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Most of scheduling methods consider a deterministic environment for which the data of the problem are known.
Nevertheless, in reality, several kinds of uncertainties should be considered, and robust scheduling allows
uncertainty to be taken into account. In this article, we consider a scheduling problem under uncertainty. Our case
study is a hybrid flow shop scheduling problem, and the processing time of each job for each machine at each stage is
the source of uncertainty. To solve this problem, we developed a genetic algorithm. A robust bi-objective evaluation
function was defined to obtain a robust, effective solution that is only slightly sensitive to data uncertainty. This bi-
objective function minimises simultaneously the makespan of the initial scenario, and the deviation between the
makespan of all the disrupted scenarios and the makespan of the initial scenario. We validated our approach with a
simulation in order to evaluate the quality of the robustness faced with uncertainty. The computational results show
that our algorithm can generate a trade off for effectiveness and robustness for various degrees of uncertainty.

Keywords: uncertainty; robustness; effectiveness; genetic algorithm; hybrid flow shop scheduling; simulation

1. Introduction

Scheduling consists of organising, over time, the
execution of tasks subjected to time and resource
constraints, while satisfying one or more objectives as
well as possible. Scheduling methods are abundant in
the literature. The majority of these methods operate
under the traditional assumption that the data in
scheduling cases are perfectly known. This assumption
allows problem to be treated deterministically, which
considerably simplifies the solution process. However,
in reality, several sources of uncertainty can have an
effect on a production plan, and manufacturers are
unable to provide reliable or satisfactory data for the
problems that arise. The presence of uncertainty makes
the question of modelling it inevitable.

This observation justified the emergence of a new
theme of research, called scheduling under uncertainty.
Several approaches to scheduling in uncertain environ-
ments have been proposed. These approaches include
proactive approaches (also called robust approaches)
(Marmier et al. 2009), reactive approaches (Sabuncuo-
glu and Kizilisik 2003) and hybrid approaches. The
latter category includes two types of hybrid ap-
proaches: predictive–reactive (Yang and Geunes
2008) and proactive–reactive (Wu et al. 2009b).

We focus on the robust approach to scheduling
defined as a proactive approach taking the uncertainty

into account when designing the off-line schedule.
Robust scheduling plays an essential role in various
contexts, for example, in computer science, in admin-
istration, in production and also in services. Applying
a meta-heuristic approach (e.g. taboo search, genetic
algorithm (GA), simulated annealing) allows a good
quality robust solution to be found within a reasonable
time. Given the good performance of GAs in the
literature for solving scheduling problems, we chose
this kind of algorithm to solve a robust scheduling
problem under uncertainty.

In this article, we propose a GA that is part of a
robust scheduling method that takes uncertainty into
account. The scenario modelling is chosen to represent
the uncertainty of the problem characteristics (e.g.
uncertain processing times).

Our case study is about the organisation of a
hybrid flow shop. A hybrid flow shop scheduling
problem (HFSSP) consists of series of production
stages, each of which has several machines operating in
parallel. Some stages may have multiple identical
machines. All the jobs visit each stage and the order
of passage through the stages is the same for all the
jobs (Desprez et al. 2009). Each job is processed by
exactly one machine at each stage, and pre-emption is
not allowed. State-of-the-art survey is been proposed
by Ruiz and Vázquez-Rodrı́guez (2010). We chose this
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case study because we are working on different
applications, such as production systems and services,
that could usually be considered as HFSSP (Engin
et al. 2011). For example, we are currently working on
the problem of scheduling the interventions in an
operating theatre. The operating theatre scheduling
problem can be modelled as an HFSSP with several
stages, where the stages represent operating rooms
and/or recovery rooms that are parallel and identical
(Guinet and Chaabane 2003).

The rest of this article is structured as follows. In
Section 2, we present a brief overview of the robust
scheduling literature. In Section 3, we describe our GA
for robust scheduling. In Section 4, we validate our
GA for robust scheduling through simulation. Finally,
in Section 5, we offer our conclusions and perspectives
for future research.

2. State of the art: robust scheduling

In production scheduling, the term robust is often used
(Shafaei and Brunn 2000, Kuroda et al. 2002). Jensen
(2000) defines it as a term describing a solution that does
not change its performance much if an uncertain param-
eters or unexpected events occur. Leon et al. (1994)
define a robust schedule as one that is likely to remain
valid under a wide variety of disruptions. In this article,
we use the consensual definition proposed by Billaut
et al. (2008): ‘a schedule is robust if its performance is
relatively insensitive to the data uncertainty’.

Various robust scheduling methods have been
presented in the literature. The following are discussed
below: fault-tolerance and redundancy, slack-based
protection and probabilistic methods.

Fault-tolerance methods use a technique based on
temporal and/or resource redundancy. With temporal
redundancy, reserves of time (i.e. idle periods between
tasks or artificially increased task durations) or
protection tasks are inserted to mask machine break-
downs (Mehta and Uzsoy 1999, O’Donovan et al.
1999, Dolgui et al. 2005, Aissani et al. 2009).

Slack-based protection methods can be divided into
two groups according to the techniques they employ:
Time Window Slack (TWS) and Focused Time
Window Slack (FTWS).

Instead of extending the task processing times, the
TWS technique modifies the definition of the problem
to insure that each task will be protected by at least a
specific amount of slack time, with this slack time
being included in the general time margin shared by all
the tasks in the problem (Davenport et al. 2001).

The FTWS aims to better distribute the quantity of
reserved slack time by taking the probability of
breakdowns into account. If a task is sequenced late,
then there is a greater probability that a disruption will

occur before its execution. Therefore, this task requires
more slack (Davenport et al. 2001).

The probabilistic methods allow the construction of
a schedule that has the greatest probability of attaining
a certain performance. Daniels and Carrillo (1997)
introduced the concept of b – robustness into a single
machine scheduling problem with uncertainty. The
criterion they considered was the total task residence
time. These authors proposed a branch-and-bound
technique and heuristics that allow the construction of
a schedule that maximises the probability of attaining a
certain level of performance. Wu et al. (2009a) studied
the same problem, in which the processing time of each
activity was characterised by a normally distributed
random variable, with the flow time as the main
solution criterion. The objective is to find the b –
robustness, the schedule that minimises the risk of the
flow time exceeding a certain threshold. They modelled
the problem as a constraint satisfaction problem.

In the area of robust scheduling, most published
methods use measures to quantify schedule robustness
(Sabuncuoglu and Goren 2009). Kouvelis and Yu
(1997), define three robustness criteria: absolute robust-
ness, robust deviation and relative robustness that
require advance knowledge of all possible scenarios
to be evaluated. Chen and Frank Chen (2008) test the
robustness of the proposed flexible job shop scheduling
approach under demand changes using the maximum
utilisation of all machine types.

Leon et al. (1994) developed a robustness measure
for a makespan job shop that experienced frequent
disruptions in the form of breakdowns. The authors
use the GA to characterise the robust solutions. The
fitness function is depending on the actual makespan
of the schedule during the execution and the schedule
delay.

Further GA-based techniques have been described
by Jensen (2001) and Sevaux and Sörensen (2004).
Jensen (2001) examines the quality of schedules using a
neighbourhood-based robustness measure. The initial
schedule’s neighbours are considered as alternative
solutions if a disruption occurs.

Sevaux and Sörensen (2004) modified a GA for a
single machine scheduling problem in order to find
robust solutions able to deal with stochastic release
dates. The authors show that the GA is able to find
solutions that are both quality robust and solution
robust. To allow the GA to identify robust solutions,
the following robust evaluation function is used:

f� sð Þ ¼ 1

m

Xm
i¼1

cif s;Si Pð Þ
� �

where f is an evaluation function for the scheduling
problem, Si(P) specifies a given solution derived from
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the initial one, ci is a weight, and m is the number of
possible derived solutions to evaluate.

In order to allow the simultaneous optimisation of
performance and robustness, a solution robustness
measure has been introduced in multi-objective evolu-
tionary algorithms. For example, Zuo et al. (2009) has
proposed a robust scheduling method based on a
multi-objective variable neighbourhood immune algo-
rithm in which a scheduling scheme was evaluated by
the weighted sum of the average values and standard
deviation of the performance criterion (makespan).
Their methods focus on finding a set of Pareto robust
solutions.

More recently, Goren and Sabuncuoglu (2010)
proposed a proactive scheduling approach under
uncertainty. They considered the single-machine sche-
duling problem with two sources of uncertainty:
processing time variability and machine breakdowns.
Two robustness measures were identified: ‘expected
total flow time’ and ‘expected total tardiness’. Three
stability measures were considered: ‘the sum of the
squared’ and ‘absolute difference’ of the job comple-
tion times and ‘the sum of the variances’ of the
executed completion times. The authors proposed a
beam search (BS) heuristic to generate a robust
schedule. The resulting schedule was simulated 10
times, and the global evaluation function was calcu-
lated as the average of the objective values obtained.
The computational results showed that the proposed
BS heuristic was capable of generating stable robust
schedules. Compared to a number of heuristics
available in literature, their BS heuristic gave better
results for all five measures of robustness and stability.

The major disadvantage of all the robustness-based
techniques mentioned above is that the solution
obtained is evaluated based on a set of predefined
scenarios and thus does not give enough flexibility to
decision makers to choose the best robust solution for
their various objectives. To overcome this disadvan-
tage, we propose a new GA for robust scheduling with
a robust bi-objective evaluation function that allows
an effective solution (i.e. with a minimum makespan)
to be obtained that is not very sensitive to data
uncertainty.

For flow shop scheduling problems, GA is one of
the most frequently used techniques (Jensen 2001,
Sevaux and Sörensen 2004, Desprez et al. 2009, Engin
et al. 2011). The solution representation (or solution
encoding), the optimisation mechanism and the
evaluation function are all appropriate to solve our
scheduling problem under uncertainty. Using GA to
solve HFSSP allows us to maintain a set of potential
solutions (i.e. populations) in each generation, which
would come closer to the optimal solution generation
by generation (Engin et al. 2011). This last property is

very useful for the features of considered problems and
applications of our algorithm (see Section 4.2).

3. Proposed approach

3.1. Method/specification

GAs are adaptive methods that can be used to solve
optimisation problems (Desprez et al. 2009). The
interested reader can consult Goldberg (1989) and
Reeves (1997) for more details about the GA approach
and its applications.

An appropriate representation (or encoding) is used
in order to apply GA to resolve a specific problem. The
solution is represented by a set of parameters known as
genes joined together and referred to as chromosomes
or individuals. The chromosomes define the current
population. The quality of each chromosome is defined
by a fitness function. At each iteration, new population
is obtained from the current one using selection,
crossover and mutation mechanisms. Only fittest
chromosomes are selected from new and current
population and used in next iteration (Honghong and
Zhiming 2003, Lam et al. 1999).

A robust bi-objective evaluation function is pre-
sented. It allows minimising simultaneously the value
of the criterion of the initial scenario and the deviation
between the value of the criterion of all disrupted
scenarios and the one of the initial scenario. The target
of this evaluation function is to obtain an effective
solution (i.e. with a minimum value of the criterion)
that is not very sensitive to data uncertainty.

3.2. GA for robust scheduling

In this section, we present a GA for robust scheduling
denoted Genetic Algorithm for Robust Scheduling
(GARS). This algorithm aims to generate a robust,
good-quality solution in terms of the defined criterion.
To obtain a robust solution, the fitness evaluation
function is replaced by a robust evaluation function. In
each iteration of the GA, a set of scenarios is evaluated
on all chromosomes; this set of scenarios changes from
one iteration to another. In fact, this function makes it
possible to increase the probability of obtaining a
robust solution for a very significant number of
scenarios. For example, let Iter_Max ¼ 1000 the num-
ber of total iterations of the algorithm and N ¼ 10 the
number of disrupted scenarios, then the robust solution
is evaluated for 1000 6 10 ¼ 10,000 cases.

3.2.1. Robustness criterion

The evaluation of the robust solution is based on a bi-
objective robustness criterion. Let x be a solution to
the problem (i.e. a permutation of the jobs). The
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quality of x is computed by a robust evaluation
function fr(x) (or robustness criterion). To represent
the uncertainty about the characteristics of the
problem, we chose a scenario modelling approach
that requires constructing a set of scenarios (also called
instances or data files) containing the numerical values
that reflect the hypotheses about uncertainty. The
uncertainty can then be modelled using discrete or
continuous scenario sets, using intervals with known
and certain terminals (Leung and Yue 2004).

In this article, the processing time of the jobs on
each machine at each stage is considered to be
uncertain. I is an initial scenario, which represents
the characteristics (i.e. inputs) of the problem. The set
of the scenarios, denoted by a function x, is repre-
sented with a sampling function that starts with the
initial scenario I. Let xi (I) is the ith set of the sam-
pled parameters from the initial scenario I (where
i ¼ 1, . . . ,N and N represents the number of disrupted
scenarios), and note that xi (I) are uniformly dis-
tributed between [PI 7 aPI, PI þ aPI], where PI is the
processing time of the initial scenario and a 2 [0,1] is
used to express the degree of uncertainty of the
processing times. The uniform is a common distribu-
tion (Janak et al. 2007) and used to experiment our
approach.

The robust evaluation function is written as
follows:

fr xð Þ ¼ lfI xð Þ þ 1� lð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

fxiðIÞ xð Þ � fI xð Þ
� �2

vuut
where fI is the value of performance criterion of initial
scenario I, fxi is the one of disrupted scenario xi(I)
and l 2 [0,1] is a parameter expressing the degree
of risk.

The different performance criterions (f) can be used
in this function like tardiness, makespan, total flow
time, etc.

In this article the criterion is the makespan. The
robust evaluation function is rewritten as follows:

fr xð Þ ¼ lCmaxI xð Þ þ 1� lð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

CmaxxiðIÞ
xð Þ � CmaxI xð Þ

� �2vuut

This bi-objective function minimises simultaneously
the makespan of the initial scenario, and the deviation
between the makespan of all disrupted scenarios and
the makespan of the initial scenario. The robust
evaluation function is an aggregation of these two
objectives. Since the two objectives do not have the
same measurement scale, we must normalise them. The
robust evaluation function is expressed as follows:

fr xð Þ ¼ l
CmaxI xð Þ � LB

LB
þ 1� lð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Cmaxxi Ið Þ
xð Þ � CmaxI xð Þ

� �2vuut
DEV MAX x�

� �
where LB is the lower bound of initial scenario,
DEV MAXðx�Þ ¼ MaxfðCmaxIðx�Þ � CmaxIMin

ðx�ÞÞ;
ðCmaxIMaxðx�Þ�CmaxI

ðx�ÞÞg; (x*) is the best solution;
CmaxI

Min
x�
� �

is the makespan of the minimal processing
time of job calculated from the initial scenario. Thus,
IMin ¼ I 7 aI; and CmaxI

Max
x�
� �

is the makespan of the
maximal processing time of job calculated from the
initial scenario (IMax ¼ I þ aI). The two values
CmaxI

Min
x�
� �

and CmaxI
Max

x�
� �

are obtained by integrat-
ing the solution x* obtained for the initial scenario I in
the minimal and maximal scenarios.

In order to find a solution set for this problem, we
varied the value of l between 0 and 1 and applied the
GARS for each value of l.

3.2.2. Description of our GA for robust hybrid flow
shop scheduling

We used a direct coding approach, in which a
chromosome represents a schedule directly (Rajkumar
and Shahabudeen 2009). We chose to maintain a
simple permutation of n jobs indicating the order in
which the jobs are processed in the shop at the first
stage. For other stages (k � 2), the jobs are ordered
according to their minimal completion time of the
preceding stage (i.e. the queue of jobs in various stages
(k � 2) is processed by the First In First Out (FIFO)
rule). Additionally, the jobs are assigned to machines
at every stage by applying the First Available Machine
(FAM) assignment rule. The initial population is
randomly generated. This population Psize is composed
of a given number of chromosomes.

Selection schemes allow the algorithm to make
biased decisions favouring good strings when genera-
tions change. In the literature, various selection
schemes have been used (Desprez et al. 2009). We
chose a random selection scheme in which each
chromosomes has a uniform probability (1/Psize) of
being selected to follow the crossover process.

The crossover operator generates offspring by
combining two sequences, called parents. The objective
is to generate new solutions with better Cmax values after
the crossover operation. Cited by Chen et al. (2008):
‘Murata et al. (1996) showed that the two-point cross-
over is effective for flow-shop problems’. Hence the
Two-Point (TP) crossover method is used in our GA.
This operator is defined as follows: two points are
randomly selected for dividing one parent. The elements
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outside the selected two points are always inherited from
the parent to the child. The elements inside will be
transferred from the second parent as they appear from
left to right. Two children are produced in this way.

In this study, a shift mutation operator is used
(Murata et al. 1996), which randomly selects a gene
from the chromosome and inserts it at another random
position in the chromosome.

The fitness function plays an important role in
determining the string used for the next generation. A
string’s fitness function is replaced by a robust
evaluation function (described in Section 3.2.1).

In scheduling, insertion is employed to minimise the
robust evaluation function. Indeed, the chromosomes
which are randomly generated and the mutated
children (equal to 2 6 Psize) are sorted in an increasing
order according to their fitness function. Only the
higher half of the population, corresponding to the best
chromosomes, is selected for the next iteration. Thus,
the size of the population remains constant (equal to
Psize) from generation to generation. The stopping
criterion is a fixed number of generations (or iterations)
equal to Iter _ Max.

The GARS considers the initial scenario. Using this
initial scenario, for each iteration of the GA, it builds a

set of disrupted scenarios according to the degree of
uncertainty.

This algorithm generates a robust sequence that
minimises the makespan of the initial scenario and
also minimises the deviation between the makespan
of all disrupted scenarios and the makespan of the
initial scenario. The GARS process is illustrated as
follows:

GARS Algorithm: GA for Robust Scheduling

1: Initialise: Psize, Pcross, Pmut, Iter_Max, m ¼ 0, N, e ¼ 0.5, i ¼ 1.
2: Compute DEV_MAX
3: Generate Psize random sequences of jobs.
4: Repeat
5: m ¼ 0
6: Generate N disrupted scenarios from the initial scenario.
7: Perform the convergence test for disrupted scenarios
8: While

9: Randomly select two parents from the population
10: Perform a crossover operation on the two parents to obtain two children based on

the probability Pcross.
11: Mutate the children based on the probability Pmut.
12: m ¼ m þ 1
13: End while

14: Evaluate all the chromosomes with a bi-objective robustness evaluation function (2Psize, parents
and children).

15: Rank all chromosomes of the population 2Psize in increasing order according to the evaluation
function.

16: Remove the weakest chromosomes of the population 2Psize and record the current best sequence
(Best_Pop) and the corresponding objective function value.

17: Replace (Psize, Best_Pop)
18: i ¼ i þ 1
19: Until i ¼ Iter_Max

3.2.3. Convergence test

The convergence test allows the number of disrupted
scenarios to be determined. There are several techni-
ques to test the convergence and thus determine the
number of scenarios (e.g. average, standard deviation).
For this article, the average of all the disrupted
scenarios is used.

In our GARS, the number of disrupted scenarios is
N 2 [10, 20, . . . ,100] and e ¼ 0.5. If the average Cmax

of N disrupted scenarios minus the average Cmax of
N þ 10 disrupted scenarios is lower than e, the
convergence test is satisfied:

1

N

XN
i¼1

Cmaxxi Ið Þ xð Þ �
1

Nþ 10

XNþ10
i¼1

Cmaxxi Ið Þ xð Þ � e ;

in this case the number of disrupted scenarios is fixed
at N.
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If the convergence test is not satisfied then this test
is stopped and the number of disrupted scenarios is set
at N ¼ 100.

4. Validation of GARS using simulation

We validated the GARS using simulation to highlight
and measure its effectiveness at generating robust
solutions.

Our GARS is implemented in Cþþ on a Pentium
IV with 1.7GHz and 512 Mo of RAM. We conducted
several experimental tests to choose the best para-
meters values for our GAs. We retained the following
values:

. Population size Psize ¼ 200;

. Crossover probability Pcross ¼ 0.9;

. Mutation probability Pmut ¼ 0.2;

. Stopping criterion Iter_Max ¼ 1000 gen-
erations.

4.1. Description of the experimental approach

We used the ARENA 12.0 simulation software to
create a simulation model, which allowed us to test and
validate the robustness obtained by GARS. The
(Figure 1) presents our experimental approach.

The simulation model corresponds to a possible
organisation of a hybrid flow shop with five produc-
tion stages and is briefly described in below. The
GARS allows a robust sequence to be calculated, which
minimises the robust evaluation function (fr(x)). As
input, the simulation receives the sequence of the jobs
obtained by GARS. We introduced stochastic data
into every simulated scenario in the model. These data
were randomly generated according to the uniform
distribution between [PI 7 aPI, PI þ aPI], such as
defined in Section 3.2.1. (i.e. PI the processing time of
the initial scenario and a 2 [0,1] is used to express the
degree of uncertainty of the processing times).

NR, (NR ¼ 100) is a number of replications done to
simulate each obtained robust sequence.

The assignment rules for the jobs in the various
stages are the same as the assignment rules used in the
GARS (i.e. the simulator uses the robust scheduling
for the arrival order of jobs only in the first stage, for
the other stages the FIFO rule is applied). The
assignment of jobs to machines at every stage applies
the FAM assignment rule.

4.2. Experimental results and discussions

In this experiment, we used the benchmark problems
of Carlier and Neron (2000) for each configuration
type, and we randomly generated other tests in which
the size varies between 20 jobs and 100 jobs in two
stages. Table 1 presents the configurations of these
benchmark problems. The column ‘Benchmark’ gives
the name of the instance. The stage number and job
number are given respectively in second and third
columns. The column ‘Machine configuration in each
stage’ presents the number of machines in each stage.
For example, ‘2 2 1 2 2’ is two machines in stages 1, 2, 4
and 5 and only one machine in stage 3. The last column
is the processing time intervals [Min, Max].

Several values of a were tested for each problem and
were varied between 10% and 50%. For each degree of
uncertainty a and for each degree of risk l, the GARS
was run to obtain a sequence. Once this sequence was
obtained, the simulator received this sequence of the
jobs as input. We evaluated 100 replications of the
problem instance using this sequence and based on
stochastic data as defined in Section 4.1.

Tables 2, 3, and 4 give the detailed results for the
GARS for the set of instances with a degree of
uncertainty equal 10%, 25% and 50%, respectively. In
these tables, the column ‘Instance’ gives the number of
the problem instance. The column ‘LB’ gives the lower
bound of the initial scenario I (note that we use the
lower bound developed by Santos et al. (1995) for the

Figure 1. Experimental approach.
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test problems randomly generated). The column ‘l’
gives the degree of risk (or relative importance) given
to the two objectives. The column ‘CmaxI ’ gives the
makespan value of the initial scenario obtained by
GARS. The column ‘N ’gives the number of disrupted
scenarios in each iteration of GARS. The column

‘CPU(s)’ gives the CPU time of the GARS in
seconds. The deviation between the makespan of
all disrupted scenarios and the makespan of
the initial scenario is reported in the column

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

R

PN
R

i¼1 Cmaxxi Ið Þ
� CmaxI

� �2r
:’

Table 1. The benchmark problems used in our experiments.

Benchmark Stage number Job number Machine configuration in each stage Processing time between

j10c5a2 5 10 2 2 1 2 2 [3, 20]
j10c5b1 5 10 1 2 2 2 2 [3, 20]
j10c5c1 5 10 3 3 2 3 3 [3, 20]
j10c5d1 5 10 3 3 3 3 3 [3, 20]
j15c5a1 5 15 2 2 1 2 2 [3, 20]
j15c5b1 5 15 1 2 2 2 2 [3, 20]
j15c5c1 5 15 3 3 2 3 3 [3, 20]
j15c5d1 5 15 3 3 2 3 1 [3, 20]
2center20job 2 20 2 2 [5, 25]
2center50job 2 50 3 3 [5, 25]
2center100job 2 100 4 4 [5, 25]

Table 2. Experimental results for the degree of uncertainty a ¼ 10%.

Instance LB l CmaxI N CPU(s)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NR

XNR

i¼1
Cmaxxi Ið Þ

xð Þ � CmaxI xð Þ
� �2vuut

Xsimulation

(Average
Cmax for 100
replications)

% Deviation

of Xsimulation

from CmaxI

in (%)

J10c5a2 88 l ¼ 1 88 – 0.02 8.83 96.04 9.13
l ¼ 0.5 93 10 295.10 4.24 96.29 3.53
l ¼ 0 124 20 22.81 3.73 124.83 0.66

J10c5b1 130 l ¼ 1 130 – 0.01 7.06 136.66 5.12
l ¼ 0.5 134 10 374.45 4.34 137.42 2.55
l ¼ 0 146 20 189.71 4.01 148.1 1.43

J10c5c1 68 l ¼ 1 68 – 0.05 7.80 75.37 10.83
l ¼ 0.5 76 10 210.04 3.60 78.64 3.47
l ¼ 0 89 10 52.78 2.80 89.39 0.43

J10c5d1 66 l ¼ 1 66 – 0.03 7.92 73.53 11.40
l ¼ 0.5 72 10 15.67 2.70 73.01 1.40
l ¼ 0 79 20 148.36 1.91 79.74 0.93

J15c5a1 178 l ¼ 1 178 – 0.02 9.30 186.48 4.76
l ¼ 0.5 185 10 26.93 5.13 188.6 1.94
l ¼ 0 205 20 319.04 5.07 205.2 0.09

J15c5b1 170 l ¼ 1 170 – 0.02 9.86 179.31 5.47
l ¼ 0.5 175 10 580.31 6.82 181.05 3.45
l ¼ 0 188 30 466.17 4.79 190.47 1.31

J15c5c1 85 l ¼ 1 85 – 0.08 10.82 95.47 12.31
l ¼ 0.5 94 10 417 3.85 95.92 2.04
l ¼ 0 114 10 94.15 2.83 113.61 70.34

J15c5d1 167 l ¼ 1 167 – 0.03 8.63 175.08 4.83
l ¼ 0.5 174 10 156.18 6.04 179.1 2.93
l ¼ 0 183 20 493.82 4.71 184.22 0.66

2centre20job 161 l ¼ 1 161 – 0.02 8.97 169.23 5.11
l ¼ 0.5 165 10 313.18 4.04 168.3 2.00
l ¼ 0 177 30 158.54 3.93 175.23 71.00

2centre50job 256 l ¼ 1 256 – 0.2 10.98 266.75 4.19
l ¼ 0.5 269 10 211.53 4.66 272.97 1.47
l ¼ 0 298 10 156.32 4.27 298.29 0.09

2centre100job 402 l ¼ 1 402 – 2.2 15.15 416.92 3.71
l ¼ 0.5 417 10 970.07 5.86 421.82 1.15
l ¼ 0 433 10 1107.31 4.96 435.74 0.63
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The column ‘Xsimulation’ presents the average of
Cmax value for 100 replications. The column ‘%
Deviation’ (where %Deviation ¼

�X
simulation

�CmaxI

CmaxI
) gives

the deviation or the Cmax increase (in %) of the 100
disrupted scenarios compared to the initial scenario’s
makespan. For example, for the instance, j10c5a2, if
only the makespan of the initial scenario is
minimised, modifying the processing time with a
degree of uncertainty equal to 10% could lead to an
average increase of 9.13% in the makespan. But if
only the deviation is minimised, modifying the
processing time with the same degree of uncertainty
could lead to an average increase of 0.66% in the
makespan.

For l ¼ 1, we recommend minimising the make-
span of the initial scenario (note that the disrupted
scenarios do not appear in algorithm).

For l ¼ 0, we recommend minimising the dev-
iation between the makespan of all disrupted
scenarios and the makespan of the initial scenario

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

R

PN
R

i¼1 Cmaxxi Ið Þ
� CmaxI

� �2r �
. According to Tables

2, 3, and 4, the more l decreases, the more the
makespan of the initial scenario increases and the more
the deviation between the makespan of all disrupted
scenarios and the makespan of the initial scenario
decreases.

Let us examine in detail the instance j10c5a2. The
makespan of the initial scenario obtained using l ¼ 1
is 88, which is close (or equal) to the LB. If we
maintain this sequence, knowing that processing time
can be disrupted with degree of uncertainty equal to
10%, we could expect an average makespan of 96.04
after the simulation, which is a cost increase of 9.13%.
Therefore, this solution is sensitive to uncertainty but
gives good results for Cmax.

For the same instance, if l ¼ 0, the GARS
generates a sequence with a solution of 124, which is
far from LB. If this sequence is used in the disrupted
scenarios, the expected makespan value of the initial
scenario will be an average of 124.83, which is an

Table 3. Experimental results for the degree of uncertainty a ¼ 25%.

Instance LB l CmaxI N CPU(s)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NR

XNR

i¼1
Cmaxxi Ið Þ

xð Þ � CmaxI xð ÞÞ2
�vuut

Xsimulation

(Average
Cmax for 100
replications)

% Deviation of

Xsimulation from
CmaxI in (%)

J10c5a2 88 l ¼ 1 88 – 0.02 9.63 96.19 9.30
l ¼ 0.5 93 30 61.81 5.36 96.07 3.30
l ¼ 0 109 20 10.04 4.18 107.85 71.05

J10c5b1 130 l ¼ 1 130 – 0.01 7.10 135.4 4.15
l ¼ 0.5 134 10 211.12 5.51 136.21 1.64
l ¼ 0 139 40 323.18 5.43 140.89 1.35

J10c5c1 68 l ¼ 1 68 – 0.05 9.88 77.14 13.44
l ¼ 0.5 75 60 274.15 4.25 77.56 3.41
l ¼ 0 84 30 229.82 3.87 83.6 70.47

J10c5d1 66 l ¼ 1 66 – 0.03 8.07 73.39 11.19
l ¼ 0.5 72 10 80.57 3.42 72.21 0.29
l ¼ 0 78 30 125.26 2.83 76.81 71.52

J15c5a1 178 l ¼ 1 178 – 0.02 12.78 188.32 5.79
l ¼ 0.5 183 20 241.79 9.28 188.88 3.21
l ¼ 0 208 40 143.71 8.42 209.74 0.8

J15c5b1 170 l ¼ 1 170 – 0.02 9.36 177.41 4.35
l ¼ 0.5 171 50 247.01 7.68 176.05 2.95
l ¼ 0 182 40 7.54 6.96 185.06 1.68

J15c5c1 85 l ¼ 1 85 – 0.08 11.95 96.33 13.32
l ¼ 0.5 93 10 24.10 3.68 95.62 2.81
l ¼ 0 102 40 80.84 3.48 102.26 0.25

J15c5d1 167 l ¼ 1 167 – 0.03 9.31 174.25 4.34
l ¼ 0.5 172 20 681.28 6.57 175.07 1.78
l ¼ 0 180 30 8.79 5.98 180.58 0.32

2centre20job 161 l ¼ 1 161 – 0.02 11.00 170.02 5.60
l ¼ 0.5 164 30 299.96 6.27 167.72 2.26
l ¼ 0 178 40 268.06 6.18 178.76 0.42

2centre50job 256 l ¼ 1 256 – 0.18 13.50 268.6 4.92
l ¼ 0.5 265 40 252.46 6.89 269.14 1.56
l ¼ 0 284 30 964.51 5.90 286.04 0.71

2centre100job 402 l ¼ 1 402 – 2.2 16.50 417.64 3.89
l ¼ 0.5 415 30 887.29 8.64 421.4 1.54
l ¼ 0 441 20 57.06 7.68 442.02 0.23
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increase of only 0.66%. The solution given by the
GARS is then more robust in terms of managing
uncertainty but not effective in terms of makespan.

If we look for a trade off between effectiveness and
scheduling robustness, the value of l will depend on
the viewpoint of the decision maker. In our case of
l ¼ 0.5, the GARS generates a sequence with make-
span of the initial scenario equal to 93. After the
simulation, we expect an average makespan of 96.29,
which is a cost increase of 3.53%. This solution is more
robust than the solution found for l ¼ 1 and more
effective than one for l ¼ 0.

According to the tables for the different degrees of
uncertainty, the ‘% Deviation’ decreases when l
decreases. This decrease means that more confidence
should be granted to the robust solution even if the
makespan of the initial scenario is higher. In other
words, our initial assumption is confirmed: non-robust
schedules will rapidly become ineffective with uncer-
tainty, while robust scheduling will not deteriorate as

fast as non-robust schedules do when uncertainty is
introduced.

When the degree of uncertainty a increases from
10% to 25% then l ¼ 0.5 will provide in most cases
similar solution to l ¼ 1, however, in some cases the
solution is better. This allows us to conclude that our
approach is more advantageous with higher degrees of
uncertainty. Figures 2, 3, and 4 confirm our conclu-
sion. They present the results of 100 simulated
replications for the instance j10c5a2 with degrees of
uncertainty equal to 10%, 25% and 50%.

Table 5 provides the summarised results for the
whole set of instances for the different degrees of
uncertainty. As shown in Table 5, for the % Deviation,
the gap between l ¼ 1 and l ¼ 0.5 is more important
than the gap between l ¼ 0.5 and l ¼ 0.

Nevertheless, the CPU times of GARS (266.18 s in
case l ¼ 0 and 316.2 s in case l ¼ 0.5) are much
higher than the CPU times in case l ¼ 1 because the
calculations of the bi-objective robust evaluation

Table 4. Experimental results for the degree of uncertainty a ¼ 50%.

Instance LB l CmaxI N CPU(s)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

R

PNR

i¼1
ðCmaxxi Ið Þ

xð Þ � CmaxI xð ÞÞ2
s Xsimulation

(Average
Cmax for 100
replications)

%Deviation of

Xsimulation from
CmaxI in (%)

J10c5a2 88 l ¼ 1 88 – 0.02 13.12 98.9 12.38
l ¼ 0.5 93 60 95.95 8.34 97.52 4.86
l ¼ 0 111 40 26 8.15 109.95 70.94

J10c5b1 130 l ¼ 1 130 – 0.01 11.50 136.12 4.70
l ¼ 0.5 130 30 38.64 10.03 135.17 3.97
l ¼ 0 137 40 134.82 9.85 138.81 1.32

J10c5c1 68 l ¼ 1 68 – 0.05 13.12 79.76 17.29
l ¼ 0.5 73 40 405.14 7.28 77.61 6.31
l ¼ 0 79 10 264.32 6.14 80.66 2.10

J10c5d1 66 l ¼ 1 66 – 0.03 10.06 74.37 12.68
l ¼ 0.5 72 30 330.18 5.28 73.84 2.55
l ¼ 0 79 20 137.21 5.02 78.31 70.87

J15c5a1 178 l ¼ 1 178 – 0.02 16.52 186.86 4.97
l ¼ 0.5 178 30 558.06 14.76 184.8 3.82
l ¼ 0 186 20 467.11 13.46 187.97 1.05

J15c5b1 170 l ¼ 1 170 – 0.02 13.18 177.51 4.41
l ¼ 0.5 170 40 195.85 12.24 175.9 3.47
l ¼ 0 182 30 512.17 11.71 183.71 0.93

J15c5c1 85 l ¼ 1 85 – 0.08 13.78 97.68 14.91
l ¼ 0.5 91 40 64.37 7.29 96.35 5.87
l ¼ 0 100 40 52.59 6.76 99.93 70.07

J15c5d1 167 l ¼ 1 167 – 0.03 13.36 172.15 3.08
l ¼ 0.5 167 10 507.43 11.81 169.83 1.69
l ¼ 0 173 20 130.62 11.43 174.12 0.64

2centre20job 161 l ¼ 1 161 – 0.02 12.59 168.98 4.95
l ¼ 0.5 162 20 289.15 10.51 167.61 3.46
l ¼ 0 169 20 322.03 9.37 169.52 0.30

2centre50job 256 l ¼ 1 256 – 0.2 17.44 270.99 5.85
l ¼ 0.5 264 20 250.68 10.47 270.21 2.35
l ¼ 0 273 60 362.54 10.07 277.49 1.64

2centre100job 402 l ¼ 1 402 – 2.14 19.92 418.71 4.15
l ¼ 0.5 405 50 867.64 15.98 414.83 2.42
l ¼ 0 432 30 946.86 11.98 434.99 0.69
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function requires a high number of scenarios in each
iteration.

As mentioned in the introduction of this article,
one of the applications of our GARS concerns the
operating theatre scheduling problem. This problem
can be modelled as a HFSSP with several stages, where
the stages represent operating rooms and/or recovery
rooms that are parallel and identical (Guinet and
Chaabane 2003). The managers must take into account
the variation of the surgery durations to prevent future

disruptions when generating the off-line schedule.
Their goal is thus to produce a robust schedule as
insensitive as possible to the variation of the surgery
duration. This variation can be modelled probabil-
istically using distribution laws. Our GA is used as a
first step towards a decision-support system since it
already helps operating theatre managers by providing
an off-line schedule that respects the overall tradi-
tional operational constraints (e.g. capacity, opening
hours). In a second step, a user-friendly interface is

Figure 2. Example of 100 replications for the instance j10c5a2 with a degree of uncertainty a ¼ 10%.

Figure 3. Example of 100 replications for the instance j10c5a2 with a degree of uncertainty a ¼ 25%.
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being developed to allow the managers to adapt the
schedule obtained by integrating unmodelled con-
straints, such as surgeon preferences and surgical team
affinity.

A second application of our GARS was also used
in a flexible manufacturing system (Sallez et al. 2010).
The problem was identified as a flexible job-shop
scheduling problem with transportation times and a
limited number of conveyor shuttles constraints. This
problem can be considered as an extension of HFSSP
(Guinet 2000). The idea is to embed a real-time version
of our GARS into products to calculate an effective,
robust real-time distributed schedule according to the
real state of the production system. The GA is always
able to propose solutions, whatever time constraints,
and this ability is very interesting in this context
(Honghong and Zhiming 2003). (Of course, the more
time a product has to decide, the better the solution
proposed by the GA should be.)

5. Conclusion

In this article, we proposed a GARS in HFSSP with
uncertain processing times. In this algorithm, we

integrated a new mechanism for finding robust and
effective schedules, which makes it possible to increase
the probability of obtaining a robust solution on a very
significant number of scenarios. We also added a new
robust evaluation function, which is bi-objective. It
minimises simultaneously the makespan of the initial
scenario to obtain an effective solution, and the
deviation between the makespan of all disrupted
scenarios and the makespan of the initial scenario in
order to obtain a robust solution.

Our GARS was validated through simulation. The
simulation results show that the proposed algorithm
can generate a trade off for effectiveness and robust-
ness for a very high degree of uncertainty. Our
algorithm is not really relevant without any degree of
uncertainty, but it becomes increasingly relevant and
reliable with growing degrees of uncertainty. In fact, it
helps to measure quantitatively the impact of uncer-
tainty and thus to manage the risk induced by such
uncertainty.

Several future avenues of research are planned. The
first is to implement a change aggregation function
using a multi-criterion analysis mechanism to consider
the bi-objective or multi-objective problems. The
second is to implement a new mechanism to evaluate
a set of scenarios for each evaluation of a single
chromosome. The third is to incorporate our GARS in
methodological approach based on simulation-optimi-
sation techniques for sizing manufacturing systems.
We are currently working in this direction, trying to
apply this method to the designing and sizing of
operating theatres.

Figure 4. Example of 100 replications for the instance j10c5a2 with a degree of uncertainty a ¼ 50%.

Table 5. The average % deviation for all problems.

a ¼ 10% a ¼ 25% a ¼ 50%

l ¼ 1 7.31 7.64 8.52
l ¼ 0.5 2.47 2.32 3.78
l ¼ 0 0.42 0.24 0.61
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