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Abstract –We study the XY model on diluted networks. Considering the regular one-dimensional
lattice topology, we focus on the influence of the dilution parameter 2 ≥ γ ≥ 1. We find that for γ <

1.5, the system does not exhibit a phase transition, while for γ > 1.5 a second order transition of
the magnetisation arises and displays identical properties as the mean field (HMF) regime. Hence
γc = 1.5 appears to be a critical value, for which, in an identified energy range, the magnetisation
shows important fluctuations. We resort to analytical calculations of the magnetisation in the
low temperatures approximation regime and we show that our analytics breaks down below the
threshold of γc while it gives the correct value above, confirming the critical value γc = 1.5.

In recent years systems with long-range interactions
have attracted increasing attention and have been widely
studied, proving to have a far richer phenomenology than
the models with short-range potentials. For the latters,
the rise of equilibrium, in the microcanonical ensemble, is
only governed by the conserved momenta of the dynam-
ics and this unique stationary state does not depend on
the initial particle distribution [1]. Moreover the essen-
tial property of additivity allows to construct the canoni-
cal ensemble from the microcanonical, the two approaches
resulting equivalent in the thermodynamic limit. This
straightforward picture complexifies when dealing with
systems interacting via a long-range unscreened poten-
tial: in first instance, the additivity property is no longer
present and this loss leads to the necessity of a separate
treatment of the two ensembles [2–4]. Even more inter-
estingly, those systems keep track of the initial config-
uration which actually determines the stationary state:
for a particular set of initial conditions, long-lasting qua-
sistationary states (QSSs) arise whose duration diverges
with the system size, implying ergodicity breaking [5–7].
Furthermore, recently, an oscillating metastable state has
been observed [8], enriching the already various scenario
of long-range systems. In this Letter, we address the issue
of investigating the transition from short-range to long-
range regime from a quite different point of view than
previous works. Instead of focusing on dynamical con-
straints, we chose as control parameter a topological con-

dition, which is imposing the connectivity per interacting
unit. We used the paradigmatic 1D-XY model for rotors
and we will show that we can identify two limit regimes:
a short-ranged one for low connectivity while, in the limit
of high connectivity, the system shows global coherence
via a second order phase transition. The main result of
the paper is, however, the emergence of a peculiar new
state in between in which the order parameter is affected
by important fluctuations. Furthermore, we will show an-
alytically that this state stems from the special topological
condition on the connectivity we imposed.

In general the XY model describes a system of N pair-
wise interacting units. At each unit i is assigned a real
number θi , which we refer to as the spin i. In the follow-
ing, we will consider the XY model from the point of view
of classical Hamiltonian dynamical systems by adding a
kinetic energy term to the XY Hamiltonian. The total
Hamiltonian H takes the form:

H =
N
∑

i=1

p2i
2

+
J

2k

N
∑

i,j=1

ǫi,j(1− cos(θi − θj)). (1)

Because of the periodicity of the cosine function in the
Eq.(1), the phase space for θi is restricted to the interval
[0, 2π[. We associate to each spin i a canonical momentum
pi whose coupled dynamics with the {θi} will be given by
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the set of Hamilton equations:

θ̇i = pi, ṗi = −
J

k

N
∑

i,j=1

ǫi,j(cos θj sin θi − sin θj cos θi).

(2)
The coupling constant J in Eqs.(1) and (2) is chosen pos-
itive in order to obtain a ferromagnetic behaviour and in
the following it will be set at 1 without loss of generality.
We encode the information about the links connecting the
units in the adjacency matrix ǫi,j :

ǫi,j =

{

1 if i, j are connected

0 otherwise
. (3)

By construction, the adjacency matrix is a symmetric ma-
trix with null trace. In Eq. (1) the normalisation constant
k ensures the extensivity of the energy, according to the
Kac prescription, and it corresponds to the number of links
per spin, called the degree:

k ≡
1

N

∑

i>j

ǫi,j =
22−γ(N − 1)γ

N
. (4)

In Eq.(4) the dilution γ, γ ∈ [1, 2] is introduced as the
parameter of control to shift continuously from the short-
range to the long-range regime [9]. It is straightforward
to see that to the case γ = 1 corresponds to the linear
chain with only nearest neighbours coupling and, on the
other hand, γ = 2 corresponds to the full coupling of all
the spins. In this latter case the Hamiltonian in Eq.(1)
reduces to the HMF model [10]. We construct this way a
lattice in which each spin is connected to k/2 neighbours
on each side and the width of this neighbourhood is im-
posed by our choice of the dilution. To investigate the
macroscopic behaviour of the system, we define the mag-
netisation M = (mx,my), where mx = N−1

∑

i cos(θi)
and my = N−1

∑

i sin(θi). The modulus M = |M| indi-
cates the degree of coherence of the spin angular distribu-
tion: the incoherent state will have M = 0, while finite
values are naturally associated to more coherent states.
Having set the structure of the lattice via the dilution,
we performed simulations in the microcanonical ensemble
and we studied the evolution of the total equilibrium mag-
netisation M where the bar denotes the time average (we
assume ergodicity). The system possesses two constants
of motion preserved by the dynamics: the energy H = E
and the total angular momentum P =

∑

i pi which are
set by the initial conditions. We chose to start the system
with a Gaussian distribution for both for the spins and the
momenta, we also impose P = 0. The numerical integra-
tion of Eqs. (2) is performed using a symplectic integrator
[11], which ensures the conservation of the momenta E and
P (which were monitored) and the symplectic structure.
The thermodynamic quantities are calculated by averag-
ing over time.
We first concentrated on low dilution values, γ < 1.5

. For this regime of dilution, the system doesn’t show a
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Fig. 1: (colour online) Equilibrium magnetisation for γ = 1.25
and different sizes; (inset) Correlation function cj for γ = 1.25
and N = 214.

phase transition of the order parameter, this could have
been inferred since for very low dilutions, the system is
more or less identical to just short range interactions sys-
tem and in that case the Mermin-Wagner theorem dis-
proves the existence of long-range order in a 1−D system.
Still finite size effects are at play, and results are displayed
in Fig. 1: the magnetisation vanishes with the system size,
so that in the thermodynamic limit we expect the residual
magnetisation to be zero. Nevertheless, quasi-long-range
order could still arise at finite temperatures like in the 2D
short-ranged XY -model which displays the Berezinskij-
Kosterlitz-Thouless phase transition [12, 13]. This par-
ticular phase transition is characterized by the change in
behaviour of the correlation function, which decays as a
power law at low temperatures and exponentially in the
high temperature phase. Hence
to test the eventual presence of a Kosterlitz-Thouless

transition, we monitored the correlation function:

c(j) =
1

N

N
∑

i=1

cos(θi − θi+j[N ]). (5)

At equilibrium, the correlation decays exponentially (See
insert in Fig. 1) at any temperature in the considered phys-
ical range, confirming the absence of the aforementioned
phase transition. For those values of γ, we can conclude
that the number of links is still too low to entail a change
in the 1-D behaviour and it is interesting to notice that
even a configuration with quite a large neighborhood per
spin like γ = 1.4 still corresponds to short range interac-
tions.
Symmetrically, the other important range to consider is

γ > 1.5, when we approach the full coupling of the spins.
As shown in Fig. 2a, the mean field transition of the order
parameter is recovered in this dilution regime: it is worth
stressing here that we recover the mean field result even
for γ significantly lower than 2, e.g. for γ = 1.6, imply-
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Fig. 2: (colour online) (a) Equilibrium magnetisation for N =
216 and different γ. (b) Time series for the order parameter
with N = 218 and ǫ = 0.6; (inset) Scaling of the magnetisation
variance
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for γ = 1.5, ǫ = 0.60 (stars) and ǫ = 0.74 (dots).

ing that global coherence is still reachable with a weaker
condition than the full coupling. Naturally, in Fig. 2a, a
shift exists between the simulations, performed at finite
size, and the theoretical curve which is the one obtained
for the mean field in the thermodynamic limit. Neverthe-
less this interval shrinks with the increasing size and, in
that sense, it would be interesting to further investigate
the finite size scaling of the critical energy. In both cases,
γ < 1.5 and γ > 1.5 , the variance of the magnetisation

σ2 = (M −M)2 vanishes linearly with the system size,
ensuring the reaching of equilibrium in our simulations.

The transition between the 1-D behaviour and the mean
field phase appears to be critical for γc = 1.5: for low en-
ergies 0.45 ≤ ǫ ≤ 0.75 the magnetisation is affected by im-
portant fluctuations and it is not clear if it does not reach
an equilibrium state (Fig. 2b) on the time scales consid-
ered, or if these fluctuations are the mere reflection of the
critical behaviour and will persist forever. Moreover the
correlation function in Eq. (5) does not prove helpful in
characterizing this peculiar state: it acquires the exponen-
tial behaviour only for densities of energy above ǫ = 0.7,

while in the interesting interval of energies it is heavily
affected by the fluctuations and it is impossible to prop-
erly determine its behaviour. We observed these effects
on several sizes from N = 212 up to N = 218 and, when
considering the scaling of σ2 with the size (reported in
the inset in Fig. 2b), it is evident that the variance is not
affected by the increasing system size.
We argue that at γ = 1.5 the number of links is at its

lower value to allow the arising of long range order and to
shed light on the mechanism underneath, we derive an an-
alytical form for the magnetisation which shows that the
critical factor is embedded in the adiacency matrix, via its
spectrum. As first hypothesis, we restrict our analysis to
the low temperature regime, hence assuming that the dif-
ference θi − θj ∀i, j is small. We therefore obtain a simple

quadratic Hamiltonian: H =
∑

i
p2

i

2 + J
4k

∑

i,j ǫij(θi−θj)
2.

This assumption is justified by the simulations, as previ-
ously discussed; to proceed further, we consider a repre-
sentation for the {θi, pi} as a sum of random phased waves
[14]:

θi =
∑

l αl(t) cos(
2πli
N + φl),

pi =
∑

l α̇l(t) cos(
2πli
N + φl),

(6)

where φl are randomly distributed phases on the circle.
Since we make the hypothesis that the time dependence
is totally encoded in the amplitudes αl, the momenta are
simply related to the angles via the first Hamilton equation
θ̇i = pi. The basic idea behind this reasoning is that, at
equilibrium, the momenta are Gaussian distributed vari-
ables, justifying the representation in Eqs. (6). We also
observe that it consists in a linear changing of variable
since we use N modes for our representation. If we now
consider different sets of phases {φl}m labeled by m, we
have that each one of them corresponds to a phase space
trajectory and, hence, it is possible to replace the ensem-
ble average with the average on the random phases [14].
Consequently, injecting Eqs. (6) in the linearised Hamil-
tonian and averaging on the random phases, we obtain:

〈H〉

N
=

1

2

N
∑

l=1

α̇2
l + α2

l (1 − λl), (7)

where

λl =
2

k

k/2
∑

m=1

cos(
2πml

N
) (8)

are the eigenvalues of the adiacency matrix. Using the sec-

ond Hamilton equation d
dt(

∂〈H〉
∂α̇l

) = −∂〈H〉
∂αl

, we can thus

derive from Eq. (7) a dispersion relation for the waves
amplitudes that embeds two levels of information: at the
microscopical level, the structure of the links, via the adi-
acency matrix spectrum and, from a more macroscopical
point of view, Eq. (7) results from averaging on the ran-
dom phases which, as explained, accounts for the ensemble
averaging. Imposing the equipartition of energy at equi-
librium for the obtained collection of harmonic oscillators,
gives an additional relation between the frequencies ωl and

p-3



Sarah De Nigris Xavier Leoncini

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

<
M

(T
=
0.
1)

>

γ

N=222

N=223

N=224

N=225

theory

Fig. 3: (colour online) Approximated magnetisation 〈M〉 =
exp(− T

2N

∑

l
1

1−λl

) for T = 0.1 versus the dilution parameter
γ.

the amplitudes αl: α2
l ω

2
l = 2T/N . We evaluate now the

magnetisation in the low temperature regime using the
same approach: we inject the representation (6) and we
average on the phases, obtaining [15]:

〈M〉 =
∏

l

J0(αl)(cos θ0, sin θ0), (9)

where θ0 is the average of the {θi} which is a constant
because of the conservation of the total momentum P = 0.
The absolute value of the magnetisation 〈M〉will hence be,
from Eq. (9), the product over the l modes of the Bessel
functions. To evaluate the logarithm of 〈M〉 , we observe
that, at equilibrium and in the limit of large system size,
we expect to have small α2

l . We can thus approximate the
Bessel functions in the limit of small amplitudes αl which
is, therefore, the low temperatures regime. This finally
leads to:

ln(〈M〉) = −
∑

l

α2
l

4
= −

T

2N

∑

l

1

1− λl
. (10)

We calculated numerically Eq. (10) for increasing N and
in Fig. 3 we show how it correctly grasps the behaviour
for the magnetisation: in the low temperature regime, it
retrieves the theoretical value for γ > 1.5 and it vanishes
when γ < 1.5. Moreover, with the increasing size, the
difference between the two regimes becomes sharper con-
firming the critical nature of γc = 1.5. The key for this
peculiar effect at γ = 1.5 appears thus to be fully encoded
in the spectrum of the adiacency matrix, which drives the
system to the mean field regime or to the short range one
according to the dilution parameter γ. Nevertheless, by
a rapid inspection of Eq. (8), it appears not trivial to
isolate the dependence of the eigenvalues on the dilution
and on the size, each eigenvalue consisting in a sum of k/2
contributions. In Fig. 4, we show the behaviour of the
spectrum for three representative values of γ: clearly the
spectra qualitatively differ according to the dilution, but
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Fig. 4: (colour online) Spectra λl for N = 218 and different γ

values.

how to quantify this difference is still object of a more re-
fined analysis to precisely relate the spectrum properties
to the magnetisation behaviour.

In this Letter we first introduced our model for the in-
teraction, theXY model and focused on the regular lattice
topology in which we controlled the degree of each spin via
the dilution parameter γ. We showed that three different
regimes existed, a low dilution regime (γ < 1.5), where the
long-range order is absent, a high dilution phase in which
the global coherence and mean field behaviour is recov-
ered (γ > 1.5) and a peculiar behaviour at the threshold
of γ = 1.5. Interestingly, we show that the mean field tran-
sition does not necessitate the full coupling of the spins,
like in the HMF model or in a random diluted network,
and it still arises for a regular topology even for γ = 1.6 ,
quite far hence from the extremal configuration of γ = 2.
However we consider that the main result of our analysis
is the evidence of a unsteady almost turbulent like state
when γ = 1.5 : the important fluctuations affecting the
order parameter and the invariance of these effects on the
system size in a whole interval of energies are in total
contrast with what observed in the other regimes, where
with the same initial conditions the convergence to equi-
librium is rapid. We presented a analytical calculation for
the magnetisation, based on the method in [14], which is
able to catch the appropriate behaviour in the two lim-
its discussed before. This result points out that γ = 1.5
is indeed the critical value for this passage from the 1-D
topology to the mean field frame. Moreover it proves that
the spectrum of the adiacency matrix, which carries the
information on the links, is crucial to understand this shift.
As anticipated before, this unstable state stems from topo-

logical features of the lattice, instead of from a particular
choice of the initial conditions as in [16–18]. This intrinsic
difference indicates the important role of this state that it
is observed, at our knowledge, for the first time. We antic-
ipate that the same kind of phenomenon can be observed
with different topologies and probably lower dilutions, and
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believe that if we should find an efficient way to modify
the dilution parameters, these systems could prove to be
useful on-off switches for a somewhat large temperature
range.
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