the steady
case (ǫ = 0.8), the lift coefficient is very small and its value is similar to the reference value
given in the benchmark [31] for 2D steady case.

Table V. Laminar flow around a heated cylinder – Drag and lift coefficients, Strouhal number and ∆P

for several ǫ.

Computation cDmax cLmax St ∆P

isotherm 3.22 1 0.303 2.48
ǫ = 0.4 3.54 0.56 0.316 2.59
ǫ = 0.6 3.84 0.236 0.342 2.71
ǫ = 0.8 4.62 0.0055 steady 3.04
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(a) ǫ = 0.4

(b) ǫ = 0.6

(c) ǫ = 0.8

Figure 12. Laminar flow around a heated cylinder – Density field isolines for several ǫ at time t = 10s.
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5.3. 3D turbulent mixing layer

We consider here a three dimensional vertical turbulent channel of water Ω = [−0.2; 0.2] ×
[−0.01; 1.20]× [−0.2; 0.2] (in meters), with inlet boundary conditions imposed on the bottom
plane y = −0.01 and outlet boundary conditions on the upper plane y = 1.20. Slip boundary
conditions are prescribed on the lateral planes of Ω. Besides, the channel is divided at the
bottom in two equal parts of different mass flows by a vertical plate spreading out from
y = −0.01 to y = 0. The injection velocity u1 = 0.54m.s−1 of the right side of the separation is
greater than the left one u2 = 0.22m.s−1, generating a turbulent mixing layer (see Figure 13).
The flow is incompressible and the density and the viscosity are respectively fixed at 1000
kg.m−3 and 0.001 Pa.s. Experimental tests provide cutlines of the mean velocities and the
root mean square (rms) velocity profiles measured at several heights (see [30]) defined as
follows: let us consider a time-interval [t; t′] (when the fully turbulent state is reached, i.e.

t = 6s and t′ = 20s for this simulation) discretized by t ≤ δt0 ≤ · · · ≤ δtL = t′, then for a cell
K, we set

< Uy >|K =
1

t′ − t

L∑

j=0

δtj
|K|

∫

K

Uy(x, tinit + δtj) dx,

(Uy)rms =< U2
y >|K − < Uy >2

|K .

The mesh is constituted of 90 × 90 × 270 cells to have an uniform grid and simulations are

x

y

Mixing zone

Separation plate

u1u2

Figure 13. Turbulent mixing layer – Numerical set-up (front view).

carried out for the time steps δt = 10−2 and δt = 10−3 s, for time ranging from 0 to 20 s.
The entering velocity field is built from experimental data with the vortex method [18] to
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generate turbulence. The subgrid scale model is the Smagorinsky model (Cs = 0.12, [22]) and
we compare the Crank-Nicolson-like pressure correction scheme introduced here to the first
order backward Euler scheme.

Representations of the vorticity norm isosurfaces for the isovalue 6 are gathered on Figure 14
for several time steps.

For the time step 10−2 s, Figure 14 shows that vortices present more complex structures
with the Crank-Nicolson-like scheme than with first backward Euler one. For δt = 10−3 s,
both schemes give similar results.

Comparing the cutline of the time mean value of the axial velocity (denoted by < Uy >)
between 8 s and 20 s (see Figure 15) at y = 0.5, we observe that the time convergence is
achieved from δt = 10−2 for both schemes and a good agreement is obtained with experimental
results.

Figure 16 shows the time rms axial velocity (denoted by (Uy)rms) for time ranging from
8 s to 20 s. Contrary to the mean velocity, a difference is observed between both schemes at
δt = 10−2. The Crank-Nicolson-like scheme enables to compute correctly the peak which is not
the case for the Euler scheme. For δt = 10−3, both schemes seem to have achieved convergence
in time.
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(a) Euler, δt = 10−2. (b) Crank-Nicolson, δt = 10−2.

(c) Euler , δt = 10−3. (d) Crank-Nicolson, δt = 10−3.

Figure 14. Turbulent mixing layer – Vorticity norm isosurface for the isovalue 6 at time 20 s.
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Figure 15. Turbulent mixing layer – Time averaged axial velocity at y = 0.5 and z = 0.
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Figure 16. Turbulent mixing layer – Time rms axial velocity at y = 0.5 and z = 0.
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6. Conclusion

This paper is devoted to the construction of a stable finite volume convection operator defined
on a dual mesh and based on the Crank-Nicolson-like scheme in time, for a Rannacher-Turek
finite element discretization on the primal mesh of the momentum equation. We prove the
stability of this discretization and then use it to build a pressure correction scheme which
is proved to be less dissipative than the one obtained with the usual Euler discretization
in time. This work can be adapted in a straightforward way to the case of the Crouzeix-
Raviart finite element discretization on triangle meshes. Furthermore, we derive a discrete
kinetic energy identity and estimate the size of the dissipation defect. The scheme proposed
is adapted to the Large Eddy Simulation approach because it provides a kinetic energy
control and has a low dissipation defect. Therefore, we illustrate the possibilities of the scheme
with various tests, incompressible or compressible, in both two and three-dimensional cases.
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