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Abstract

In this paper we present a new penalty-based approach, developed within the framework of Genetic Algorithms

(GAs) for constrained optimisation problems. The proposed technique, which is called Automatic Dynamic

Penalisation (ADP) method, belongs to the category of exterior penalty-based strategies. The aim of this

work consists in providing a simple and effective constraint-handling technique without the need of tuning

the penalty coefficients values for any considered optimisation problem. The key-concept that underlies the

ADP strategy is that it is possible to exploit the information restrained in the population, at the current

generation, in order to guide the search through the whole definition domain and to give a proper evaluation

of the penalty coefficients. The proposed strategy is firstly applied to three different benchmark problems and

the obtained results are compared to those available in the literature in order to show the effectiveness of the

ADP technique. Finally, as examples of real-world engineering applications, the ADP method is employed to

search a solution for two different optimisation problems, i.e. the optimal design of damping properties of

hybrid elastomer/composite laminates and the maximisation of the first buckling load of composite laminates

with given elastic symmetries.
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1 Introduction

During the last four decades, an increasing interest in problem-solving strategies based on the principles of

evolution and heredity has emerged. Among these systems we can include Evolution Algorithms (EAs) [38, 40,

27], Fogel’s Evolutionary Programming [16], Glover’s Scatter Search techniques [17]. Besides these techniques,

the most popular and well-known evolution-based strategies are Genetic Algorithms (GAs) [21, 18]. A useful

and common term often used for all the evolution-based systems cited beforehand is Evolution Programs

(EPs), see [27].

The reason that underlies the success of such approaches is that traditional non-linear programming

methods are local search techniques which tend to converge towards local optima. This is a serious drawback

in many practical structural optimisation problems where the design space could be non-convex or even

disjoint. In addition, such techniques are very popular due to their ability to naturally handle discrete design

variables.

However, the main drawback of EPs concerns the treatment of constraints. GAs, as well as other EPs,

do not take into account constraints directly. This means that standard genetic operators, such as mutation,

crossover and so on, are “blind” with respect to constraints. Consequently, despite the parents satisfy some

constraints, they can generate offspring which violate them. Technically, this means that GAs (and, more

generally, EPs) perform an unconstrained search. Therefore, the major concern for researchers in this field

consists in developing more and more accurate strategies in order to incorporate constraints directly into the

objective and/or the fitness function.

Several authors put an effort in developing appropriate and effective strategies, in the framework of EPs,

in order to deal with constrained optimisation problems. A certain number of surveys on constraint-handling

techniques is available in the specialised literature, see for example [27, 9, 28, 7].

The most common approach to handle constraints (particularly, inequality constraints) in the EP com-

munity consists in using penalties. Penalty functions were originally proposed by Courant in the 1940s [8]

and later generalised by Carroll [4] and Fiacco and McCormick [15]. The idea that underlies such approaches

consists in transforming the constrained optimisation problem into an unconstrained one by adding some

given values to the objective function, based on the amount of constraint violation, for each considered point

within the search space.

Penalty-based method are well suited for a wide class of optimisation problems, but it is difficult to find a

proper penalty factor when balancing between feasible and infeasible solutions [7]. To avoid such an issue,

Runarsson and Yao [39] developed a stochastic ranking technique wherein the objective values were used

to rank the solutions within the infeasible region of the search space. A probability parameter was used to

determine the fitting of two individuals belonging to the infeasible space, when compared with each other.

This method was proved to be effective in solving a wide range of constrained optimisation problems, but

the quality of the final solution depends upon the choice of the probability parameter. Based on the value of

the objective function of both infeasible and feasible solutions, Farmani and Wright [14] proposed a two-stage

self-adaptive fitness formulation method without the need of tuning any parameter. Lin and Wu [26] pro-

posed a self-organising adaptive penalty strategy having the aim of providing a parameter-free method with

self-adaptive selection pressure and, simultaneously, an automatic normalisation of the constraints. Huang et
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al. [22] proposed a co-evolutionary differential evolution for constrained optimisation through the use of two

populations evolving simultaneously in order to update penalty factors and decision solutions interactively.

Repair methods are also widely employed as constraint-handling techniques. The original focus of such

methods consists in transforming an infeasible solution into a feasible one through specially dedicated operator.

On one hand, repair methods ensure the feasibility of the solutions, but on the other hand they introduce

a strong bias in the search process [7]. To overcome such an issue, Orvosh and Davis [34, 35] developed

the so-called “5% rule” for combinatorial optimisation, where 5% of the repaired chromosomes were used to

substitute the infeasible original ones. Chootinan and Chen [5] proposed a gradient-based repair operator for

continuous optimisation, where the infeasible solution was repaired with a certain probability. Takahama and

Sakai [42] used the gradient-based mutation to change the infeasible solutions with a given probability.

Conceiving special selection operators represents a sound alternative to handle constraints. Deb [13]

proposed a pair-wise comparison in tournament selection without any penalty parameter. In particular, in

the context of such a selection strategy, feasible solutions are always better than infeasible ones, the comparison

between infeasible solutions depends on the amount of constraints violation, and comparison between feasible

solutions depends on the corresponding objectives values. Wang et al. [48] proposed an adaptive constraint-

handling technique based on the number of feasible solution restrained in the population. More recently,

Wang and Li [47] proposed an effective differential evolution with a level comparison, where the single level

is dynamically updated to exploit the information coming from infeasible solutions at the beginning of the

search process and forcing the feasibility at later stages.

Recently, multi-objective optimisation techniques have been employed to deal with constrained optimi-

sation problems. The main idea of such methods is to treat the constraints as objective functions, thus

the constraints and the original objective are optimised simultaneously. Surry and Radcliffe [41] considered

the constrained optimisation problem firstly as a constrained satisfaction problem (neglecting at this stage

the objective function) and secondly as an unconstrained optimisation problem, by ignoring the constraints.

Venter and Haftka [45] treated all the constraints as an equivalent single-objective function and solved the

optimisation as a bi-objective optimisation problem by means of a specialised bi-objective particle-swarm

optimisation algorithm.

In this paper we propose a new penalty-based approach, i.e. the Automatic Dynamic Penalisation (ADP)

technique, for constrained optimisation problems. Such a method belongs to the category of exterior penalty-

based strategies. Our aim consists in providing a simple and effective parameter-free constraint-handling

technique: indeed, with the ADP strategy we do not need the intervention of the user to tune the penalty

coefficients values for any given optimisation problem. The ADP strategy is implemented within the GA

BIANCA which is a multi-population GA for engineering optimisation problems which allows the parallel

evolution of individuals belonging to different species, thanks to the introduction of some special genetic

operators for crossover and mutation among species. For more details on the GA BIANCA the reader is

addressed to [46, 31, 32].

The paper is organised as follows: firstly the ADP technique is described in Sec. 2, then in Sec. 3 the ADP

strategy is applied to three well-known benchmark problems in order to show its robustness and effectiveness

and the obtained results are then compared to those available in literature. Finally, in Sec 4 two examples

of real-word engineering applications are considered (i.e. the optimal design of damping properties of hybrid
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elastomer/composite laminates and the maximisation of the first buckling load of composite laminates with

given elastic symmetries) in order to show the effectiveness of the proposed approach when dealing with more

complex constrained optimisation problems.

2 The Automatic Dynamic Penalisation (ADP) strategy

Let us consider a constrained optimisation problem stated as follows:

min
x

Φ (x) ,

subject to :
gi (x) ≤ 0 i = 1, ..., r ,

hj (x) = 0 j = 1, ...,m ,

xL ≤ x ≤ xU ,

(1)

where vectors and matrix terms are marked in bold typeface. In this formulation x is the n-dimensional vector

of design variables, while xL and xU are the n-dimensional vectors representing the lower and upper bounds

of the design variables, i.e. the whole definition domain or search space. The full set of equality and inequality

constraints along with the box constraints represents the feasible domain or design space Ω . Design variables

can be of different type: continuous, regular discrete, scattered (i.e. discrete variables without a discretisation

step) or “grouped”, these last being a sort of “abstract” variables representing a group of different variables,

such as, for example, in the case of the constitutive material of a structure, when the material is chosen within

a database: once a particular material is associated to a part, the whole set of the properties of the material

are determined, i.e. elastic moduli, mass density and so on.

The goal of the optimisation consists in minimising the objective function Φ (x) subject to a given number

of constraints: gi (x) (i = 1, ..., r) are the r functions of inequality constraints, while hj (x) (j = 1, ...,m) are

the m functions of equality constraints. For any solution x in the feasible domain Ω , all equality constraints

hj (x) = 0, are active at all points of Ω , and an inequality constraint that satisfies gi (x) = 0, is said an active

constraint.

An optimisation problem can be characterised either by the type of constraints in the problem formulation

or by the linearity or non-linearity of the objective and constraint functions. A problem where at least some

of the objective and constraint functions are non-linear is called non-linear programming problem (NLPP).

In the framework of the penalty-based approaches the constrained NLPP of Eq.(1) is transformed into an

unconstrained one, by defining a new modified objective function as follows:

min
x

Φp (x) ,

where :

Φp (x) =



Φ (x) if gi (x) ≤ 0 and hj (x) = 0 ,

Φ (x) +
r∑

i=1

ciGi (x) if gi (x) > 0 and hj (x) = 0 ,

Φ (x) +
m∑
j=1

qjHj (x) if gi (x) ≤ 0 and hj (x) ̸= 0 ,

Φ (x) +
r∑

i=1

ciGi (x) +
m∑
j=1

qjHj (x) if gi (x) > 0 and hj (x) ̸= 0 ,

i = 1, ..., r , j = 1, ...,m ,

(2)
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where Φp is the penalised (or expanded) objective function, while ci and qj are the penalty coefficients for

inequality and equality constraints, respectively. The quantities Gi (x) and Hj (x) are defined as:

Gi (x) = max{0, gi (x)} i = 1, ..., r ,

Hj (x) = max{0, |hj (x)| − ϵ} j = 1, ...,m .
(3)

It can be noticed that in Eq.(2) and (3) equality constraints were transformed (as normally done in the

literature) into inequality ones having the form:

|hj (x)| − ϵ ≤ 0 , (4)

which is numerically “acceptable” until the allowed tolerance ϵ assumes a sufficient small value that does not

affect the quality of the solution of the problem. The advantage is that at this point all constraints are of the

same nature (inequalities) and they can be treated by the same technique of constraint-handling.

As specified in [7], the penalty should be kept as low as possible, just above the limit below which infeasible

solutions are optimal (this is called, the minimum penalty rule [10]). This is due to the fact that if the penalty

is too high or too low, then the GA might have some difficulties in finding an appropriate feasible optimal

solution [27, 10].

In fact, on one hand, if the penalty is too high and the optimum point is placed on the boundary of the

feasible region, the GA is pushed inside the feasible region very quickly, and it is not able to move back towards

the boundary between the feasible and infeasible regions, i.e. a large penalty discourages the exploration of

the infeasible region since the beginning of the search process. On the other hand, if the penalty is too low,

a lot of the search time is spent in exploring the infeasible region because the penalty term is often negligible

with respect to the objective function and the algorithm might converge to an optimum outside the feasible

domain. These issues are very important in GAs, because in several problems the optimal solution lies close

to or on the boundary between the feasible and the infeasible regions.

The ADP strategy is an original method, firstly presented in [46], that we have developed and generalised

in this work for automatically choosing and updating the penalty coefficients. The basic idea is that some

infeasible individuals can be anyway important to drive the exploration towards interesting zones of the

feasible domain, namely when the optimum point lies on its boundary, i.e. on an active constraint. For

this reason, in the context of the ADP strategy, infeasible points are not automatically excluded from the

population and are used to dynamically update the penalty coefficients in an automatic way, i.e. without

the intervention of the user. This is especially important at the early stages of the search in order to widely

explore the whole search space.

Concerning the penalty coefficients ci and qj of Eq.(2), in classical penalty-based methods, the user have

to properly set their values in order to ensure that the search of solutions is forced within the feasible domain.

Nevertheless, the choice of these coefficients is very difficult and it is common practice to estimate their values

by trial and error. Moreover, it could be useful to adjust penalty pressure along the generations by tuning

these coefficients, but this is directly linked to a deep knowledge of the nature of the optimisation problem at

hand.

The main concept that underlies the ADP strategy is that it is possible to exploit the information restrained

in the whole population (also the infeasible part of it), at the current generation, to better guide the search
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through the whole search space. Generally, at the first generation the population is randomly generated. The

individuals are more or less uniformly distributed over both feasible and infeasible regions of the definition

domain and the corresponding values of objective and constraints functions can be used to estimate an

appropriate level of penalisation, i.e. the values of the penalty coefficients ci and qj .

At each current generation, inside the population we can separate feasible and infeasible individuals, see

Fig. 1, and we can also classify each one of the two groups in terms either of the values of the objective function

or of the amount of constraint violation. Thus, the best individual of each group is the potential candidate to

be solution of the optimisation problem on the feasible and infeasible side of the domain, respectively. Then,

we choose the following definition of the penalty coefficients:

ci (t) =
|ΦF

best − ΦNF
best|

(Gi)NF
best

i = 1, ..., r ,

qj (t) =
|ΦF

best − ΦF
best|

(Hj)NF
best

j = 1, ...,m .

(5)

In Eq.(5) the coefficients ci and qj are evaluated at the current generation t, while the superscripts F and

NF stand for feasible and non-feasible, respectively. ΦF
best and ΦNF

best are the values of the objective function

for the best individuals within the feasible and the infeasible side of the domain, respectively, whilst (Gi)
NF
best

and (Hi)
NF
best represent the violated inequality and equality constraints for the best infeasible solution.

The main reason that underlies the definition of Eq.(5) is that some performing infeasible solutions (in

terms of objective function values, i.e. infeasible minima) are retained within the population and act as

“attraction points”, improving in this way the search properties of the GA. In other words, the presence of

such infeasible points within the population improves the exploration of the whole search domain, particularly

around the boundaries between feasible and infeasible sides. In particular, it is worth noting that substituting

Eq.(5) into Eq.(2), the value of the objective function for the best infeasible individual is forced to be equal

to that of the best feasible individual. Such a situation is very convenient, mostly for what concerns the

case of non-linear, non-convex optimisation problems wherein the global unconstrained minimum is located

within the infeasible region and, potentially, the global constrained minimum lies on the boundary. In such

conditions, the best individual of the infeasible side owns the same fitness as the best feasible individual,

and thus the same probability to be selected in order to take part into the genetic operations of crossover

and mutation. As a consequence, its genetic patrimony is likely to be inherited by the following generation.

Consequently, the GA can handle the information coming from the infeasible region in order to drive the

search towards more convenient sub-domains (namely towards the boundaries between feasible and infeasible

sides).

It appears clearly that the estimation of the penalty factors, according to the Eq.(5), can be repeated at

each generation, thus tuning the appropriate penalty pressure on the current population. The main advantages

of such an approach are substantially two:

• this procedure is automatic and problem-independent because the GA can automatically calculate the

values of the penalty coefficients without the intervention of the user by simply exploiting the values of

the objective and constraint functions in the current population;

• the method is dynamic since the evaluation of the penalty level is updated at each generation, and
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this allows the values of the penalty coefficients to be the most suitable to the current distribution of

feasible and infeasible individuals in the population, the expected effect being eventually to extinguish

the infeasible group in the population or to limit infeasible individuals to regions close to the boundary

between feasible and infeasible domains.

Figure 1: Feasible and infeasible regions of the definition domain

From a practical point of view, the ADP strategy is implemented within BIANCA according to the

following logical steps:

• Case 1 : feasible individuals (with respect to the kth constraint function) within the current population

1. the individuals of the whole population are firstly classified with respect to the violation or non-

violation of the kth constraint function;

2. the individuals which are infeasible with respect to the kth constraint function, are then grouped

and ranked with respect to their objective function values: the objective function of the best

individual of such a sub-space is ΦNF
best, while the kth violated constrain function is (Gk)

NF
best (or

(Hk)
NF
best in the case of equality constraints);

3. the individuals which are feasible with respect to the kth constraint function, are then grouped and

ranked with respect to their objective function values: the objective function of the best individual

of such a group is ΦF
best;

4. the penalty coefficient ck (or qk) is then evaluated according to Eq.(5).

• Case 2 : no feasible individuals (with respect to the kth constraint function) within the current population

1. the individuals of the whole population are firstly classified with respect to the violation or non-

violation of the kth constraint function;

2. the individuals are then sorted into two different groups: the individuals having smaller values

of the kth violated constraint are grouped in a sub-space of “virtually feasible” individuals (with

respect to the kth constraint function), while the rest are grouped in the sub-space of infeasible

individuals. The number of individuals grouped in the “virtually feasible” region corresponds to

10% of the population size;
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3. the remaining 90% individuals in the population, which are considered ”effectively infeasible”

with respect to the kth constraint function are ranked in terms of their objective function values:

the objective function of the best individual of such a sub-space is ΦNF
best, while the kth violated

constraint function is (Gk)
NF
best (or (Hk)

NF
best in the case of equality constraints);

4. the individuals within the “virtually feasible” region (with respect to the kth constraint function) are

ranked with respect to their objective function values: the objective function of the best individual

of such a group is ΦF
best;

5. the penalty coefficient ck (or qk) is then evaluated according to Eq.(5);

It is worth noting that, in the context of the ADP strategy, each constraint is treated separately and

independently from each other.

To understand the way whereby the ADP strategy acts on the individuals within the population, and also

to show its effectiveness, let us consider the following optimisation problem:

min
x

Φ (x1, x2) = −eka
√
x1+x2 sin (ax1) cos (2bx2) ,

subject to :
g (x1, x2) = ecx

2
1 − 1− x2 ≤ 0 ,

0 ≤ x1 ≤ 4π ,

0 ≤ x2 ≤ 2π ,

(6)

where a = 1, b = 0.6, c = 0.012 and k = 0.2 are constant parameters. A 3D plot of the objective function

Φ (x1, x2) and of the constraint g (x1, x2) is given in Fig. 2. It can be noticed that such a function is highly

non-linear and non-convex with several local minima into the feasible region, while the global unconstrained

minimum is placed on the infeasible side. However, the global constrained minimum lies on the boundary

between the two regions and very close to the global unconstrained (infeasible) minimum.

Figure 2: a) 3D plot and b) contour plot of the objective and constraint functions on the definition domain

To solve problem (6), we used the GA BIANCA with a population of Nind = 200 individuals evolving

along Ngen = 100 generations. In addition, the crossover and mutation probabilities are pcross = 0.85 and

pmut = 1/Nind, respectively. The selection is performed through the roulette-wheel operator, the elitism is

active and the ADP method has been used for handling constraints.

9



The values of the constrained global minimum and of the constraint function found by BIANCA are Φ =

−8.09933 and g = −0.00443, respectively, whilst the optimal values of the design variables are x1 = 10.71119

and x2 = 2.96646. Fig. 3 shows the evolution of the distribution of the individuals over the definition domain

along the generations. It can be noticed that at the initial generation the population is uniformly distributed

over the design space (Fig. 3 (a)). After 20 generations (Fig. 3 (b)) some individuals move towards the

local feasible minimum, while the rest of the population moves towards the global constrained minimum. It

can be noticed that after 20 generations we still have some infeasible individuals placed around the global

unconstrained (infeasible) minimum that acts as an attractor for the solution search process. The GA uses

such points (and the related genetic information) in order to drive the search to the regions placed near the

boundary. After 50 generations (Fig. 3 (c)) all the individuals are very close to the true constrained minimum.

Figure 3: Distribution of the individuals over the search space along the generations for problem (6): a) initial
generation, b) after 20 generations, c) after 50 generations, d) final generation

3 Benchmark Problems

To have an idea of the effectiveness of the ADP strategy, we consider three benchmark problems belonging to

the engineering world, which were extensively studied in the literature.

Such benchmark problems are: the welded beam problem, originally proposed by Rao [37], the pressure

vessel problem, firstly studied by Kannan and Kramer [24], and the tension-compression spring problem taken

from Arora [1] and Belugundu [2].

Concerning the genetic parameters employed in all the simulations, the population is composed of Nind
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individuals evolving along a fixed maximum number of generation Ngen. For each considered benchmark we

perform 30 runs of our GA, and, for each run, 80000 fitness evaluations are carried out. This implies that

such a number of fitness evaluations can be obtained with various combinations of number of individuals and

maximum number of generations, i.e. the parameters Nind and Ngen must satisfy the following relationship:

Ngen ×Nind = 80000 . (7)

In addition, the crossover and mutation probabilities are pcross = 0.85 and pmut = 1/Nind, respectively. The

selection is performed by the roulette-wheel operator, the single-individual elitism is active and, of course, the

ADP method was used for handling constraints.

For each test-case, we compare our results with the ones reported in the literature and obtained by other

researchers by the use of several EA-based methods which employ different constraint-handling techniques.

3.1 The welded beam problem

The welded beam problem was originally studied by Rao [37]. In such a problem a welded beam is designed

for minimum cost subject to constraints on shear stress (τ), bending stress in the beam (σ), buckling load on

the bar (Pc), end deflection of the beam (δ), and side constraints. There are four design variables as shown

in Fig. 4 : x1 = h, x2 = l, x3 = t and x4 = b.

The problem can be stated as follows:

min
x

Φ (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) ,

subject to :

g1 (x) = τ (x)− τmax ≤ 0 ,

g2 (x) = σ (x)− σmax ≤ 0 ,

g3 (x) = x1 − x4 ≤ 0 ,

g4 (x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0 ,

g5 (x) = 0.125− x1 ≤ 0 ,

g6 (x) = δ (x)− δmax ≤ 0 ,

g7 (x) = P − Pc (x) ≤ 0 ,

0.1 ≤ x1 ≤ 2.0 ,

0.1 ≤ x2 ≤ 10.0 ,

0.1 ≤ x3 ≤ 10.0 ,

0.1 ≤ x4 ≤ 2.0 ,

(8)

where:
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τ (x) =

√
τ21 + 2τ1τ2

x2

2R
+ τ22 ,

τ1 =
P√
2x1x2

, τ2 =
MR

J
, M = P (L+

x2

2
) ,

R =

√(x2

2

)2
+

(
x1 + x3

2

)2

,

J = 2

{
√
2x1x2

[
x2
2

12
+

(
x1 + x3

2

)2
]}

,

σ (x) = 6
PL

x4x2
3

, δ (x) =
4PL3

Ex4x3
3

,

Pc (x) =
4.013E

√
x2
3x

6
4/36

L2

(
1− x3

2L

√
E

4G

)
.

(9)

The quantities P , L, δmax, τmax, σmax, E and G are constant parameters and their numerical values, in the

appropriate units [7], are: P = 6000, L = 14, δmax = 0.25, τmax = 13600, σmax = 30000, E = 30 × 106 and

G = 12× 106.

Figure 4: Rough sketch of the welded beam considered within the optimisation problem (8), taken from [7]

The approaches employed to deal with such a problem are: geometric programming (Ragsdell and Phillips [36]),

standard GA with static penalty function (Deb [11]), an improved GA with a feasibility-based tourna-

ment selection scheme inspired by the multi-objective optimisation techniques (Coello and Montes [6]), a

co-evolutionary particle-swarm strategy for constrained optimisation problems (He and Wang [19]), a hybrid

particle-swarm optimisation with feasibility rules (He and Wang [20]) and a hybrid GA with flexible allowance

technique (Zhao et al. [49]).

Concerning the GA BIANCA, in order to satisfy the condition on the maximum number of fitness evalu-

ations of Eq.(7), we consider a population of Nind = 250 individuals evolving along Ngen = 320 generations.

The best solution found by BIANCA as well as the best solutions obtained by the aforementioned approaches

are listed in Table 1, while the statistical results for each considered strategy are detailed in Table 2. Fig. 5

shows the variation of the best solution along the generations. It can be noticed that the global minimum is
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found after 260 generations.

Figure 5: Best values of the objective function along the generations for the optimisation problem (8)
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Design variables BIANCA Zhao He and He and Coello and Deb [11] Ragsdell and
et al. [49] Wang [20] Wang [19] Montes [6] Phillips [36]

x1 0.205501 0.205730 0.205730 0.202369 0.205986 0.248900 0.245500

x2 3.475070 3.470489 3.470489 3.544214 3.471328 6.173000 6.196000

x3 9.037540 9.036624 9.036624 9.048210 9.020224 8.178900 8.273000

x4 0.205751 0.205730 0.205730 0.205723 0.206480 0.253300 0.245500

Constraints

g1(x) −0.021384 N.A. N.A. −12.839796 −0.074092 −5758.603777 −5743.826517

g2(x) −9.195431 N.A. N.A. −1.247467 −0.266227 −255.576901 −4.715097

g3(x) −0.000250 N.A. N.A. −0.001498 −0.000495 −0.004400 0

g4(x) −3.432263 N.A. N.A. −3.429347 −3.430043 −2.982866 −3.020289

g5(x) −0.080501 N.A. N.A. −0.079381 −0.080986 −0.123900 −0.120500

g6(x) −0.235546 N.A. N.A. −0.235536 −0.235514 −0.234160 −0.234208

g7(x) −2.269075 N.A. N.A. −11.681355 −58.666440 −4465.270928 −3604.275002

Objective

Φ(x) 1.725436 1.724852 1.724852 1.728024 1.728226 2.433116 2.385937

Table 1: Comparison between the best solutions found with different penalty-based approaches for the opti-
misation problem (8) (N.A. stands for “Not Available”).

Method Best Mean Worst Standard deviation

BIANCA 1.725436 1.752201 1.793233 0.023001

Zhao et al. [49] 1.724852 1.724852 1.724852 5.8× 10−16

He and Wang [20] 1.724852 1.749040 1.814295 0.040000

He and Wang [19] 1.728024 1.748831 1.782143 0.012926

Coello and Montes [6] 1.728226 1.792654 1.993408 0.074713

Deb [11] 2.433116 N.A. N.A. N.A.

Ragsdell and Phillips [36] 2.385937 N.A. N.A. N.A.

Table 2: Statistical results found with different penalty-based approaches for the optimisation problem (8)
(N.A. stands for “Not Available”).

3.2 The pressure vessel problem

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Fig. 6. The goal of this

problems consists in minimising the total cost of the structure, including the cost of the material, forming and

welding. The design variables are: the thickness of the shell x1 = Ts, the thickness of the head x2 = Th, the

inner radius x3 = R and the length of the cylindrical section of the vessel (not including the head) x4 = L.

Moreover, Ts and Th are real discrete design variables discretised with a precision ∆x1 = ∆x2 = 0.0625 (which

corresponds to the available thickness of rolled steel plates), while R and L are continuous.

Using the same notation adopted by Kannan and Kramer [24], the problem can be stated as follows:
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min
x

Φ (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x4x

2
1 + 19.84x3x

2
1 ,

subject to :

g1 (x) = −x1 + 0.0193x3 ≤ 0 ,

g2 (x) = −x2 + 0.00954x3 ≤ 0 ,

g3 (x) = −πx2
3x4 −

4

3
πx3

3 + 1296000.0 ≤ 0 ,

g4 (x) = x4 − 240.0 ≤ 0 ,

0.0625 ≤ x1 ≤ 6.1875 , with ∆x1 = 0.0625 ,

0.0625 ≤ x2 ≤ 6.1875 , with ∆x2 = 0.0625 ,

10.0 ≤ x3 ≤ 200.0 ,

10.0 ≤ x4 ≤ 200.0 .

(10)

Figure 6: Rough sketch of the pressure vessel considered within the optimisation problem (10), taken from [7]

The approaches used in the literature to solve this problem are: an augmented Lagrangian multiplier

approach (Kannan and Kramer [24]), a genetic adaptive search (Deb [12]), and, again, the aforementioned

approaches of Coello and Montes [6], He and Wang [19, 20] and Zhao et al. [49].

In order to satisfy the condition on the maximum number of fitness evaluations of Eq.(7), the size of the

population Nind and the maximum number of generations Ngen in BIANCA are chosen equal to 400 and 200,

respectively.

The best solution found by BIANCA as well as the best solutions obtained by the aforementioned approaches

are listed in Table 3, while the statistical results for each considered strategy are detailed in Table 4. Fig. 7

shows the variation of the best solution along the generations. It can be noticed that the global minimum is

found after only 20 generations.
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Figure 7: Best values of the objective function along the generations for the optimisation problem (10)

Design variables BIANCA Zhao He and He and Coello and Deb [12] Kannan and
et al. [49] Wang [20] Wang [19] Montes [6] Kramer [24]

x1 0.812500 0.812500 0.812500 0.812500 0.812500 0.937500 1.125000

x2 0.437500 0.437500 0.437500 0.437500 0.437500 0.500000 0.625000

x3 42.096800 42.098456 42.098456 42.091266 42.097398 48.329000 58.291000

x4 176.658000 176.636596 176.636596 176.746500 176.654050 112.679000 43.690000

Constraints

g1(x) −0.000032 N.A. N.A. −0.000139 −0.000020 −0.004750 0.000016

g2(x) −0.035897 N.A. N.A. −0.035949 −0.035891 −0.038941 −0.068904

g3(x) −5.631534 N.A. N.A. −116.382700 −27.886075 −3652.876838 −21.220104

g4(x) −63.342000 N.A. N.A. −63.253500 −63.345953 −127.321000 −196.310000

Objective

Φ(x) 6059.9384 6059.7143 6059.7143 6061.0777 6059.9463 6410.3811 7198.0428

Table 3: Comparison between the best solutions found with different penalty-based approaches for the opti-
misation problem (10) (N.A. stands for “Not Available”).

Method Best Mean Worst Standard deviation

BIANCA 6059.9384 6182.0022 6447.3251 122.3256

Zhao et al. [49] 6059.7143 6059.7143 6059.7143 2.8× 10−12

He and Wang [20] 6059.7143 6099.9323 6288.6770 86.2000

He and Wang [19] 6061.0777 6147.1332 6363.8041 86.4545

Coello and Montes [6] 6059.9463 6177.2533 6469.3220 130.9297

Deb [12] 6410.3811 N.A. N.A. N.A.

Kannan and Kramer [24] 7198.0428 N.A. N.A. N.A.

Table 4: Statistical results found with different penalty-based approaches for the optimisation problem (10)
(N.A. stands for “Not Available”).

3.3 The tension-compression spring problem

The design problem of a tension-compression spring was firstly studied by Arora [1] and Belegundu [2].

The main goal is to minimise the weight of the tension-compression spring (as shown in Fig. 8) subject to
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constraints on the minimum deflection, the shear stress, the surge frequency and the outside diameter. The

design variables are: the wire diameter x1 = d, the mean coil diameter x2 = D and the number of active coils

x3 = Ncoil.

Adopting the same notation of Arora [1], the problem can be stated as follows:

min
x

Φ (x) = (x3 + 2)x2x
2
1 ,

subject to :

g1 (x) = 1− x3
2x3

71785.0x4
1

≤ 0 ,

g2 (x) =
4x2

2 − x1x2

12566.0(x3
1x2 − x4

1)
+

1

5108.0x2
1

− 1 ≤ 0 ,

g3 (x) = 1− 140.45x1

x2
2x3

≤ 0 ,

g4 (x) =
x1 + x2

1.5
− 1 ≤ 0 ,

0.05 ≤ x1 ≤ 2.0 ,

0.25 ≤ x2 ≤ 1.3 ,

2.0 ≤ x3 ≤ 15.0 ,

(11)

Figure 8: Rough sketch of tension-compression spring considered within the optimisation problem (11), taken
from [19]

We compare our results with the ones carried out through the following strategies taken from the literature:

the numerical optimisation technique proposed by Belegundu [2], a numerical optimisation technique called

“constraint correction at constant cost” (Arora [1]) and, again, the aforementioned approaches of Coello and

Montes [6], He and Wang [19, 20] and Zhao et al. [49].

Concerning the GA BIANCA, in order to satisfy the condition on the maximum number of fitness evalu-

ations of Eq.(7), we consider a population of Nind = 320 individuals evolving along Ngen = 250 generations.

The best solution found by BIANCA as well as the best solutions obtained by the aforementioned approaches

are listed in Table 5, while the statistical results for each considered strategy are detailed in Table 6. Fig. 9

shows the variation of the best solution along the generations. It can be noticed that the global minimum is

found after only 50 generations.
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Figure 9: Best values of the objective function along the generations for the optimisation problem (11)

Design variables BIANCA Zhao He and He and Coello and Arora [1] Belegundu [2]
et al. [49] Wang [20] Wang [19] Montes [6]

x1 0.051613 0.051689 0.051689 0.051728 0.051989 0.053396 0.050000

x2 0.354839 0.356717 0.356717 0.357644 0.363965 0.399180 0.315900

x3 11.404700 11.288966 11.288966 11.244543 10.890522 9.185400 14.250000

Constraints

g1(x) −0.000256 N.A. N.A. −0.000845 −0.000013 0.000019 −0.000014

g2(x) −0.000112 N.A. N.A. −0.000013 −0.000021 −0.000018 −0.003782

g3(x) −4.048164 N.A. N.A. −4.051300 −4.061338 −4.123832 −3.938302

g4(x) −0.729032 N.A. N.A. −0.727090 −0.722698 −0.698283 −0.756067

Objective

Φ(x) 0.012671 0.012665 0.012665 0.012675 0.012681 0.012730 0.012833

Table 5: Comparison between the best solutions found with different penalty-based approaches for the opti-
misation problem (11) (N.A. stands for “Not Available”).

Method Best Mean Worst Standard deviation

BIANCA 0.012671 0.012681 0.012913 5.123200× 10−5

Zhao et al. [49] 0.012665 0.012665 0.012665 3.200000× 10−7

He and Wang [20] 0.012665 0.012707 0.012719 1.608500× 10−5

He and Wang [19] 0.012675 0.012730 0.012924 5.198500× 10−5

Coello and Montes [6] 0.012681 0.012742 0.012973 5.900000× 10−5

Arora [1] 0.012730 N.A. N.A. N.A.

Belegundu [2] 0.012833 N.A. N.A. N.A.

Table 6: Statistical results found with different penalty-based approaches for the optimisation problem (11)
(N.A. stands for “Not Available”).

3.4 Discussion of results

Concerning the effectiveness and robustness of the GA BIANCA, we can see that for all the three considered

benchmark problems, the quality of the results found using BIANCA is, practically, of the same order of

that obtained via the hybrid strategies of He and Wang [20] and Zhao et al. [49]. Indeed, the relative errors
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(evaluated with respect to the solutions found by Zhao et al. [49]) are 0.0034% for the welded beam design

problem, 0.0004% for the pressure vessel design problem and 0.0047% for the tension-compression string

design problem. In addition, one can notice that the average searching quality and the standard deviation of

the results found by BIANCA in 30 independent runs are of the same order as the other methods (with the

exception of the hybrid strategies).

Concerning the pressure vessel design problem, it can be noticed that the strategy of Kannan and

Kramer [24] produces a solution with a significantly lower value of L. This solution is, however, not fea-

sible since the first constraint is slightly violated. The results produced by the other methods (including the

ones found using BIANCA) indicate that it is more reasonable to variate the other design variables, allowing

larger values of L because this leads to find feasible designs having a lower cost.

Concerning the tension-compression spring design problem, it can be noticed that the solution found by

Arora [1] has a lower value of the number of active coils Ncoil. Indeed, such a solution is infeasible since the

first constraint is slightly violated. We can see that the results produced by the other approaches (including

the ones found using BIANCA) indicate that allowing greater values of the number of active coils Ncoil leads

the algorithm to find feasible designs showing a lower weight.

The hybrid GA with flexible allowance technique developed by Zhao et al. [49] is a hybrid GA with

Levenberg-Marquardt mutation operator which creates new feasible individuals (offspring) by considering the

auxiliary information coming from the evaluation of the constraints gradient. Such a strategy allows to obtain

a numerically “exact” minimum for all the considered benchmarks. The authors assert that such solutions

were found after only 20000 evaluations of the objective function (which corresponds to 1/4 of the number of

evaluations carried out by the other considered methods).

Nevertheless, for such benchmark problems the objective and constraint functions are available in a closed

algebraic form. Generally, this is not the case when dealing with optimisation of complex engineering systems

(which require, for example, finite element calculations for the constraints and/or the objective function

evaluation). In such cases, the results obtained via a hybrid GA, as the one proposed in [49], could be affected

by the way wherein the derivatives of the constraints and objective function are evaluated (which represent

a key-point for the Levenberg-Marquardt mutation operator). Moreover a more accurate analysis of the

effectiveness and performances of such techniques (in terms of time spent to find a solution) could be made on

the basis of the effective computing time rather than on the basis on the number of fitness evaluations, because

the effective calculation cost includes also the evaluation of derivatives for the gradient-based operations of

constraint repair.

Finally, we can assert that the main advantage of our approach relies on the fact that it remains a “purely”

genetic approach: on one side, we do not need an estimation of auxiliary quantities, such as the derivatives

of the constraint or objective functions, while on the other side, we practically have the same quality as the

hybrid strategies in finding optimal solutions.

4 Two applications of the ADP strategy

In this section we discuss two examples of real-world engineering constrained optimisation problems to which

the ADP strategy has been successfully applied. Such applications are: (a) the optimal design of damping
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properties of hybrid elastomer/composite laminates (see [29] for more details) and (b) the maximisation of

the first buckling load of composite laminates with given elastic symmetries (see [46] for more details). Both

applications correspond to highly non-linear and non-convex constrained optimisation problems: in the first

one, only inequality constraints are considered, whilst in the second problem also a difficult equality constraint

is taken into account.

Further examples of real-world engineering applications whereto our strategy was successfully applied

include the least-weight design of a stiffened wing-box section for an aircraft wing [31, 32] and the inverse

problem concerning the identification of electromechanical properties of composite laminated plates equipped

with piezoelectric patches [30].

4.1 Optimal design of damping properties of hybrid elastomer/composite lami-
nates

Problem description

In this first application we want to find a solution for the problem of designing the damping properties

of hybrid elastomer/composite laminates and we applied our strategy to a rectangular hybrid plate, whose

dimensions are depicted in Fig. 10.

Figure 10: Geometry of the hybrid plate.

Concerning the typical dimensions of the plate, the thickness of each layer is constrained to remain suffi-

ciently small compared to both the width and the length of the plate, in order to keep valid the assumptions

of the thin plate model. Moreover, we assume that the fibre-reinforced plies have linear elastic orthotropic

behaviour. A glass-epoxy lamina is employed for the generic elastic ply, whose material properties (issued

from [3]) are listed in Table 7.

Young’s modulus E1 [GPa] 29.9
Young’s modulus E2 [GPa] 7.5
Young’s modulus E3 [GPa] 7.5
Shear modulus G12 [GPa] 2.25
Shear modulus G23 [GPa] 2.25
Shear modulus G13 [GPa] 2.25
Poisson’s ratio ν12 0.24
Poisson’s ratio ν23 0.24
Poisson’s ratio ν13 0.24
Density ρ [kg m−3] 1500

Table 7: Material properties for the glass-epoxy lamina
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The material used for the viscoelastic layers is a rubber-like material having linear isotropic behaviour.

In addition, the properties of that material are considered dependent upon the loading frequency f and are

taken from [25]. The variation of the Young’s modulus with the frequency is expressed as:

E(f) = Es + Edlog

(
f
v
f

)
, (12)

where Es = 0.0041 GPa is the steady-state value of the Young’s modulus, Ed = 0.0322 GPa is the amplitude

of the part that depends upon the frequency, while
v
f = 1 Hz is a reference value for the frequency. The

Poisson’s ratio and the material loss factor are kept constants and equal to ν = 0.3 and ηv = 0.3, respectively,

whilst the density is ρ = 968.1 kg m−3. More details about this problem can be found in [29].

Finite element model of the hybrid plate and loading conditions

In order to correctly predict the different mechanisms of dissipating the vibrational energy that underlie the

viscoelastically damped structures (see [33]), 3D solid elements with 8 nodes and 3 degrees of freedom (DOFs)

per node were employed to model either the elastic or the rubber layers. The FE model is built in the ANSYS

environment.

The dynamic response of the structure is evaluated through a classical free-vibration analysis. Only the

first N = 5 non-rigid modes are calculated considering free-displacement boundary conditions on the edges

of the plate. It is worth noting that, since the material properties of the viscoelastic layers depend upon the

frequency, the calculation of the eigenfrequencies (as well as that of the modal loss factors) is iterative for

each eigenfrequency and was carried out using the well-known Iterative Modal Strain Energy (IMSE) method,

see [29].

Once the convergence on the ith undamped natural frequency is reached, the corresponding modal loss

factor ηi is evaluated as:

ηi = ηv(fi)
Wv(fi)

Wtot(fi)
, (13)

where ηv(fi) is the material loss factor at the current frequency, while Wv(fi) and Wtot(fi) are the strain

energy of the viscoleastic layers and the total strain energy of the structure for the ith mode, respectively.

Along with the increase of damping capability, the structure must withstand the application of static loads,

i.e. the structure has to exhibit good properties in terms of stiffness [29]. In particular we consider three

different static loading conditions imposing a prescribed unitary displacement, δ = 1 mm, in some well-chose

regions of the plate and we measure the in-plane and out-of-plane stiffness in terms of the reaction forces Rx,

Ry and Rz.

Mathematical statement of the damping properties design problem

The problem of designing the damping properties of a hybrid plate is stated as a constrained optimisation

problem. The goal of our strategy consists in maximising the first N modal loss factors of the structure,

without degrading the stiffness properties of the plate and without increasing too much its weight.

The problem is stated in the most general case, thus the design variables are:

• the total number of layers (both elastic and viscoelastic), n;
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• the position and the number of the viscoelastic layers within the stack, which are directly linked to

the variable IDk, (k = 1, ..., n), that identifies the nature of the kth ply, i.e. IDk = 1 if the kth ply is

viscoelastic, IDk = 0 otherwise;

• the thickness of each layer, tk (k = 1, ..., n);

• the fiber orientation of the elastic plies, δk (k = 1, ..., n).

The optimisation problem can now be formulated. The maximisation of the first N modal factors can be

expressed as the minimisation of the following objective function:

Φ = −
N∑
i=1

ηi (14)

that represents the opposite of the sum of the first N modal loss factors. Moreover, the constraints on the

maximum decrease of the stiffness properties and on the maximum increase of the mass of the plate have

to be considered. Therefore, the constrained minimisation problem can be stated as a classical non-linear

programming problem (NLPP) as follows:

min Φ (n, IDk, tk, δk) (with k = 1, ..., n) ,

subject to :

g1(n, IDk, tk, δk) =
Rx

ref −Rx (n, IDk, tk, δk)

Rx
ref

− ϵx ≤ 0 ,

g2(n, IDk, tk, δk) =
Ry

ref −Ry (n, IDk, tk, δk)

Ry
ref

− ϵy ≤ 0 ,

g3(n, IDk, tk, δk) =
Rz

ref −Rz (n, IDk, tk, δk)

Rz
ref

− ϵz ≤ 0 ,

g4(n, IDk, tk) =
M (n, IDk, tk)−Mref

Mref
− ϵM ≤ 0 .

(15)

In Eq. (15) Rx, Ry and Rz are the reactions of the plate, which represent a measure of the stiffness of the

structure, while M is the mass of the plate. The superscript ref stands for reference value. The reference

values of the reactions and mass are calculated, before the optimisation process, on a reference undamped

structure, i.e. a plate without elastomeric layers. The quantities ϵx, ϵy, ϵz and ϵM are the user-defined

tolerances on each constraint.

It can be noticed that the NLPP of Eq. (15) is highly non-linear and non-convex in the space of design

variables (in fact, for a given eigenfrequency the strain energy, and hence the loss factor of the structure,

depends upon circular functions of the plies orientation). In addition, we can notice that the objective as well

as the constraint functions are not available in closed algebraic form, being the outcome of the FE calculations.

It is worth noting that, since the number of layers n is included among the optimisation variables, the total

number of design variables of the whole optimisation process can change for each possible point-solution in the

design space, or, in other words, the procedure determines by itself the optimal number of design variables.

Indeed, in the objective and constraint functions, we can enumerate three variables for each ply (the nature

of the ply, IDk, the thickness tk and the orientation δk) besides the variable number n of layers. Therefore,

in the most general case, the overall number of design variables for the problem (15) is 3n+ 1.
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The reference values for the reactions and the mass of the plate as well as those of the user-defined

tolerances on the constraints of the problem (15) are issued from [29] and are evaluated considering a reference

plate composed of 6 glass-epoxy laminae having a thickness equal to 0.3 mm and with the following stacking

sequence: [90/45/0]S .

Numerical results

Here we show only the results concerning the most general case for which no simplifying assumptions on the

position of the viscoelastic layers within the laminate stack are made.

The design variables, their nature and bounds are detailed in Table 8. The total number of design variables

varies along with the number of plies: it can vary between 13 and 25. Even the number of DOFs of the FE

model varies between 39975 and 71955.

Design variable Type Lower bound Upper Bound Discretisation Step

n integer 4 8 −
IDk integer 0 1 −
tk [mm] discrete 0.1 1.0 0.01

δk [deg] discrete −75 90 15

Table 8: Design variables for the optimisation problem (15).

Concerning the genetic parameters, the population size is set to Nind = 60, while the maximum number

of generations is Ngen = 100. We ran the GA BIANCA with the following values of genetic operators

probabilities: crossover and mutation probabilities are pcross = 0.85 and pmut = 1/Nind, respectively, while

the shift operator and chromosomes number mutation probabilities are pshift = 0.5 and (pmut)chrom =

(nmax − nmin)/Nind, where nmax and nmin are the upper and lower bounds on the number of layers, i.e. the

maximum and the minimum number of chromosomes for the generic individual. Selection is performed by

the roulette-wheel operator, the single-individual elitism is active and the ADP method is used for handling

constraints.

This set of values is problem-independent and demonstrated its validity over the large range of optimisation

problems solved by BIANCA [46, 31, 32, 29, 30]

The best solution found by BIANCA is shown in Table 9. The optimal number of plies is 6. Moreover, for

this case, the optimal configuration of the hybrid plate shows 2 viscoelastic plies on the top of the structure.

Comparing the plots of Fig. 11 (a) and 11 (b), one can notice something that happens systematically:

convergence towards the best value of the number of modules (here, the number of plies) and of the objective

function are independent. They never occur at the same time, and the optimisation of the number of modules

happens always before that of the objective function. In other words, the strategy used in BIANCA for

evolving simultaneously species and individuals, normally lets attain first the best species, and then continues

to evolve individuals within the best species towards the best individual. In fact, as shown in Fig. 11, the

global constrained minimum has been found after 62 generations, whilst the optimal number of plies is found

after only 8 generations.

Fig. 12 shows the evolution of the species restrained in the whole population from the initial until the

final generation. We can notice that in the first generation the number of individuals belonging to all the
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Reference Best solution

n 6 6

IDk [1/1/0/0/0/0]

δk [90/45/0]S [V/V/0/90/90/0]

tk [mm] [0.3/0.3/0.3]S [0.32/0.31/0.43/0.42/0.31/0.30]

η1 0.01756

η2 0.00483

η3 0.01228

η4 0.01066

η5 0.01298

f1 [Hz] 70.09

f2 [Hz] 164.87

f3 [Hz] 217.90

f4 [Hz] 317.45

f5 [Hz] 346.97

Rx [N] −17352 −17065 (−1.6%)

Ry [N] −44480 −43688 (−1.7%)

Rz [N] −23.06 −28.31 (+22.7%)

M [Kg] 0.0675 0.07 (+3.7%)

Φ −0.05831

g1 −0.03349

g2 −0.03218

g3 −0.27763

g4 −0.013

Table 9: Best solution found using BIANCA for the optimisation problem (15), case 3 (V denotes the position
of the viscoelastic ply).

different species is equiprobable, whilst some species extinguish during the generations and cannot be found

within the final population: only solutions with 5 to 8 plies can be found within the population in the last

generation.

Figure 11: (a) Best values of the objective function and (b) number of layers along generations for problem
(15).

As conclusive remark, from Fig. 11 (a) it can be noticed that in the transition from the first to the genera-

tion 13 the best solution alternates increasing and decreasing phases, rather than decreases in a continuously

way. From the generation 14 until the last generation the solution has a normal trend, i.e. the elitism operator

correctly preserves the best solution at each generation and the value of the objective function for the best
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Figure 12: Evolution of species: number of individuals belonging to the same species in initial and final
populations for problem (15).

individual decreases during generations. As it can be seen from Fig. 11 (a), in the first generation the best

individual (and, hence, all the individuals of the initial population) is infeasible. The irregular trend of the

best solution during the initial generations is due to the update of the penalty coefficients at each generation:

in fact more and more new individuals are generated by the GA during the generations and this results in

fitter individuals that gradually push the search process towards more convenient feasible regions of the whole

search space. This is a very important fact: the ADP method seems to be a powerful strategy able to explore

in an extensive way the whole search space, either from the feasible or the infeasible side, even if the initial

population is made of infeasible individuals.

4.2 Maximisation of the first buckling load of composite laminates with given
elastic symmetries

We consider the case of a rectangular simply-supported uncoupled orthotropic laminated plate, whose side

lengths are a and b, subject to compression in-plane loads having resultant forces per unit length Nx and Ny,

respectively, as shown in Fig. 13.

Figure 13: Rectangular laminated plate subject to in-plane forces per unit length Nx and Ny.
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For such a case, buckling shapes are sinusoidal and, being m and n the number of half-waves along x and

y directions, respectively, the critical value of the load multiplier λcrit (m,n) for the buckling load can be

expressed as follows:

λcrit (m,n) = π2
Dxx

(m
a

)4
+ 2 (Dxy + 2Dss)

(m
a

)2 (n
b

)2
+Dyy

(n
b

)4
Nx

(m
a

)2
+Ny

(n
b

)2 . (16)

In Eq.(16), Dij (i, j = x, y, s) are the Cartesian components of the bending stiffness tensor expressed in the

global reference system of the plate R = {O;x, y, z}. It can be noticed that expression (16) can be applied

only to orthotropic uncoupled plates, and therefore bending orthotropy as well as elastic uncoupling represent

necessary conditions that the laminate must satisfy. In addition we want that the laminated plate satisfies

the membrane orthotropy requirement too. Moreover, as tacitly assumed in Eq.(16), the principal axes of

orthotropy (for both membrane and bending behaviour) have to be coincident with the plate axes.

Along with the previous aspects, we look for a highly stiff orthotropic plate. Thus, constraints have to be

imposed on the extension Young moduli along the orthotropy axes, namely EA
x and EA

y .

Generally speaking, the problem of maximising the buckling load of a simply-supported laminated plate

subject to the aforementioned constraints can be stated as:

max
δ

(
min
m,n

λcrit(δ)

)
,

subject to :
g1(δ) = E

A

x − EA
x ≤ 0 ,

g2(δ) = E
A

y − EA
y ≤ 0 ,

h1(δ) = I (P (δ)) = 0 .

(17)

In Eq.(17), δ ∈ RN is the vector of layers orientations (the design variables of the present problem), while

N is the number of plies. The objective function λcrit(δ) is highly non-linear and non-convex in the space of

the layer orientations (this is due to the fact that the components of the bending stiffness tensor Dij depend

upon circular functions of the orientations). g1(δ) and g2(δ) are the constraints imposed on the values of the

extension Young moduli along the orthotropic axes of the plate, whilst E
A

x = 60000 MPa and E
A

y = 30000

MPa represent the target values of such quantities along x and y axis, respectively. The equality constraint

h1(δ) = I (P (δ)) is actually the square of a dimensionless tensor distance (see [44, 23] for more details). The

quadratic form I (P (δ)) of Eq.(17) is a non-dimensional, positive semi-definite function of the so-called polar

parameters of the laminate [44]. Such a function depends on all the mechanical and geometrical properties of

the laminate, i.e. stacking sequence, ply orientations, material and thickness of the plies. In addition, I (P (δ))

is non-convex in the space of layer orientations, since also the polar parameters of the laminate depend upon

circular functions of the orientations. The quadratic form I (P (δ)) describes the requirements on the elastic

symmetries that the laminate must satisfy (for the present case they are elastic uncoupling, bending as well

as in-plane orthotropy with the main orthotropy axes aligned with the axes of the plate).

It can be noticed that the equality constraint on the quadratic form I (P (δ)) was transformed into an

inequality one by defining a small tolerance εI = 10−4 for what concerns the precision of the solution in terms

of elastic symmetries, i.e. I (P (δ))− εI ≤ 0.
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Here, as a numerical example, we consider a square laminated plate with side length a = b = 100 mm,

subject to pressure loads Nx = Ny = 1 N/mm. The plate is made of highly anisotropic unidirectional carbon-

epoxy layers T300/5280 [43], whose material properties are shown in Table 10. We fixed the number of layers

N = 16, whilst the optimisation variables are the plies orientation angles, which can assume all values between

−90◦ and 90◦, with a discretisation step of 1◦.

Concerning the genetic parameters that regulate the iterations of the GA BIANCA, the population size is

set to Nind = 500 and the maximum number of generations is assumed equal to Ngen = 120. The crossover

and mutation probabilities are pcross = 0.85 and pmut = 1/Nind, respectively. Selection is performed by

the roulette-wheel operator, the single-individual elitism is active and the ADP method is used for handling

constraints.

Technical moduli

Young’s modulus E1 [MPa] 181000
Young’s modulus E2 [MPa] 10300
Shear modulus G12 [MPa] 7170
Poisson’s ratio ν12 0.28
Ply thickness tply [mm] 0.125

Table 10: Technical moduli for unidirectional plies of carbon-epoxy T300/5208, from [43]

Table 11 shows the best stacking sequence found using BIANCA for problem (17) along with the values

of the buckling load multiplier λcrit, the extension Young’s moduli EA
x and EA

y as well as that of the function

I (P (δ)).

δ [deg] [−2/− 9/28/5/− 73/− 12/− 13/30/82/− 21/− 88/9/− 10/21/7/− 14]
λcrit 84.36
EA

x [MPa] 127722.0
EA

y [MPa] 41578.0
I (P (δ)) 8.51× 10−5

Table 11: Best solution found using BIANCA for problem (17).

Fig. 14 (a) shows the variation of the best solution along the generations: the global constrained minimum

has been found after 55 generations. Fig. 14 (b) shows the first component of the homogenised stiffness

tensors of the laminate, i.e. A∗, B∗ and D∗ [44, 23]. We can see that both laminates are uncoupled (the

curve representing B∗
11 is reduced to a small black point in the center of the plot), orthotropic in extension and

bending (the curves of A∗
11 and D∗

11 have two orthogonal axes of symmetry). Moreover, the main orthotropy

axes ofA∗ andD∗ are aligned with the x axis of the plate, in fact they are oriented at 0◦. Similar considerations

can be done for the other components of these tensors, not shown in Fig. 14 (b) for the sake of brevity.

As conclusive remark, it can be noticed that the ADP strategy leads us to obtain very good and competitive

results also when we deal with highly non-linear non-convex optimisation problem subject to non-convex

equality constraints, as the one considered in this Section.

5 Conclusions

Traditional penalty-based approaches are very often used for handling constrained non-linear optimisation

problems, due to their relative simplicity and robustness. Nevertheless, the tuning process on penalty param-
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Figure 14: a) best values of the objective function during iterations and b) first component of the homogenised
stiffness tensors of the laminate, in MPa.

eters is often delicate, as the optimal parameters themselves are problem dependent.

We have presented in this paper a new Automatic Dynamic Penalisation (ADP) constraint-handling tech-

nique, i.e. a new parameter-free method which is implemented within the GA BIANCA. Such an approach

seems to be very effective when applied to the considered benchmark problems, showing very good GA search

capabilities compared to the best solutions provided in literature. In addition, our approach was successfully

applied to more complex real-world engineering problems showing very competitive performances.

In particular, for what concerns the engineering applications considered in this paper, i.e. the optimal

design of damping properties of hybrid elastomer/composite laminates and the maximisation of the first

buckling load of composite laminates with given elastic symmetries, the use of an evolutionary strategy

along with the fact that the problem is stated in the most general case, leads us to find some non-conventional

configurations which show better performances when compared to classical solutions available in the literature.

In addition, the ADP strategy showed to be very effective when dealing with both inequality and equality

constraints, also when such constraints are expressed by non-linear, non-convex functions.

The proposed numerical tool seems to be very flexible and applicable to various engineering problems,

especially when the results are given by complex and expensive models and a high number of analyses is

necessary to reach a suitable optimum.
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