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Abstract—This paper presents an application analysis tech-
nique to define the boundary of shared memory requirements of
Multiprocessor System-on-Chip (MPSoC) in early stages of devel-
opment. This technique is part of a rapid prototyping process and
is based on the analysis of a hierarchical Synchronous Data-Flow
(SDF) graph description of the system application. The analysis
does not require any knowledge of the system architecture, the
mapping or the scheduling of the system application tasks.

The initial step of the method consists of applying a set of
transformations to the SDF graph so as to reveal its memory
characteristics. These transformations produce a weighted graph
that represents the different memory objects of the application
as well as the memory allocation constraints due to their
relationships. The memory boundaries are then derived from
this weighted graph using analogous graph theory problems, in
particular the Maximum-Weight Clique (MWC) problem. State-
of-the-art algorithms to solve these problems are presented and a
heuristic approach is proposed to provide a near-optimal solution
of the MWC problem. A performance evaluation of the heuristic
approach is presented, and is based on hierarchical SDF graphs
of realistic applications. This evaluation shows the efficiency of
proposed heuristic approach in finding near optimal solutions.

I. INTRODUCTION

During the design of an embedded system, the treatment of
memory issues strongly impact the final system quality and
performance, as the area occupied by the memory can be as
large as 80% of the chip and may be responsible for a major
part of its power consumption [1]. Prior work on memory
issues for Multiprocessor System-on-Chip (MPSoC) mostly
consists of optimization techniques that minimizes the amount
of memory allocated to run an application, thus reducing the
capacity and area of memory of the developed system [2], [3],
[4]. These techniques rely on a precise knowledge of system
behavior, particularly scheduling and mapping the application
tasks on the system processors, and so may only be applied
during late stages of the system design process.

The purpose of the method presented in this paper is to
derive the memory bound requirements of a system (Figure 1)
in the early stages of its development when there is a complete
abstraction of the system architecture. This method is based on
an analysis of the system application, and allows the developer
of a multi-core shared-memory system to adequately size the
chip memory.

This paper focuses on memory characterization of applica-
tions described by a Dataflow Process Network (DPN) Model

of Computation (MoC) [5]. A MoC defines the semantics
of an algorithm model: which components the model can
contain, how they are interconnected and how they interact. A
DPN MoC divides the application into computational entities
named actors that exchange data via First-In First-Out (FIFO)
channels. The algorithm model is specified as a directed
application graph in which nodes represent actors and edges
represent FIFO queues. Each actor is associated to firing
rules specifying its behavior in terms of token consumption
and production. Tokens are abstract representations of a data
quantum, independent of its size. The actors themselves are
“black boxes” of the model and may be implemented in any
programming language. Firing an actor consists of starting its
preemption free execution.

The Synchronous Data-Flow (SDF) MoC is certainly the
most widely used DPN model. It consists of a static model
in which all production and consumption token rates are
fixed and known at compile time. This property makes the
model analysis possible at compile time. Interface Based SDF
(IBSDF) is a hierarchical DPN MoC based on SDF that can
be analyzed hierarchically [6].
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Fig. 1. Memory Bounds

The rapid prototyping context and the IBSDF model, which
serves as an input to our method, are introduced in section II
and the successive transformations applied to the application
graph to reveal its memory characteristics are developed in
section III. Then, section IV presents existing algorithms and
a new heuristic approach to derive the memory bounds of an
application. An overview of previous research on memory is-
sues for multi-core systems is given in section V. Finally, after
an evaluation of the performance of our method in section VI,
we conclude this paper and propose possible directions for
future work in section VII.

kdesnos
Zone de texte 
In Proceedings of the International Conference on Embedded ComputerSystems: Architecture, Modeling and Simulation (SAMOS), 2012.



II. CONTEXT

A. Interface-Based Synchronous Data-Flow Graph

IBSDF [6] is a static hierarchical dataflow MoC defined
as an extension of SDF. Figure 2 shows an example of an
IBSDF graph, where the top level comprises 3 actors A, B and
h that respect the SDF semantics. Edges are labeled with their
token production and consumption rates. An edge with a black
dot signifies that initial tokens are present in the FIFO queue
when the system starts to execute. The number of initial tokens
is specified by the x100 label. Initial tokens are a semantic
element of the SDF MoC that makes communication possible
between successive iterations of the graph execution. h is an
IBSDF hierarchical actor. Its behavior is given by a subgraph
containing source and sink interfaces. These interfaces insulate
the behavior of the top graph and subgraph. This property
makes the algorithm description process simpler and less error-
prone [6].
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Fig. 2. Interface Based SDF (IBSDF) graph

Like SDF, IBSDF is an untimed MoC. It specifies actor
dependencies but does not take into account the time needed
to execute the actors. The memory bounds presented in this
paper are thus computed without actor timing consideration
and, in that sense, characterize an application IBSDF graph
independent of implementation. This is in contrast to the
related work from the literature, which tends to focus on post-
scheduling and execution timing analysis (see Section V).

B. Hardware/Software Exploration Workflow

Rapid prototyping consists of extracting information from
a system in the early stages of its development. It enables
hardware/software co-design and favors early decisions that
improve system architecture efficiency. The work presented
in this paper aims to extract memory information from an
application graph at an early stage of system design and inde-
pendent of architecture details. It allows the system designer to
discard architectures with insufficient memory and to evaluate
the degree of memory optimization required to produce the
final system with an optimal amount of memory.

Figure 3 illustrates the position of the memory bounds
computation in the rapid prototyping process as proposed
in [7]. Rapid prototyping inputs consist of an algorithm model
respecting the IBSDF MoC, an architecture model respecting
the System-Level Architecture Model (S-LAM) semantics
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Fig. 3. Rapid Prototyping Process

[8] and a scenario providing constraints and prototyping
parameters. The scenario ensures the complete separation of
algorithm and architecture models. Algorithm and architecture
models undergo transformations in preparation for the rapid
prototyping steps. Static multi-core scheduling is then applied
to dispatch the algorithm actors to the architecture processing
elements and to schedule their executions [9] [10]. Finally, the
scheduling information is used to simulate the system behavior
and to generate compilable code for the targeted architecture.
It can also be exported to an external SystemC based simulator.

In this process, the memory bounds computation is executed
on the transformed algorithm graph and has no dependency
on the architecture graph. The next section explains the
IBSDF graph properties and Section III-A details the algorithm
transformations applied to IBSDF prior to the memory bounds
computation.

III. PREPROCESSING TOWARD MEMORY ANALYSIS

A. Algorithm Transformations

The first step to characterize the memory bounds of an
application consists of applying a set of transformations to
its IBSDF Graph. The SDF model of the application is
successively flattened, and first converted into a Single Rate
SDF, then into a Directed Acyclic Graph (DAG). As presented
in [6], these transformations are used to reveal the parallelism
embedded in the IBSDF model, thus enabling a better mapping
and scheduling of its actors on a multicore architecture.
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Fig. 4. Flattened Synchronous Data-Flow

To illustrate these transformations, we successively apply
them to the IBSDF graph of Figure 2. The first transformation
consists of flattening the hierarchy of the graph by replacing
all hierarchical nodes with their content. The IBSDF graph is
thus transformed into a SDF graph presented in Figure 4.



The second transformation is the conversion into a Single-
Rate SDF graph: a SDF where the production and consumption
values on each edge are equal. In this model, each vertex
corresponds to a single actor firing from the SDF graph. This
conversion is performed by computing the topology matrix
[11], multiplying actors by the number of their firings and
reorganizing edges, as shown in Figure 5, where actor B is
split in two instances. An algorithm to perform this conversion
can be found in [12].

The last conversion consists of generating an acyclic prece-
dence graph by isolating one iteration of the algorithm. This
is achieved by ignoring the edges with initial tokens in the
single-rate SDF. In our example, this transformation results
in ignoring the feedback edge F→A which stores 100 initial
tokens.
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Fig. 5. Single-Rate SDF or Directed Acyclic Graph if dotpoint edge ignored

In the context of memory analysis, these transformations
are applied to fulfill the following objectives:

• Expose data parallelism: Concurrent analysis of data
parallelism and data precedence gives information on the
lifetime of memory objects prior to any scheduling step.
Indeed, two FIFO queues belonging to parallel data-paths
may contain data tokens simultaneously and consequently
are forbidden from sharing a memory space. Conversely,
two FIFOs linked with a precedence constraint, such as
A→B and C→F FIFOs in Figure 4, will never store data
tokens simultaneously, thus can share the same memory
space.

• Break FIFOs into buffers shared between actors: In the
SDF model, the channels carrying data tokens between
actors behave like FIFO queues. The memory needed to
allocate each FIFO corresponds to the maximum number
of tokens stored during an execution of the graph. As
this number of tokens depends on the schedule of the
actors, methods exist to derive a schedule that minimizes
the memory needed to allocate the FIFOs [13]. However,
in our method, the memory analysis is not dependent on
scheduling considerations. It is for this reason that FIFOs
of undefined sizes before the scheduling step are replaced
with buffers of fixed sizes during the transformation of the
graph into a single-rate SDF. In Figure 5, buffers linking
two actors will be written and read only once with a data
token of fixed size, which simplifies the memory analysis.

• Derive an acyclic model: Cyclic data-paths in an IBSDF
graph are an efficient way to model iterative or recursive
calls to a subset of actors. In order to use efficient
static scheduling algorithms [14], SDF models are often

converted into DAGs before being scheduled. Besides
revealing data-parallelism, this transformation makes it
easier to schedule an application, as each actor is fired
only once per execution of the resulting DAG. Similarly,
in the absence of a schedule, deriving a DAG permits
the use of memory objects (communication buffers) that
will be written and read only once per execution of the
DAG. Consequently, before a memory object is written
and after it is read, its memory space will be reusable to
store another object.

B. Memory objects

The DAG resulting from the transformations of an IBSDF
graph, contains three types of memory objects

• Communication buffers: The first type memory object
corresponds to the directed edges of the DAG and are the
buffers used to transfer data between consecutive actors.
In our approach, we consider that the memory allocated
to these buffers is reserved from the execution start of
the edge producer actor until the completion of the edge
consumer actor. This choice is made to enable custom
token consumption throughout actor firing time. As a
consequence, the memory used to store an input buffer
of an actor should not be reused to store an output buffer
of the same actor. In Figure 5, the 150 units of memory
used to carry data between actors C and D can not be
reused, even partially, to transfer data from D to F.

• Working memory of actors: This second type of memory
object is the maximum amount of memory allocated
by an actor during its execution. This working memory
represents the memory needed to store the data used
during the computations of the actor but does not include
the input nor the output buffers memory. In our method,
we assume that an actor keeps an exclusive access to
its working memory during its execution. In Figures 2 to
5, the size of the working memory associated with each
actor is given by the number below the actor name. This
memory is equivalent to a task stack space in an operating
system.

• Feedback FIFOs: The final type of memory object corre-
sponds to the memory needed to store edges ignored as a
result of the transformation of a Single-Rate SDF into a
DAG. These edges which are ignored to break cycles, can
still carry data between successive executions of the DAG
and behave like FIFO queues. These feedback edges may
not share memory space with any other memory object
of the application.

C. Memory Exclusion Graph

Once an application has been transformed into a DAG,
and all its memory objects have been identified, the last pre-
processing step of our method consists of deriving the memory
exclusion graph which will serve as a basis to our analysis.

A memory exclusion graph is an undirected weighted graph
denoted by G =< V,E,w > where:



• V is the set of vertices. Each vertex represents an
indivisible memory object.

• E is the set of edges representing the memory exclusions.
• w : V → N is a function with w(v) the weight of a

vertex v. The weight of a vertex corresponds to the size
of the associated memory object.

We also denote:
• N(v) the neighborhood of v, i.e. the set of vertices linked

to v by an edge. Vertices of this set are said to be adjacent
to v.

• |S| the cardinality of a set S. |V | and |E| are thus
respectively the number of vertices and edges of the
graph.

• δ(G) = 2·|E|
|V |·(|V |−1) the edge density of the graph cor-

responding to the ratio of existing edges to all possible
edges.
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Fig. 6. Memory Exclusion Graph

Two memory objects of any type exclude each other (i.e.
they can not share the same memory space) if a schedule can
be derived from the DAG where both these memory objects
store data simultaneously. Some exclusions are directly caused
by the properties of the memory objects, such as exclusions
between input and output buffers of an actor. Other exclusions
result from the parallelism of an application, as is the case
with the working memory of actors from parallel data-paths
that might be executed concurrently.

The memory exclusion graph presented in Figure 6 is de-
rived from the IBSDF graph of Figure 2. The complete graph
contains 17 memory objects and 66 exclusions but, for clarity,
only the vertices corresponding to the buffers between actors
(type 1) are presented.

Building a memory exclusion graph based on a DAG
consists of scanning its actors and data-transfers in order of
precedence, so as to identify its parallel branches. As part of
this scan, the memory objects and the exclusions caused by
a precedence relationship are added to the memory exclusion
graph. The, exclusions are then inserted between all memory
objects which have been identified in the DAG as belonging to
parallel branches. An alternative way of building an exclusion
graph is to first build its complement graph, within which two
vertices are linked if the corresponding memory objects can
share a memory space. Then, the exclusion graph is simply
obtained by considering that two of its vertices are linked if
they are not connected by an edge in the complement graph.

In our method, the memory exclusion graph is built based
on a non-scheduled DAG allowing the characterization of the

application independent of architecture constraint. However,
a subsequent update of this graph to incorporate the changes
resulting from a schedule is possible. Indeed, a static schedule
introduces an execution order of the graph actors, which can
be seen as a new precedence relationship between actors. The
addition of this new precedence link to a DAG, results in the
possible disappearance of a certain amount of parallelism and
the resulting exclusions. For example in Figure 5, if actor D
is scheduled before actor E, then the exclusion disappears be-
tween the working memory of D and the E→F communication
buffer.

IV. MEMORY ALLOCATION BOUNDS

The upper and lower bounds of the static memory allocation
of an application are respectively a maximum and a minimum
limit to the amount of memory needed to run an application,
as presented in Figure 1. These bounds are crucial information
in the co-design process, as they allow the developer to adjust
the size of the memory available accordingly to the application
requirements. Furthermore, as these bounds can be computed
during the early development of a MPSoC, they might prevent
the developer from mapping an insufficient or an unnecessarily
large memory chip.

A. Least upper bound

The least upper memory allocation bound of an application
corresponds to the size of the memory needed to allocate
each memory object in a dedicated memory space. Such an
allocation would be a waste of memory, as a memory space
used to store an object would never be reused to store another.
However, this allocation scheme must be used for exclusion
graphs where an exclusion exists for every pair of vertices.

Given an exclusion graph G, its upper memory allocation
bound is thus the sum of the weight of its vertices:

BoundMax(G) =
∑
v∈V

w(v) (1)

The upper bound for the exclusion graph of Figure 6 is
850 units, and the upper bound for the complete exclusion
graph derived from the IBSDF of Figure 2 is 1020 units.

B. Greatest lower bound

The greatest lower memory allocation bound of an appli-
cation is the least amount of memory required to execute
it. Finding this optimal allocation based on an exclusion
graph can be done by solving the equivalent Interval Coloring
Problem [15], [3].

A k-coloring of an exclusion graph is the association of
each vertex vi of the graph with an interval Ii = {a, a +
1, · · · , b − 1} of consecutive integers - called colors -, such
that b − a = w(v). Two distinct vertices vi and vj linked
by an edge must be associated to non-overlapping intervals.
Assigning an interval to a weighted vertex is equivalent to
allocating a range of memory address to a memory object.
Consequently, a k-coloring of an exclusion graph corresponds
to an allocation of its memory objects.



The Interval Coloring Problem consists of finding a k-
coloring of the exclusion graph with the fewest integers used
in the Ii intervals. This objective is equivalent to finding
the allocation of memory objects that uses the least memory
possible, thus giving the greatest lower bound of the memory
allocation.

Unfortunately, as presented in [15], this problem is known to
be NP-Hard, therefore it would be prohibitively long to solve
in the rapid prototyping context which involves applications
with hundreds or thousands of buffers. Moreover, a sub-
optimal solution to the Interval Coloring problem corresponds
to an allocation that uses more memory than the minimum
possible: more memory than the greatest lower bound. Conse-
quently, a sub-optimal solution fails to achieve our objective
which is to find a lower bound to the size of the memory
allocated for a given application.
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Fig. 7. Memory Bounds

C. Lower bound using exact solution to the Maximum-Weight
Clique Problem

Since the greatest lower bound can not be found in reason-
able time, we focus our attention on finding a lower bound
close to the size of the optimal allocation. In [3], Fabri
introduces another lower bound derived from an exclusion
graph: the weight of the Maximum-Weight Clique (MWC).

A clique is a subset of vertices that forms a subgraph
within which each pair of vertices is linked with an edge. As
memory objects of a clique can not share memory space, their
allocation requires a memory as large as the sum of the weights
of the clique elements, also called the clique weight. The
subsets {CD,CE,CF,DF,EF} or {AB1,AB2,B2C} are examples
of cliques in the exclusion graph of Figure 8. Their respective
weights are 550 and 250. By definition, a single vertex can also
be considered as a clique, and a clique is called maximal if no
vertex can be added to it to form a larger clique. In Figure 8,
clique {CD,CE,CF,DF,EF} is maximal, but {AB1,AB2,B2C}
is not as B1C is linked to all the clique vertices and can
therefore be added to the clique.

The Maximum-Weight Clique (MWC) of a graph is the
clique whose weight is the largest of all cliques in the graph.
Although this problem is also known to be NP-Hard, several
branch-and-bound algorithms have been proposed to solve it
efficiently. In [16], Östergård proposes an exact algorithm
which is, to our knowledge, the fastest algorithm for exclusion
graphs with an edge density under 0.80. For graphs with
an edge density above 0.80, a more efficient algorithm was
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proposed by Yamaguchi et al in [17]. Both algorithms are
recursive and use a similar approach: beginning with a single
vertex, they search for the MWC Ci in a subset of the graph,
then add a vertex to the considered subset and use the weight
of Ci to bound the search for a larger clique Ci+1 in the new
subgraph. The two algorithms were implemented in order to
compare their performances on exclusion graphs derived from
different applications (cf. section VI).

In the exclusion graph of Figure 8, the MWC is
{CD,CE,CF,DF,EF} with a weight of 550 units.

The weight of the MWC corresponds to the amount of
memory needed to allocate the memory objects belonging to
this subset of the graph. By extension, the allocation of the
whole graph will never use less memory than the weight of its
MWC. Therefore, this weight is a lower bound to the memory
allocation and is less than or equal to the greatest lower bound,
as shown in Figure 7.

D. Lower bound using approximate solution to the Maximum-
Weight Clique Problem

Östergård’s and Yamaguchi’s algorithms are exact algo-
rithms and not heuristics. As the MWC problem is an NP-
Hard problem, and even using these fast algorithms, an exact
solution in polynomial time can not be guaraneed. In the rapid
prototyping context, all methods and algorithms used must
have a short and predictable runtime; that is why we developed
a heuristic algorithm for the MWC problem.

The proposed heuristic approach, presented in Figure 9, is
an iterative algorithm whose basic principle is to remove a ju-
diciously selected vertex at each iteration, until the remaining
vertices form a clique.

Our algorithm can be divided into 3 parts:
• Initializations (lines 1-5): For each vertex of the graph,

the cost function is initialized with the weight of the
vertex summed with the weights of its neighbors. In order
to keep the input graph unaltered through the algorithm
execution, its set of vertices V and its number of edges
|E| are copied in local variables C and nbedges.

• Algorithm core loop (lines 6-13): During each iteration of
this loop, the vertex with the minimum cost v∗ is removed
from C (line 8). In few cases where several vertices have
the same cost, the lowest number of neighbor |N(v)| then
the smallest weight w(v) are used to determine the vertex
to remove. By doing so, less edges are removed from the
graph and the edge density of remaining vertices will be



Input: a memory exclusion graph G =< V,E,w >
Output: a maximal clique C

1: C ← V
2: nbedges ← |E|
3: for each v ∈ C do
4: cost(v)← w(v) +

∑
v′∈N(v) w(v

′)
5: end for
6: while |C| > 1 and 2·nbedges

|C|·(|C|−1) < 1.0 do
7: Select v∗ from V that minimizes cost(·)
8: C ← C \ {v∗}
9: nbedges ← nbedges − |N(v∗) ∩ C|

10: for each v ∈ N(v∗) ∩ C do
11: cost(v)← cost(v)− w(v∗)
12: end for
13: end while
14: Select a vertex vrandom ∈ C
15: for each v ∈ N(vrandom) \ C do
16: if C ⊂ N(v) then
17: C ← C ∪ {v}
18: end if
19: end for

Fig. 9. Maximum-Weight Clique Heuristic Algorithm

higher, which is desirable when looking for a clique. If
there still are multiple vertices with equal properties, a
random vertex is selected among them.
This loop is iterated until the vertices in subset C become
a clique. This condition is checked line 6, by comparing
1.0 - the edge density of a clique - with the edge density
of the subgraph of G formed by the remaining vertices
in C. To this purpose nbedge, the number of edges of this
subgraph, is decremented line 9 by the number of edges
in E linking the removed vertex v∗ to vertices in C. Lines
10 to 12, the costs of the remaining vertices are updated
for the next iteration.

• Clique maximization (lines 14-19): This last part of the
algorithm ensures that the clique C is maximal by adding
neighbor vertices to it. To become a member of the
clique, a vertex must be adjacent to all its members.
Consequently, the candidates to join the clique are the
neighbors of a vertex randomly selected in C. If a vertex
among these candidates is linked to all vertices in C, it
is added to the clique.

The complexity of this heuristic algorithm is of the order of
O(|N |2), where |N | is the number of vertices of the exclusion
graph.

For example, in Table I, the algorithm is applied to the
exclusion graph of Figure 6. For each iteration, the costs of the
remaining vertices are given, and the vertex removed during
the iteration is crossed out. The column Density corresponds
to the edge density of the subgraph formed by the remaining
vertices.

In this simple example, the clique found by the heuristic
algorithm and the exact algorithm are the same, and their

Costs
Iteration Density AB1 AB2 B1C B2C CD DF CE EF CF

1 0.61 300 300 600 600 650 550 650 550 650
2 0.68 200 500 500 650 550 650 550 650
3 0.81 400 400 650 550 650 550 650
4 0.86 350 600 550 600 550 600
5 1.00 550 550 550 550 550

TABLE I
ALGORITHM PROCEEDING FOR EXCLUSION GRAPH OF FIGURE 6

weight also corresponds to the size of the optimal allocation.
This example proves that, as shown in Figure 7, the result of
the heuristic can be equal to the exact solution of the MWC
problem, whose size can also equal the size of the optimal
allocation.

V. RELATED WORKS

To the extent of our knowledge, memory optimization
for multi-core systems has generally been studied in the
literature as a post-scheduling process. Using the scheduling
information, the lifetimes of the different memory objects
of an application are derived. Minimization is then achieved
by allocating several memory objects whose lifetimes do not
overlap in the same memory space.

Once the lifetimes of the memory objects are obtained, the
memory allocation is performed using one of these different
approaches:
• Running static - or offline - allocation algorithms inspired

by dynamic allocators, such as those proposed in [1],
[4], [2]. As opposed to dynamic allocators which allocate
memory objects in order they are brought to them, static
allocators have a global knowledge of all memory ob-
jects at compile time, thus making further optimizations
possible.

• Coloring an exclusion graph that models the conflicting
memory objects [15], [4]. An equivalent approach is to
use the complement graph, where memory objects are
linked if they have non-overlapping lifetime, and perform
a clique partitioning of its vertices [18].

• Using constraint programming, as is the case in [19]
where memory constraints are used together with cost,
resource usage and execution time constraints.

Besides the post-scheduling techniques, a few publications
also consider the memory optimizations during the scheduling
process. In [2], [13], algorithms are presented to derive a
schedule from a SDF graph so that the size of the FIFOs
between actors is minimized. Another technique proposed in
[20], consists of iterating the scheduling and the memory
allocation steps and keeping only the schedule whose corre-
sponding memory allocation uses the least memory.

Finally, certain optimization techniques can be applied
before the scheduling step. These techniques mostly consist
of modifying the description of the application behavior so
as to maximize the impact of later optimizations. Variable
renaming, instruction re-ordering, loop merging and splitting



are examples of modifications for imperative languages that
can reduce the memory needs of an application [3]. Similar
modifications can be applied to SDF graphs, as was done
in [6] where a technique used to extract parallelism from
nested loops in imperative languages is adapted to reveal data
parallelism embedded in an IBSDF graph.

As explained in [21], the former optimization techniques
often require a partial system synthesis and the execution of
time-consuming algorithms. Although these techniques pro-
vide an exact or highly optimized memory requirement, they
may be too slow to be used in the rapid prototyping context.
In [21], Balasa et al. survey existing estimation techniques that
provide a reliable memory size approximation in a reasonable
computation time. The main difference between these estima-
tion techniques and our bounding method is the abstraction
level considered. Indeed, these techniques are mostly based
on the analysis of imperative code while our method deals
with applications modeled with SDF graphs.

VI. RESULTS

The memory bounds are computed in the PREESM1

rapid prototyping framework [7]. PREESM is an open-source
Eclipse-based tool providing graph transformation algorithms,
multi-core scheduling and C code generation from IBSDF
graphs. Algorithms for memory bound computation have been
implemented in Java in this framework. All results presented
in this section are obtained by running the algorithms on a
3.1GHz CPU.

Graphs properties Exact algorithms Heuristic
|V | δ(G) Östergård’s Yamaguchi’s Time Efficiency
60 0.80 0.05 s 0.25 s 0.004 s 91%
80 0.80 0.43 s 2.04 s 0.009 s 89%

100 0.80 3.4 s 11.73 s 0.014 s 87%
120 0.80 17.93 s 55.23 s 0.024 s 86%
60 0.90 0.35 s 0.56 s 0.004 s 94%
80 0.90 9.34 s 7.83 s 0.009 s 93%

100 0.90 188.00 s 90.90 s 0.016 s 91%
Efficiency: Ratio of the size of the clique found by the heuristic

algorithm over the size of the maximum weight clique

TABLE II
PERFORMANCE OF MAXIMUM-WEIGHT CLIQUE ALGORITHMS ON

RANDOM EXCLUSION GRAPHS

Table II shows the performance of different algorithms for
the MWC problem. Each entry presents the mean performance
obtained from 400 randomly generated exclusion graphs with
a fixed number of vertices (|V |) and a fixed density of edges
(δ(G)). For each exclusion graph, the weights of its vertices
are uniformly distributed in a predefined range. The 400
graphs are generated with ranges varying from [1000; 1010]
to [1000; 11000]. Columns Östergård’s, Yamaguchi’s and Time
respectively give the mean runtime of each of the three
algorithms, and the Efficiency column gives the average ratio
of the clique size found by the heuristic algorithm over the
size of the MWC.

1PREESM project: http://sourceforge.net/projects/preesm/

It should be noted that the clique maximization part of the
heuristic algorithm was deactivated in all tests of this section.
Indeed, several tests showed that this maximization improved
the mean efficiency by only 2%, while multiplying the runtime
of the heuristic by a factor 1,6.

Table II shows that the runtime of exact algorithms grows
exponentially with the number of nodes of the exclusion
graphs, and is highly dependent on the edge density of the
graphs. Conversely, the runtime of the heuristic algorithm is
roughly proportional to |V |2 and is not strongly influenced
by the edge density of the graphs. The results in table II also
reveal that the mean efficiency of the heuristic algorithm for
random exclusion graphs is of the order of 90%, and decreases
slightly as the number of vertices increases. Finally, these
results additionally confirm that Yamaguchi’s algorithm has
better performance than Östergård’s algorithm for graphs with
more than 80 vertices and an edge density higher than 0,80.

SDF graph Exclusion graph Memory Bounds
Graph Actors FIFOs |V | δ(G) Lower Upper
RACH 233 468 457 0.83 317 kB 752 kB
LTE1 667 907 4240 0.72 ≤3492 kB 4899 kB
LTE2 56 84 606 0.82 451 kB 714 kB

MP4P2 143 146 143 0.80 963 kB 2534 kB
Diff 19 27 165 0.93 779 kB 1378 kB

RACH: LTE Preamble detection MP4P2: MPEG-4 Part2 Encoder
LTE1: Coarse Grain Physical+MAC Layer Diff: Difference of 2 CIF pictures
LTE2: Coarser Grain Physical+MAC Layer

TABLE III
PROPERTIES OF THE TEST GRAPHS

The performance of each of the three algorithms was also
tested using exclusion graphs derived from IBSDF graphs of
functional applications. Table III shows the characteristics of
the tested graphs. The first three entries of this table, namely
RACH, LTE1 and LTE2, correspond to application graphs
describing parts of the Long Term Evolution (LTE) wireless
communication standard. The last two entries, MP4P2 and
Diff, respectively, are a description of the MPEG-4 (Moving
Picture Experts Group) Part2 video encoder, and a dummy
application that computes the difference between successive
video frames. The values given for Actors and FIFOs are
those of the flattened IBSDF graph, before its conversion into
a DAG. It may also be noted that the lower memory bound
indicated in Table III corresponds to the size of the MWC.
In this section, only the memory objects corresponding to the
communication buffers (type 1) were considered to generate
the exclusion graphs.

To take advantage of a multi-core architecture, an applica-
tion modeled with an SDF graph must present a high degree of
parallelism. Exclusion graphs derived from such applications
will therefore have a high edge density, as is the case with
the graphs of Table III. The performance of each of the three
algorithms on these graphs are related in Table IV.

As shown in Table IV, the efficiency of the heuristic al-
gorithm for exclusion graphs derived from real applications is
much higher than for randomly generated exclusion graphs. In-



Exact algorithms Heuristic
Graph Östergård’s Yamaguchi’s Time Efficiency
RACH ∞ 207.00 s 1.200 s 99.9%
LTE1 ∞ ∞ 869.320 s - %
LTE2 996.70 s 219.60 s 3.300 s 100.0%

MP4P2 1.12 s 0.50 s 0.052 s 99.9%
Diff 0.42 s 0.49 s 0.120 s 100.0%

TABLE IV
PERFORMANCE OF MAXIMUM-WEIGHT CLIQUE ALGORITHMS ON

EXCLUSION GRAPHS DERIVED FROM THE TEST GRAPHS

deed, the heuristic algorithm always finds a clique with weight
almost equal to the weight of the MWC and has a runtime at
least 4 times faster. Moreover, contrary to the exact algorithms
which sometimes fail to find a solution within 12 hours (as
denoted by∞), the runtime of the heuristic algorithm is highly
predictable as it is solely dependent on the number of memory
objects |V |. In the case of LTE1, because of the large number
of vertices in the exclusion graph, exact algorithms never ran
to completion, thus we are unable to give the MWC exact
size nor the efficiency of our heuristic algorithm for this graph.
However, this example shows that our heuristic algorithm may
succeed in finding a lower bound to memory requirements in
cases where exact approaches fail. Additionally, it can also
be noted that Yamaguchi’s algorithm presents a slightly better
performance than Östergård’s algorithms for exclusion graphs
derived from SDF graphs.

Finally, the algorithms were tested against 120 exclusion
graphs derived from randomly generated SDF graphs. The
resulting exclusion graphs presented edge densities from 0.49
to 0.93 and possessed between 50 and 500 vertices. These
tests confirmed that Yamaguchi’s algorithm is faster than
Östergård’s for exclusion graphs derived from SDF graphs.
These tests also showed that our heuristic approach finds the
optimal solution 81% of the time, and that when the optimal
solution is not found, the average efficiency is 96.5%.

VII. CONCLUSION AND FUTURE WORKS

This paper outlines a complete method for deriving the
memory allocation bounds (Figure 1) of an application mod-
eled with a hierarchical SDF graph. The bounds are derived as
a part of a rapid prototyping process for MPSoC and are in-
dependent of mapping/scheduling considerations. Our method
is based on a weighted graph, derived from an application
graph, which models the ability of memory objects to share a
memory space. In addition to presenting existing algorithms to
derive optimal bounds, we propose a new heuristic approach
for determining a lower bound to the memory requirement.
Our experiments indicate good performances for this approach,
both in terms of speed and efficiency. Future work on this
subject is likely to include further testing of our method with
exclusion graphs incorporating the working memory of actors.
Other potential directions for future research are the design of
an allocation algorithm using an exclusion graph as input and
the iterative computation of memory bounds to influence a
scheduling process.
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