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Abstract 

Methods of measuring ultrasonic wave velocity in an elastic sample require data on the thickness of 

the sample and/or the distances between the transducers and the sample. The uncertainty of the 

ultrasonic wave velocity measurements generally depends on that of the data available. Conversely, 

to determine the thickness of a material, it is necessary to have a priori information about the wave 

velocity. This problem is particularly hard to solve when measuring the parameters of biological 

specimens such as bones having a greater acoustical impedance contrast (typically 3 to 5 MRayl) 

than that of the surrounding soft tissues (typically 1.5 MRayl). Measurements of this kind cannot 

easily be performed. But obtaining the thickness of a bone structure and/or the ultrasonic wave 

velocity is a important problem, for example, in biomechanical field for the calculation of elastic 

modulus, or in acoustical imaging field to parameterize the images, and to reference the grey or 

color level set to a physical parameter. 

The aim of the present study was to develop a method of simultaneously and independently 
determining the velocity of an ultrasonic wave in an elastic sample and the wave path across the 
thickness of this sample, using only one acquisition in pure transmission mode. The new method, 
which we have called the "Wavelet-Based Processing" method, is based on the wavelet 
decomposition of the signals and on a suitable transmitted incident wave correlated with the 
experimental device, and the mathematical properties such as orthonormality, of which lend 
themselves well to the time-scale approach. By following an adapted algorithm, ultrasonic wave 
velocities in parallelepipedic plates of elastic manufactured material and the apparent thicknesses 
were both measured using a water tank, a mechanical device and a matched pair of 1 MHz 
ultrasonic focused transducers having a diameter of 3 mm, a focal length of 150 mm and beam 
width of 2x2 mm at the focus (mean temperature 22°). The results were compared with those 
obtained with a conventional Pulse-mode method and with the control values, to check their 
validity. Measurements performed on bovine and human dry cortical bone samples are also 
presented to assess the limitations of the method when it is applied to elastic biological samples, 
including those of an equal-wavelength size (≈ 1.5 mm). The thicknesses and the ultrasonic wave 
velocities were then measured in this kind of (quasi-)parallelepipedic elastic materials with an mean 
estimated error ranged from 1% to 3.5% compared to the referenced values. 
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1. Introduction 

The velocity of ultrasonic waves propagating in a solid elastic material is an important property that 

can be used, for example, in non-destructive evaluation to calculate the stiffness rigidity matrix, or 

in the biomedical field to parametrize reconstructed images (in ultrasonic tomography [1]). 

Conventional techniques used for making velocity measurements in materials require information 

about the thickness of the material under investigation. These thickness measurements are usually 

calculated from time-of-flight measurements. Depending on the experimental equipment used, this 

can involve complicated procedures (several data statements, several acquisition mode, several 

transducers...), which impose fundamental efficiency limitations (error higher than 5%, 

reproducibility…) on the velocity measurements. In the case of in vitro ultrasound methods of 

characterizing bone structures for relevant works in biomechanical field (evaluation of elastic 

modulus for example) or acoustical field (quantitative ultrasonic imaging for example), the 

occurrence of physical processes associated with the wave propagation generates complex acoustic 

signals (weak Signal-to-Noise Ratio (SNR), multiple echoes, dispersion…), which it is often 

difficult to analyze and to interpret in terms of wave paths or depth-dependencies. The main 

problem arising here is that it is very difficult to obtain samples with a regular thickness and parallel 

faces. A large proportion of the incident ultrasonic energy is also scattered (or simply reflected) and 

the transmitted proportion is refracted (deviated) after undergoing modal conversion at the 

water/sample interface. To overcome these problems, the use of low ultrasonic frequencies (< 3 

MHz) provides an effective alternative approach because some of the zones turn out to be more 

homogeneous, and the quantity of energy lost during the propagation of the wave therefore 

decreases. But even with low frequencies, to be able to determine the time-of-flight and thickness, it 

is necessary to find new methods of recording and processing these signals, and to develop more 

efficient algorithms. 

Several approaches have been used so far for this purpose, such as filtering and spectral analysis 

methods and a method involving deconvolution based on the use of a transfer function characteristic 

of the experimental device [1]. Deconvolution algorithms improve the quality of the information in 

the low ( 0) and high ( ∝) frequency ranges, but tend to be over-sophisticated and unstable. 

Indeed, they are a class of inverse problems associated with regularization process and ill-



conditioned systems, and the main drawbacks of the most efficient algorithms are their 

computational time consuming because they involve often inversion of huge, full or complex 

matrix, which may not be compatible with an automatic process involving a large number of data. 

Although there exist optimized [2], faster [3, 4], and adaptive [5] methods, deconvolution 

algorithms are sensitive to artifacts, noise and the bias affecting the repeatability of the 

measurements. Alternative methods based on multi-scale decomposition procedures, such as those 

based on wavelet transformation of the signals [6], make it possible to process all the local 

information and much more of the overall information available in terms of the frequency and time 

parameters. Instead of performing regularization in order to reduce the effects of inverse filter 

singularities and to restore the original signal, a wavelet transform can be performed in the 

deconvolution procedure by regularizing the inverse problem [7, 8]. Although this method is highly 

efficient, it involves performing delicate processing steps and having prior knowledge of the 

singularities of the signal. When used alone, the wavelet transform method lends itself very well to 

detecting and discriminating between signals during the data pre-processing phase and to extracting 

information such as the instantaneous frequency and the evanescent properties of the medium [9] to 

remove the tiny echoes embedded in a strong noise background [10] and to abolish speckle noise 

[11]. Another efficient wavelet method is also used to assess the spatial changes occurring in a 

multi-scale structure [12] and to determine the thickness of irregular plates and granular interfaces 

[13] from the reflected acoustical waves. The main advantage here is the possibility of performing 

the optimized shaping of the signal associated with the incident wave propagating through the 

media [14] and applying a matching process, using the wavelet's mathematical properties. At the 

experimental level, however, the so-called "wavelet response" method is sometimes poorly suited to 

automatically operating control situations because it requires the use of many probes with different 

nominal frequencies corresponding to the wavelet scales, and because it focuses entirely on the 

reflected wave. 

Here we present a new method of simultaneously determining the ultrasonic transmitted wave 

velocity in an elastic material and the associated thickness without any previous knowledge of 

either parameter. The new algorithm is based on a wavelet decomposition method, which is applied 

to the acoustical signals, and on a suitable transmitted signal associated with the incident wave, and 

correlated with the parameters of the experimental device. The "Wavelet-Based Processing" method 



(WBP method) uses the mathematical properties of these acoustical signals to measure the time-of-

flight of the transmitted wave through the sample in a one-shot transmission mode, and then to 

calculate the thickness and the velocity simultaneously. This method, which does not require the use 

of any specialized equipment, allows discriminate placement of the sample in the ultrasonic path. 

The validity of the results obtained was confirmed by measuring the thickness and the wave 

velocity in rectangular parallelepipedic manufactured plates, the mean thickness of which was 

closely determined using calipers to within 0.1 mm. The mean control thicknesses and velocities 

obtained using a more conventional broadband pulse method are also presented, and cases involving 

thicknesses of the same order as the wavelength (which will be called the “equal-wavelength” case 

from now on) will be discussed. Lastly, similar experiments and results are presented on bovine and 

juvenile human bone samples to assess the limitations of the WBP method as a means of biological 

tissue characterization. 

2. Material and methods 

The main working hypothesis adopted in this in vitro experimental study was that the sample was 

comparable to a parallelepipedic rectangle, and that the ultrasonic incident wave vector was 

perpendicular to the water/sample interface. Under these assumptions, pure compression waves 

(ultrasonic waves) were therefore transmitted through water and the sample. Any shear waves, and 

compression-to-shear wave mode conversion in the sample were neglected. The sample was taken 

to be homogeneous and isotropic. The wave velocities were taken to be constant and independent of 

the frequency (non-dispersive). Only the propagation processes were taken into account. The 

ultrasonic wave attenuation resulting from absorption processes was assumed to be weak and the 

magnitude of the signals decreased by only a few percent during the propagation. Only the time-of-

flight (TOF) of the waves was therefore measured.  

To have several measurement points on the sample, linear scanning was performed with the 

transducers over a distance of L mm (16 mm in this study) with a ΔL-mm (1 mm) step on both sides 

of the sample, using an ultrasonic mechanical scanner. At each measurement, the depth of the wave 

path versus the mean thickness (e) of the sample in the sounded area (which will be called "the 

thickness" from now on), and the corresponding ultrasonic wave velocity vb (which will be called 

"the velocity" from now on) were calculated using the Wavelet-Based Processing (WBP) method 



and a conventional ultrasonic pulse-mode (Pulse-mode) method as the control method. The 

thicknesses were also compared with those measured using a caliper. With both methods, a 

digitized initial signal was obtained without any target in order to measure the TOF t0 (µs) and the 

velocity v0 (m.s-1) of the ultrasonic wave, given the distance (d) between the transmitter and the 

receiver. The data obtained in the first experiment were subsequently used to determine the linear 

mechanical variations occurring in the ultrasonic mechanical scanner due to the mechanical offset 

effects. 

2.1.Ultrasonic mechanical scanner 

Measurements were performed on the ultrasonic mechanical scanner developed at the Laboratory of 

Mechanics and Acoustics (LMA). The apparatus used consisted of a main symmetrical arm carrying 

two secondary transversal arms. Each arm supported an aligned transducer, which could be moved 

linearly. Increments were multiples of 0.75 hundredths of millimeters. The object to be tested was 

placed in the presumed geometrical center of the bench so that the maximum distance between the 

transducers and the center was 150 mm. The surrounding fluid medium was water at a temperature 

of (Θ) (degrees). The matched pair of transducers used for data acquisition purposes were piezo-

composite transducers (Imasonic®) with a nominal frequency Fc of 1 MHz (bandwidth ranged from 

0.5 MHz to 1.5 MHz). In this case, the wavelength was around 1.5 mm in water (≈ 1500 m.s-1). The 

diameter of the active interface was 3 mm, and the lateral (angular) and vertical (slice) resolution of 

the transducer beam was 2 mm in each case with the focus at 150 mm. This distance was 

corresponded in the center between the both transducers where the interface water/sample was 

placed (distance l1, Figs. 2 and 3). The transducers were driven using a waveform generator (TTI® 

TGA 1241), and positioned automatically as required. The radio-frequency signals (RF-signals) 

stored (Agilent® DSO5014A) were then used to determine the TOF between the source, the object 

and the receiver. The signal processing algorithms were implemented on a personal computer. 

Since the electro-acoustic device (Fig. 1) and the transducers therefore served as a continuous linear 

stationary causal filter, the input x(t) and output s(t) signals were connected by convolution: 

€ 

s(t) =  (x⊗hM)(t)           (1) 

and 



€ 

x(t) =  (hT
t ⊗ hT

r ⊗ e)(t) =  (hT
*  ⊗  e)(t)        (2) 

where 

€ 

⊗ denotes the operation of convolution. e(t) is the electric signal conveyed to the transmitter 

via the waveform generator, 

€ 

hT
t (t)  and 

€ 

hT
r (t)  are the responses of the transmitter and the receiver, 

which are assumed to be similar, and 

€ 

hT
* (t) =  (hT

t ⊗ hT
r )(t), 

€ 

hM(t)  is the response of the object. 

In the transmission mode, without the sample, the transmitted response 

€ 

hM(t)  in water depends, 

when there are no distortions of the propagation, on the time-delay of the wave, which is 

proportional to the distance (d) between the two transducers and the velocity v0. The initial output 

signal 

€ 

s(t)[ ]init  is therefore equal to the input signal x(t), which is invariant by translation: 

€ 

s(t)[ ]init
=  x(t)  ⊗  δ t −

d
v0

% 

& 
' 

( 

) 
*  =  x t −

d
v0

% 

& 
' 

( 

) 
* = x(t) = hT

* ⊗ e( )(t)     (3) 

Note that at this stage, the responses of the transducers do not have to be determined. 

2.2.Conventional ultrasonic Pulse-mode method 

To obtain control experimental data, the thicknesses and velocities were first calculated using a 

conventional ultrasonic Pulse-mode method. Three measurements were necessary in the presence of 

the sample: two in the reflected mode and one in the transmission mode (Fig. 2). The electric signal 

e(t) was a pulse signal, which was comparable to a Dirac delta function (in terms of the 

distribution), and 

€ 

s(t)[ ]init  is given by: 

€ 

s(t)[ ]init = hT
* (t)            (4) 

Experiments were carried out in the reflected mode in order to determine TOF t1 (respectively TOF 

t2) of the propagating wave, from the left (respectively right) transducer to the left (respectively 

right) interface of the sample.  

The following relation gives the thickness (e): 

€ 

e = d − v0
t1 + t 2
2

# 

$ 
% 

& 

' 
( 
           (5) 

The velocity vb was determined in the transmission mode at the normal incidence:  
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vb
2 =

v0
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1+
v0τ
e

v0τ
e
− 2
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           (6) 

where (

€ 

τ) is a time-delay calculated by cross-correlating the initial signal obtained without the 

sample 

€ 

s(t)[ ]init  with the output signal obtained with the sample s(t). With this method, the formulas 

for the thickness and the velocity are directly related because (e) has to be determined before vb. 

2.3.Wavelet-Based Processing (WBP) 

2.3.1.One-shot transmission mode 

With the WBP method, only a one-shot acquisition of the output signal s(t) in the pure transmission 

mode is necessary, and no reflection mode acquisitions are required (Fig. 3). 

A transmission signal is digitized in order to simultaneously measure the first TOF t1 of the 

transmitted wave crossing distances l1 and l2 in water and the distance (e) in the sample; and the 

second TOF t2 of the transmitted wave crossing distances l1 and l2 in water and the distance (3e) in 

the sample (back-wall echo): 

€ 

t1 =
l1 +l2( )
v0

+ e
vb            (7) 

€ 

t 2 =
l1 +l2( )
v0

+3 e
vb            (8) 

At each measurement, provided (t0, t1, t2) and (v0) are known, the thickness (e) can be written: 

€ 

e = v0 t 0 −
3t1 − t 2( )
2

# 

$ 
% % 

& 

' 
( ( 
           (9) 

and the ultrasonic wave velocity vb can be written: 

€ 

vb =
v0 2t0 − 3t1 +t2( )

t 2 − t1( )            (10) 



In this procedure, the thickness and the ultrasonic wave velocity are calculated independently, and 

can therefore be obtained simultaneously. The main problem is how to determine TOF t1 and TOF 

t2, even in the case of an equal-wavelength thickness. An orthogonal wavelet decomposition of the 

output signal s(t) and an adaptation of the input signal x(t) in term of time and frequency (see 

paragraph 2.3.5), can be performed to automatically determine these times. 

2.3.2.Orthogonal wavelet decomposition (Meyer-Jaffard algorithm) 

The wavelet algorithm specifically developed for ultrasonic signal processing purposes [15] 

calculates the wavelet coefficients of a signal in the time and frequency bands. Wavelet 

decomposition of signals is a transformation that depends on discrete parameters [16] noted j and k, 

(j, k)  ∈ Z2. Indeed, we associated the series of coefficients Cj,k with a signal s(t) as follows (the 

overline indicates the conjugate complex): 

€ 

Cj,k  =   s(t)
−∞

∞

∫  Ψ j,k (t) dt 
           (11) 

€ 

Ψj,k (t)= 2jΨ 2j t − k
2j
Δt
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           (12) 

where (j, k) belongs to Z2, and 

€ 

Δt  is the sampling period. When j < 0, we have dilatation and when j 

> 0, we have compression of the function 

€ 

Ψ (t). 

The function 

€ 

Ψj,k (t)
 
is an orthonormal function meeting the following conditions:  

- 

€ 

Ψj,k (t) is a function of the L2 point space, 

- The associated Fourier transform 

€ 

ˆ Ψ j,k (υ)  has compact support,  

- 

€ 

Ψj,k (t) has "physically" compact support, e.g. : 

€ 

20log
Ψj,k (t)

max Ψj,k (t)( )
 ≤  - A dB

         (13) 

where A is a coefficient which can be freely chosen by the user. 

The wavelet 

€ 

Ψ (t) is the so-called "mother" wavelet, which was previously analyzed by Y. Meyer 

[16] and S. Jaffard [17]. Its spectral modulus reaches a maximum at 

€ 

2
3Fe( ), where Fe (

€ 

Fe =  1/Δt ) is 



the sampling frequency of the signal, and has a bandwidth equal to 2 octaves 

€ 

1
3 Fe ,  4

3Fe( )  and a -3 

dB bandwidth equal to 1 octave 

€ 

1
2 Fe ,  Fe( ) . In the time domain, it is real and lower than 10-3 except 

for an interval 13

€ 

Δt  in length centered on ½ 

€ 

Δt , which is symmetric with respect to ½

€ 

Δt .  

Each wavelet 

€ 

Ψj,k (t) is focused on 

€ 

t j
0 = 2− j t − 1

2Δt( )  in the time domain and 

€ 

υ j
0 = 2j+1

3 Fe
 
in the 

frequency domain (with the frequency limits of 

€ 

2j

3 Fe,  2j+2

3 Fe[ ] ). The resulting analysis is performed 

in terms of the time and the frequency. Let the signal s(t) be sampled at frequency Fe at N points; 

the only non-zero scale lines for s(t) are the lines j ≤ 0, and only dilatations of the "mother" wavelet 

are performed. In addition, if the sampling frequency is chosen so that the maximum frequency of 

the signal is 

€ 

Fe
3 , the line j = 0 is also equal to zero. The analysis therefore proceeds only up to j < 0. 

Fig. 4  show an example of a wavelet in the case of j = -5 and k = 0. In this case, the spectral 

modulus of the wavelet is centered on Fc = 0.83 MHz and the bandwidth ranges from 0.41 to 1.66 

MHz, which corresponds to the bandwidth of the 1-MHz transducers used. 

The wavelet coefficients are defined as projections of s(t) onto the orthogonal basis; they are 

identical to the cross-correlation between the signal s(t) and the centered wavelet at scale j taken at 

points 

€ 

t j,k = k2− jΔt : 

€ 

Cj,k = Ψ j,k (t) s(t) dt = s  ⊗  Ψj,o
#[ ]  (

k
2j Δt)

−∞

∞

∫  =  X j t j,k( )
      (14) 

where 

€ 

Ψ# (t) = Ψ (−t)              (15) 

and  

€ 

X j t( ) =  s  ⊗  Ψj,o
#( ) t( )           (16) 

Let s(t) be equal to 

€ 

ΨJ,0 t( ), which is the wavelet centered on the dilatation scale denoted J (J ∈ Z). 

Since orthogonal wavelet decomposition of this particular signal can be performed on the dyadic 

grid to calculate the cross-correlation Xj(t), then:  

€ 

X j (t) =  ΨJ,0 ⊗Ψj,0
#( )(t)           (17) 



The properties of the orthogonal wavelet decomposition procedure are such that the coefficients, 

€ 

Cj,k
 
are cancelled everywhere except for j = J and k = 0: 

€ 

Cj,k  =  X j t j,k( ) =  
1 if j = J and k = 0
0 elsewhere
" 
# 
$         (18) 

Figs. 5 and 6 give an example of the orthogonal wavelet decomposition in the case where J = -5, j 

ranged from -6 to -4, and the sampling frequency was Fe = 40 MHz. The most interesting term here 

is 

€ 

X-5 t( ) =   Ψ-5,0(t)⊗Ψ-5,0
# (t), which is an autocorrelation term. There is therefore only one valid 

wavelet coefficient left on the dyadic grid originating from the term C-5,0 (which obviously 

corresponds to the maximum value of the autocorrelation function). 

2.3.3.Algorithm of the TOF estimate 

We now take the case of a parallelepipedic rectangle. The response 

€ 

hM(t) of the sample can be 

modeled as the sum of two pulse signals, which are comparable to Dirac delta functions (in terms of 

the distribution): 

€ 

hM t( ) = A1δ t − t1( ) +A2δ t − t 2( )          (19) 

where A1 (respectively A2) is the amplitude of the first arriving wave located at the TOF t1 

(respectively, of the second arriving wave located at the TOF t2). 

Using Eq. (1), the output signal s(t) is given by: 

€ 

s t( ) =  x t( ) ⊗  A1δ t − t1( ) + A2δ t − t 2( )[ ]         (20) 

If the input signal x(t) is a wavelet centered on the dilatation scale denoted J (J ∈ Z) 

€ 

x t( ) =  ΨJ,0(t)( ) , the output signal is given by: 

€ 

s t( ) =  A1ΨJ,0 t − t1( ) + A2ΨJ,0 t − t 2( )[ ]         (21) 

The orthogonal wavelet decomposition of this signal on the dyadic grid at scale j is given by: 

€ 

X j(t)[ ]
s

=  A1ΨJ,0 t − t1( ) + A2ΨJ,0 t − t 2( )[ ]⊗Ψj,0
# (t) =  A1X j t − t1( ) + A2X j t − t 2( )    (22) 



This equation is the sum of the two cross-correlations products 

€ 

Xj (t) located at TOF t1 and TOF t2, 

which are attenuated by A1 and A2.  

Due to the orthonormal properties of the wavelet decomposition process, TOF t1 and TOF t2 are 

therefore obtained from the coefficients on scale J:  

- TOF t1 is measured by correlating 

€ 

Xj(t)[ ]
s
with an analyzing pattern PJ(t) given by: 

€ 

PJ t( ) = XJ t( )            (23) 

- TOF t2 is measured by correlating the same pattern PJ(t) with the set of points belonging to XJ(t-

t2). This set is obtained by using the orthogonal property of the autocorrelation term XJ(t), see 

Eq.(17).  

2.3.4.Numerical example 

Here we focus on the input signal x(t) associated with the wavelet 

€ 

Ψ−5,0 t( )  centered at J = -5 

(nominal frequency Fc = 0.83 MHz, sampling frequency Fe = 40 MHz). Let us take the case of a 

parallelepipedic rectangle with a theoretical thickness of 1.1 mm (1.113 mm in terms of the 

simulation parameters), and take the known ultrasonic wave velocity to be equal to 2700 m.s-1 

(Perspex [18]). In this case, the wavelength in the water ( λ = 1.74 mm at v0 = 1485 m.s-1) is larger 

than the thickness of the sample, and it may therefore be difficult to discriminate between the first 

and second TOF. A1 is taken to be equal to 1, and A2 to 0.08, which corresponds to the attenuation 

of the second arriving wave. The distance (d) between the transducers is taken to be 20 cm, 

corresponding to a initial TOF t0 of 134.671 µsec. The attenuation was not based on our 

experiments, but was chosen to test the validity of the method. 

Fig. 7 (top) gives the simulated function 

€ 

X−5(t)[ ]s. It is impossible to distinguish visually between 

the two autocorrelation terms X-5(t-t1) and X-5(t-t2), and thus between the two TOF. Let us consider 

only the first term X-5(t-t1) for the first arriving wave (Fig. 7 middle). Note that since this term is 

very similar to 

€ 

X−5(t)[ ]s, TOF t1 can be easily obtained by correlating 

€ 

X−5(t)[ ]s with an analyzing 

pattern P-5(t), as in section 2.3.3, see Eq.(23). The dyadic grid C-5,k, centered at TOF t1 is then 

calculated and the amplitude A1 is determined at C-5,0. We now add the second term X-5(t-t2) (Fig. 7 



bottom) centered at TOF t2. The overall 

€ 

X−5(t)[ ]s is also plotted, for the sake of comparison. It can 

now be clearly seen that at the former "zeros" on the dyadic grid C-5,k (Fig. 7 middle), we can 

directly obtain values of X-5(t-t2) (after eliminating the term C-5,0, of course): these values constitute 

the set of points described in section 2.3.3. Correlating 

€ 

P−5(t)  with this set of points gives an 

estimate of the position of TOF t2. Fig. 8 shows the positions of TOF t1 and TOF t2 obtained by 

performing WBP on the output signal s(t). From these positions, an approximation of the thickness 

of 1.12 mm (error: 0.63%) and the velocity of 2722 m.s-1 (error: 0.81%) are calculated. This means 

that in the case of this example, WBP can be used to assess the dimensions of objects, the thickness 

of which is smaller than the wavelength of the system, with an error lower than 1%. 

Now the main problem is how to digitize an initial electric signal e(t), which has to be filtered by 

the response of the transducers 

€ 

hT
* (t)  in order to obtain 

€ 

x(t)  =  ΨJ,0(t)  (see Eq. (3)). 

2.3.5.Generation of a transmitted signal in the form of a wavelet 

To digitize the input signal x(t) in the form of wavelets 

€ 

ΨJ,0(t), several approaches have been 

previously tested with various levels of success, such as those based on a simulated annealing 

method [14], which consist in producing the signal iteratively and correcting the quadratic error at 

each iteration. The simplest method implemented so far is that consisting in directly performing 

spectral deconvolution of the wavelet by the output signal digitized, using the electric pulse signal 

e(t) (see Eq. (4)) without any immersed sample 

€ 

s(t)[ ]init  (Fig. 9): 

€ 

e(t) =  ΨJ,0(t) ⊗⊗  s(t)[ ]init
          (24) 

where 

€ 

• ⊗
⊗ •( ) denotes the operation of deconvolution. 

In the frequency domain, this equation corresponds to the division of the Fourier transform of each 

signal: 

€ 

ˆ e (υ) =  
ˆ Ψ J,0(υ)
ˆ s (υ)[ ]init            (25) 



This equation is valid only in the frequency bandwidth of the transducers (e.g., with compact 

support at -3 dB). The inverse Fourier transform gives the electric signal e(t) conveyed to the 

transmitter via the waveform generator (Fig.10). 

As shown in Fig. 11, the fit between the experimental and theoretical curves is satisfactory, except 

in the case of small bandwidths around the nominal frequency, probably due to the low stability of 

the spectral division. But when performing TOF assessments, the fit is perfectly acceptable and the 

effects of any slight inaccuracy on the results will be negligible. Since the effective transfer function 

of the apparatus, including the electro-acoustic and mechanical bias, was taken into account, the 

sensitivity of the solution to this parameter was fairly low. The processing time for wavelet 

generation was around 4 to 5 seconds on our test configuration (including signal digitalization). 

3. Results and discussion 

3.1.1. Rectangular parallelepiped plates 

The first experiments were carried out on nine rectangular parallelepipedic plates measuring 10 cm 

x 10 cm in size, placed in the vertical position. The constitutive material was Perspex in the case of 

plate no. 1, Renshape550 in that of plate no. 2, Polystyrene in that of plate no. 3 and PVC in that of 

plates nos. 4, 5 and 6 obtained from several sources (Fig. 12). Renshape550 is a cream color 

polyurethane based material, used to simulate the rigidity and durability of the ABS material. Note 

that the PVC used was the same at a given thickness ("a" and "b"), but differed from one plate to 

another because the composition of PVC from different manufacturers or batches can vary. The 

water tank temperature ranged from Θ = 21°5 to 22°7, and the wave velocity in water ranged from 

v0 = 1485.3 to 1490.3 m.s-1. The thicknesses measured using calipers and the mean velocity values 

published in the literature [18] are given in Tables 1 and 2. 

In connection with the experimental protocols detailed in the section 2, paragraphs 2.2 and 2.3, six 

series of measurements were performed on each sample using the Pulse-mode method (4 

measurements) with an electric pulse signal 

€ 

x(t) = hT
* (t)  to obtain control values, and WBP (2 

measurements) with a wavelet signal 

€ 

x(t) =Ψ-5,0(t) as follows: 

- Two transmission series without any samples (for Pulse-mode and WBP method); 

- Two reflection series on each side of the sample to obtain the thickness (for Pulse-mode method); 



- Two transmission series with samples to obtain the velocity (for Pulse-mode method), and the 

thickness and the velocity (for WBP method). 

Thicknesses and velocities obtained with each of the rectangular parallelepiped plates using the 

Pulse-mode and WBP methods are given in Tables 1 and 2. 

The WBP results given in Table 1 show good agreement with the caliper values in terms of the 

thickness. The error ranged from 0.2 to 3%. (< 3%) The Pulse-mode method gave greater errors 

ranging from 3.5 to 47 % (> 3%). It is worth noting the case of plates nos. 3, 6-a and 6-b. The 

thickness (around 1 mm) was below the size of the wavelength (λ ≈ 1.5 mm in the water). The 

signal obtained in the case of Polystyrene and its WBP are shown in Fig. 13. From these 

measurements, it may seem difficult at first sight to determine the TOF values: the front and back 

signals are merged. However, the WBP algorithm makes it possible to evaluate TOF t1 and TOF t2. 

Based on these values, the algorithm calculates the thickness, and simultaneously the velocity. The 

thickness error in comparison with the caliper values is less than 1%. In this case, the Pulse-mode 

method failed to give thickness values with an error of less than 3%, and in the case of plate no. 6-a, 

the error amounted to approximately 47%, due to the false value founded for the thickness with this 

method (0.53 mm vs. 1 mm with the calipers). The Pulse-mode method is based on a detection of 

the TOF t1 and the TOF t2 on signals in reflected mode (see Eq.(5)). When the echoes of the first 

and second interface are merged (case of an equal-wavelength thickness), the measurement of this 

TOF and the calculation of the thickness are false. 

As regards the velocities, it can be seen from Table 2 that the results obtained with the WBP 

method were similar to the previously published mean values. Except for the case of plate no 6-a, 

the maximum deviation from the published values [18] was less than 3.5%. In the case of plate no. 

6-a, since the thickness (0.53 mm) calculated with the Pulse-mode method was obviously false, the 

velocity given in Table 2 (2431 m.s-1) was that calculated on the basis of the thickness obtained 

using calipers (1 mm). This value is similar to that calculated using the WBP method. Both 

velocities differ from the previously published mean values possibly because the velocity in this 

kind of PVC is nearer to 2400 m.s-1 than 2300 m.s-1. The second value obtained with the WBP 

method in the case of plate 6-b was also similar to 2400 m.s-1. 



Velocities calculated with WBP on PVC plates of the same thickness (and presumably having the 

same composition) were in the same range, and were comparable to the previously published mean 

values. The mean velocities obtained were 2294 m.s-1 in the case of plates no. 4 (5 mm), 2373 m.s-1 

in that of plates no. 5 (1.9 mm), and 2443 m.s-1 in that of plates no. 6 (1 mm). The control values 

measured using the Pulse-mode method were much less homogeneous ranged from 2400 m.s-1 to 

2700 m.s-1. 

3.1.2. Bone samples 

Two bovine and one juvenile human femoral long bones were then studied (Fig. 14). The epiphyses 

of the bone were cut so as to be able to focus only on a cortical area. The age, weight, and sex of 

each sample were known but were not taken into account in this study. The bones were dry and 

cleaned for any surrounding soft tissue. They were set in water at room temperature prior to the 

experiments. The water tank temperature was Θ = 21°7 and the velocities in water v0 = 1485.7 m.s-

1. Cortical bones are generally assumed to be elastic material with three anisotropic directions [19-

22]. In the axial direction, the axis was assumed to be parallel to the fibers. In the radial direction, 

the axis was assumed to be perpendicular to the thickness of the area, and in the tangential 

direction, the axis was assumed to be perpendicular to the fibers. The samples were obtained by 

cutting the bones in the axial direction and by removing the marrow from each part. They were held 

on the bench in the horizontal position so that the ultrasonic beam was collinear with the radial axis 

relative to the thickness. The thicknesses, measured using calipers, in the positions shown Figs. 14 

and 15, and the previously published mean velocity values are given in Tables 3 and 4. 

Two heights were tested on the first bovine sample (B1-1 & B1-2), and only one height on the 

second bovine sample (B2) and the juvenile human sample (H1). The thicknesses and velocities 

obtained with each bone sample using both the Pulse-mode method and WBP method are given in 

Tables 3 and 4. 

The aim of this experiment was to determine the limits of the WBP method when used on biological 

specimens, and/or when it is not possible to obtain such perfectly parallel interfaces as with 

manufactured samples. In the case of bone samples, the modeling procedure described in section 2 

was therefore not appropriate for dealing with thickness and velocity assessments because of the 

non-planar shape of the bones. But the focal area of the transducers used was 2x2 mm with the 



focus set at 150 mm, and at this distance, the wave front was assumed to be plane, without any 

secondary lobes. The wave reached the interface perpendicularly, which at this scale, was also 

assumed to be plane. Under these conditions, the above assumptions can be adopted. 

Except for the equal-wavelength juvenile human bone sample (H1), as shown in Table 3 as regards 

the thicknesses (and in Table 4 as regards the velocities), WBP gave values close to the caliper 

values (as well as close to the previously published values). Indeed, the thickness errors amounted 

to less than 3% and the velocity errors, to less than 1%. WBP was even found to measure the 

thickness of the B1-1 sample more accurately (i.e. the calculated error is minimum) than the Pulse-

mode method (9.18 mm - error = 3% - using the WBP method vs. 8.3 mm - error ≈ 7% - using the 

Pulse-mode method, while the caliper value was 8.9 ± 0.2 mm). WBP was also found to measure 

the wave velocities in the bovine bone samples (error < 1%) more accurately (i.e. the calculated 

error is minimum) than the Pulse-mode method (error > 3%). These results confirm that WBP 

provides a useful signal-processing tool for obtaining simultaneous longitudinal wave velocity with 

an error lower than 1%, and thickness values with an error lower than 3%, on a (quasi-) 

parallelepipedic plate of elastic material. 

In the case of a equal-wavelength juvenile human femur (H1, see Fig. 16), the WBP and Pulse-

mode methods both gave practically the same thicknesses (≈ 1.5 mm), in the rang of values 

obtained using calipers (≈ 1.6 ± 2 mm). Velocity values differed, however, between the two 

methods (by 8%), and were lower than the previously published mean velocity (< 3000 m.s-1). 

Although TOF were detected in the recorded data, some problems arise when measuring the 

thickness and the velocity, and it is difficult to reach definite conclusions about the accuracy of the 

WBP method in the particular case of thin bone samples. But it is also worth noting that the surface 

scan on the samples showed small irregularities of the surface, such as those which can be seen in 

the zoomed view in Fig. 14, due to the presence of a small remaining porous trabecular part, which 

may account for the perturbations of the signal digitized and of the values obtained. One of the main 

hypotheses is that the sample is taken to be homogeneous. This small heterogeneous layer (± 0.1 

mm) illustrates the limits of this hypothesis. 

The next step consisted in estimating the effects of a lack of flatness of the inner and outer faces, 

and those of the heterogeneity of bone on the measurements. For this purpose, a linear sweep of ΔL 



= 1 mm was carried out at various points on a small surface (L = 16 mm) of both B1 (bovine) and 

H1 (juvenile human) bone samples. This transducer sweep corresponded to an antenna consisting of 

several components (transducers with an aperture of 2 mm). Position "0 mm", which was the first 

position of the transducers, corresponded to the previous 1-D experiments (namely, position B1-2 

on bovine bone, and H1 on human bone). The corresponding images shown in Figs. 17 and 19 give 

the sounded area (in mm) on the Y-axis vs. time (µs) on the X-axis. The grey level indicates the 

amplitude of the signals. Linear scanning was first performed without any sample (Fig. 17). The 

images show the time-shift of the initial signal due to the non-parallel displacements of the two 

transducers. Since the shape and the amplitude of the signal remained unchanged (Fig. 18), the 

WBP algorithm is applicable to any displacement of the transducers. 

A similar linear scanning procedure was carried out on the bovine and juvenile human bone (Fig. 

19) samples.  

The localization of TOF t1 and TOF t2 can be detected visually (two separate wave fronts can be 

seen) in the image of the bovine bone (Fig. 19 top). These wavefronts diverged slightly during the 

scan, which means that the thickness of the sounded area probably increased linearly from top to 

bottom. However, the image of the human bone (Fig. 19 bottom) gives no information about these 

TOFs at first sight, due to the small thickness of the bone in comparison with the wavelength of the 

ultrasonic wave.  

WBP was therefore applied and the results obtained are given in Figs. 20 and 21. 

As shown in Fig. 20 (left), the thickness of the bovine bone was found to increase from top to 

bottom, which matched the visual interpretation of the bovine bone image (Fig. 19 top). As regards 

the velocity (Fig. 20 right), the values recorded were fairly consistent over the whole sample (mean 

value: 3315 m.s-1, deviation: ± 15 m.s-1), which means that this bone segment probably had quite a 

homogeneous structure, without many irregularities. They also agree with the values published in 

the literature ( ≈ 3350 m.s-1, error: 1%). In this experiment, the thickness and velocity showed 

different patterns of evolution (increasing thickness, stationary velocity), which shows the ability of 

the WBP method to deal independently with each parameter at each operation. 

The case of human bone is slightly more difficult to interpret: both the thickness and the velocity 

(Fig. 21) values obtained showed some dispersion, even at neighboring positions (± 0.05 mm in the 



thickness values and ± 100 m.s-1 in the velocity values). This may be attributable to the porous state 

of the human bone sample surface (Fig. 14). However, the mean thickness (1.55 ± 0.05 mm) and 

mean velocity (2619 m.s-1) were in line with the measurements made with calipers (1.6 ± 0.2 mm) 

and with the data previously published in the literature (< 3000 m.s-1). The porosity of the surface 

may have affected the ultrasound wave propagation process so drastically (while the thickness 

remained more or less unchanged) that WBP could not follow these changes exactly, although the 

frequency was decreased. It is therefore necessary to improve the accuracy of the WBP method in 

cases of this kind. 

4. Conclusion 

The aim of the present study was to present a new ultrasonic method of measuring the thickness of a 

solid material and the velocity of the wave. This new method involves the use of a Wavelet-Based 

Processing method to extract the time and frequency information from the signals received, using a 

suitable transmitted signal. The main advantage of this method is that it requires only a single 

acquisition in the pure transmission mode to measure the time-of-flight of the wave propagating 

through the sample under investigation, and to simultaneously calculate the thickness of the sample 

and the wave velocity, even in the case of an equal-wavelength material thickness. This method was 

found to be efficient regardless of some imperfections of the devices used, during a linear scanning 

for example, and of the transducer responses, which can be unknown. The velocity values obtained 

were quite in line with those previously published in the literature and with those calculated using a 

more conventional ultrasonic Pulse-mode method. In the case of the manufactured samples with 

regular flat interfaces, results were obtained on both the thickness and the velocity with an error 

lower than 3.5%. With the bone samples, although the mean values were satisfactory (the error was 

less than 1%), the dispersion was greater, especially in a thin (≈ 1.5 mm) human cortical bone 

sample with a remaining trabecular part. In the case of this natural biological material having a high 

acoustical impedance (typically 3 to 5 MRayl) contrast with the surrounding soft tissues (or water, 

typically 1.5 MRayl), the parametric measurements will also depend in the complexity of the wave 

propagation processes, which generate complex ultrasonic signals forming several packages with 

different time and frequency signatures. The "Wavelet-Based Processing" method presented above, 

which makes a compromise between efficiency (error lower than 3.5%) and simplicity (one single 



measurement), could therefore provide a particularly useful tool for making real-time measurements 

(≈ 4 to 5 sec. for initial wavelet generation, then 1 to 2 sec. for each data processing time on 

personal computer, including signal digitalization). However, the theoretical modeling procedure 

needs to be improved in order to be able to deal with more complex materials (with non-

parallelepipedic or circular shapes) and media (inhomogeneous and porous media), and those with 

irregular, rough or smooth surfaces. It is also proposed to extend this study in order to examine the 

attenuation of the ultrasonic wave in the material under investigation and to determine whether any 

dispersion occurs. It is also planned to carry out a more detailed study taking into account the 

transversal velocity of the wave propagating along the sample. Lastly, we intend to determine 

whether ultrasonic tomography imaging can be usefully performed on the cross-section of whole 

circular cylinders and tubes. The main aim of these measurements would be to simultaneously 

calculate the wall thickness and the velocity of the wave crossing the object, using the “Wavelet-

Based Processing” method. 
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Figure captions 

Fig. 1. Overall view of the ultrasonic measurement set-up: mechanical scanner, 8-axis indexer 

(Rhonax®), Waveform Generator (TTI® TGA 1241), 1-MHz transducers (Imasonic®), Sampling 

oscilloscope (Agilent® DSO 5014 A), PC computer controlling the scanner and the oscilloscope. 

Fig. 2. (- Top drawing -) Conventional ultrasonic Pulse-mode method: signal paths in the reflection 

(echo) and transmission modes for determining the wave velocities and the wall thickness of a 

parallelepipedic sample. (- Bottom drawing -) Initial signal path recorded in the transmission mode 

to determine the initial velocity without any sample. 

Fig. 3. (- Top drawing -) One-shot transmission mode using the Wavelet-Based Processing method: 

signal paths recorded in the pure transmission mode to determine the wave velocities and the wall 

thickness of a parallelepipedic sample. (- Bottom drawing -) Initial signal path recorded in the 

transmission mode to determine the initial velocity without any sample 

Fig. 4. (- Top drawing -) Time graph of the wavelet function 

€ 

Ψj,k t( ) at scale j = -5 and k = 0. 

Sampling frequency: Fe = 40 MHz, n = 512 samples. (- Bottom drawing -) Modulus of the Fourier 

transform (positive frequencies) of the wavelet 

€ 

Ψj,k t( ) at scale j = -5 and k = 0. The sampling 

frequency was Fe = 40 MHz with n = 256 samples. The maximum value of the modulus was 0.83 

MHz, and the bandwidth ranged from 0.41 MHz to 1.66 MHz. 

Fig. 5. Comparison between the wavelet function 

€ 

Ψ−5,0 t( )  centered on J = -5 (black lines) and 

wavelet functions 

€ 

Ψj,0 t( )  (gray	  dashed	  lines) at j = -4 (- top -), j = -5 (- middle -) and j = -6 (- bottom 

-). Sampling frequency Fe = 40 MHz, n= 512 samples. 

Fig. 6. Comparison between cross-correlation products 

€ 

X j t( ) =   Ψ-5,0(t)⊗Ψj,0(t)  (gray lines) and 

dyadic coefficients Cj,k (black circles) at j = -4 (- top -), j = -5 (- middle -) and j = -6 (- bottom -). 

The case j = -5 (middle) corresponds to the autocorrelation function 

€ 

X-5 t( ) . 

Fig. 7. (- Top drawing -) Time graph of the simulated function 

€ 

X−5(t)[ ]s corresponding to the 

wavelet decomposition of 

€ 

s t( ) =  A1Ψ−5,0 t − t1( ) + A2Ψ−5,0 t − t 2( )[ ] , in the case of a parallelepipedic 

rectangle with a theoretical thickness of 1.1 mm and a wave velocity of 2700 m.s-1. (- Middle 

drawing -) Comparison between the simulated time graph of the autocorrelation term X-5(t-t1) (gray 

line) and the corresponding dyadic coefficients (black circles) C-5,k. Only C-5,0 is a non-zero 



coefficient. (- Bottom drawing -) Comparison between the time graphs of the simulated function 

€ 

X−5(t)[ ]s (gray dot line), the autocorrelation term X-5(t-t1) (gray dashed line) and the autocorrelation 

term X-5(t-t2) (black line); at the former "zeros" of C-5,k (k ≠ 0), values of X-5(t-t2) can be measured 

(black circles). 

Fig. 8. Comparison between the simulated output signal s(t) (gray line) in the case of a 

parallelepipedic rectangle with a theoretical thickness of 1.1 mm, and the wavelet function 

€ 

Ψ−5,0 t( )  

centered on J = -5 (black dashed line); TOF t1 (point A, t1 = 134.3281 µs) and TOF t2 (point B, t2 = 

135.151 µs) values measured. 

Fig. 9. (- Top Drawing -) Time graph of the response 

€ 

s(t)[ ]init = hT
* (t) of the 1 MHz transducer to an 

electric pulse signal 

€ 

e(t) ≈  δ(t). Sampling frequency: Fe = 40 MHz, n = 512 samples. (- Bottom 

Drawing -) Modulus of the Fourier transform (positive frequencies) of the response 

€ 

s(t)[ ]init = hT
* (t) 

of the 1 MHz transducer to an electric pulse signal 

€ 

e(t) ≈  δ(t). Sampling frequency: Fe = 40 MHz, n 

= 256 samples. The maximum frequency of the modulus was located at 0.88 MHz. 

Fig. 10. (- Top drawing -) Time graph of the electric input signal e(t) digitized to obtain a generated 

wavelet 

€ 

Ψ-5,0(t) . Sampling frequency: Fe = 40 MHz; n = 512 samples. (- Bottom drawing -) 

Modulus of the Fourier transform (positive frequencies) of the electric input signal e(t) digitized to 

obtain a generated wavelet 

€ 

Ψ-5,0(t) . The maximum frequency of the modulus was located at 0.66 

MHz. 

Fig. 11. (- Top drawing -) Comparison between time graphs of the experimental input signal 

€ 

x(t)  

(black line) and those of the theoretical wavelet 

€ 

Ψ−5,0(t)  (dashed line). Sampling frequency: Fe = 40 

MHz, n = 512 samples. (- Bottom drawing -) Comparison of the modulus of Fourier transforms 

(positive frequencies) of the experimental input signal 

€ 

x(t)  (black line) and that of the theoretical 

wavelet 

€ 

Ψ−5,0(t)  (dashed line). Sampling frequency: Fe = 40 MHz, n = 256 samples. 

Fig. 12. Rectangular parallelepipedic plates (from left to right): 1- Perspex (5.6 mm), 2- 

Renshape550 (2 mm), 3- Polystyrene (1 mm), 4- PVC (5 mm), 5- PVC (1.9 mm), 6- PVC (1 mm). 

Fig. 13. Comparison between the experimental output signal s(t) (black line) obtained in the case of 

the 1-mm thick rectangular parallelepipedic Polystyrene-plate and the wavelet function 

€ 

Ψ−5,0 t( )  



centered on J = -5 (gray dashed line); TOF t1 (point A, t1 = 220.9375 µs) and TOF t2 (point B, t2 = 

221.8175 µs) values measured. 

Fig. 14. Bovine bone samples (left: B1, middle: B2) and juvenile human femur (right: H1). Zoomed 

view of the scanned region of juvenile bone. 

Fig. 15. Positions of the calipers used to measure the thickness of the bovine bone samples. 

Fig. 16. Comparison between the experimental output signal s(t) (black line) in the case of the 1.6- 

mm juvenile human femur sample: H1, and the wavelet function 

€ 

Ψ−5,0 t( )  centered on J = -5 (gray 

dashed line); TOF t1 (point A, t1 = 226.4 µs) and TOF t2 (point B, t2 = 227.585 µs) values measured. 

Fig. 17. (- Top drawing -) Linear scanning of the transducers without any sample (bovine bone 

experiment). (- Bottom drawing -) Linear scanning of the transducers without any sample (juvenile 

human bone experiment). 

Fig. 18. Time shift of the wavelet input signal due to the linear scanning at 5 transducer positions. 

Fig. 19. (- Top drawing -) Linear scanning of the transducers with bovine bone sample: two 

separate wave fronts can be visually distinguished (left: position of TOF t1, right: position of TOF 

t2). (- Bottom drawing -) Linear scanning of the transducers with juvenile human bone: no 

information seems to be available here about TOF t1 and TOF t2. Position 0 mm in this image 

corresponds to the case shown in Fig.22. 

Fig. 20. (- Left drawing -) Thicknesses of the bovine bone; position 0 mm: 8.72 mm (B1-2). (- 

Right drawing -) Velocities of the bovine bone; position 0 mm: 3317 m.s-1 (B1-2). 

Fig. 21. (- Left drawing -) Thicknesses of the juvenile human bone; position 0 mm: 1.5 mm (H1). (- 

Right drawing -) Velocities of the juvenile human bone; position 0 mm: 2528 m.s-1 (H1). 

 
 

 


