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Abstract: Piezoelectric actuators have received an increasing attention these last years thanks
to the high resolution of displacement, high force density and fast response time that can offer
piezoelectric materials. However, piezoelectric actuators are highly sensitive to environmental
disturbances and typify strong nonlinearities that undeniably reduce the expected positioning
accuracy. H∞ or µ-synthesis techniques were often used to control these actuators. However,
these techniques derive high-order controllers which are hard to implement and that therefore
impede the development of real packaged microsystems.
This paper aims to design low-order controller ensuring robust performances for piezoelectric
actuators. In the approach, first we use a linear model with uncertain parameters that are
bounded by interval numbers. Then, on the basis of the interval model and the required
performances, a low order controller is computed using a direct synthesis method. The proposed
method is suitable for a class of models: transfer functions with zero-order numerator. The
experiments confirm the robustness of the proposed method.

Keywords: Piezoelectric actuators, Microgrippers, Robust control, Interval systems,
Parametric uncertainties.

1. INTRODUCTION

Smart materials play an important role in the develop-
ment of microsystems and microrobots, and generally for
applications at the micro and nano-scale. Piezoelectric
materials are widely used because of their highr resolution
(in the range of nanometers) and their high bandwidth
(Devasia et al. (2007)). Furthermore, they can be used
as measuring elements as well as actuators. In the latter
case, they have a large area of practical applications such
as the actuation of piezoelectric microgrippers (Haddab et
al. (2000)), AFM-tubes for scanning and nanopositioning
(Bining et al. (2000)), stepper microrobots (Rakotondrabe
et al. (2009)), etc. A piezoelectric microgripper is made
up of two piezoelectric cantilevers. It is dedicated to pick,
transport and place small objects with high accuracy of
positioning and high repeatability in order to perform
micromanipulation and microassembly tasks. The dynam-
ical behavior of these piezoelectric actuators often changes
during the tasks because of the strong dependency on
the environment (temperature, vibrations, etc.), of the
interaction and contact with surrounding systems (objects,
other microsystems) and other characteristics such as non-
linearities. As a result, the accuracy may be lost during
the manipulation or assembly. These characteristics shoud
be incorporated during the modeling and control design in
order to achieve the required performances. For that, linear
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modeling with uncertainties followed by robust closed-loop
control techniques are advised to ensure the performances
(Devasia et al. (2007) and Rakotondrabe et al. (2009a)).

The control of piezoactuators subjected to uncertainties
has been proposed in many works using "classical" robust
control laws H2, H∞ and µ-synthesis (Takaba (1998),
Su et al. (1998) and Rakotondrabe et al. (2009a)). While
these techniques have proved their efficiency, unfortunately
they may derive high-order controllers which are not suit-
able for embedded microsystems. Furthermore, when the
number of the considered uncertain parameters increase,
their modeling becomes complex. An alternative method
is to bound the uncertain parameters by interval numbers
and then to derive a robust controller by combining inter-
val arithmetic with classical control design. In addition
to the ease and simplicity to represent the parametric
uncertainties, such approach allows to derive low-order
controllers.

The first idea on interval arithmetic has appeared in 1924
by Burkill and 1931 by Young, then later in 1966 with
R.E. Moore’s works Moore (1966). Since then, several
applications appeared on the subject. Some of them relates
to guaranteed estimation, robust stability and controllers
design. An approach dealing with guaranteed parameters
estimation based on the SIVIA algorithm (Set Inversion
Via Interval Analysis) has been addressed in Jaulin and
Walter (1993). In Jaulin et al. (2001), Jaulin and Walter
(1994) and Kharitonov (1978), the stability analysis of



the closed-loop with a given controller was proposed us-
ing the Routh’s criteria and the Kharithonov’s theorem.
The authors in Smaginaa and Brewerb (2002) proposed
an approach in the state space to synthesize stabilizing
controller for an interval model. In Bondia et al. (2004),
an approach to design robust controller ensuring perfor-
mances have been proposed. It is based on the inclusion
of the set of all possible interval closed-loop inside the
set of the feasible reference models that define the wanted
performances. The controller computation in Bondia et al.
(2004) is formulated as a set-inversion problem, where a
check of the inclusions satisfaction is needed for a range
of frequencies. Li and Zhang (2009) proposed a control
algorithm prediction-based interval model and its applica-
tion to a welding process. In Chen and Wang (2000),
robust controller design method guaranteeing both the
robust stability and performances for an interval system
is addressed. In the latter work, first a robust stabilizing
feedback controller is computed, then a pre-filter is intro-
duced to ensure the performances. In our prvious work
Khadraoui et al. (2010) it has been shown that interval
techniques combined with a linear control theory can be
efficiently used to model and to control microsystems.

In this paper, the modeling and robust control of piezoac-
tuators, especially piezocantilevers, dedicated to micro-
grippers for micromanipulation and microassembly con-
texts are addressed. Combining interval techniques and a
classical control theory, we derive a robust controller en-
suring performances. For that, interval models are used to
model the piezoactuators. Then a simple controller design
called direct synthesis is used to derive the controller. The
proposed method is suitable for a class of interval systems:
transfer functions with zero-order numerator. Such model
structure may be sufficient to represent cantilevered struc-
tures piezoactuators (Rakotondrabe et al. (2010)). The
designed controller is a low-order controller which makes
possible its implementation in real packaged microsystems.

The paper is organized as follows. In section-II, preliminar-
ies related to interval analysis and systems are provided.
The computation of the controller by combining interval
analysis with the direct synthesis method is presented in
section-III. In section-IV we apply the proposed method
to control piezoactuators. Finally, experimental results end
the paper.

2. MATHEMATICAL PRELIMINARIES

More details on the interval arithmetic can be found in
Moore (1966) and Jaulin et al. (2001).

2.1 Definitions

A closed interval number denoted by [x] corresponds to a
range of real values and can be represented by a pair of
numbers (the left and right endpoint of the interval) as
follows:

[x] = [x−, x+] =
{
x ∈ R/x− ≤ x ≤ x+

}
(1)

An ordinary real number x can be represented by a
degenerate interval [x, x] where x− = x+.

The width of an interval [x] is given by:
w([x]) = x+ − x− (2)

The mid-point of [x] is given by:

mid([x]) =
x+ + x−

2
(3)

The radius of [x] is defined by:

rad([x]) =
x+ − x−

2
(4)

2.2 Operations on intervals

The elementary mathematical operations have also been
extended to intervals. The operation result between two
intervals is an interval containing all the operations results
of all pairs of numbers in the two intervals. So, if we have
two intervals [x] = [x−, x+] and [y] = [y−, y+] and a law
◦ ∈ {+,−, ., /} , we can write:

[x] ◦ [y] = {x ◦ y |x ∈ [x], y ∈ [y]} (5)

2.3 Interval system

Uncertain parameters in systems can be bounded by
intervals, one obtains interval systems. A SISO interval
system denoted [G](s, [p], [q]) is a family of systems:

[G](s, [p], [q]) =


m∑

j=0

[qj ]sj

n∑
i=0

[pi]si

∣∣[qj ] = [q−j , q+
j ], [pi] = [p−i , p+

i ]


(6)

with: [q] = [[q1], ..., [qn]] and [p] = [[p1], ..., [pn]] are two
vectors of uncertain parameters and s the Laplace variable.

3. COMPUTATION OF THE CONTROLLER

In this section, we aim to derive a robust control law
by combining the previous interval analysis with linear
theory of control. In this paper, we particularly use the
direct synthesis control method. Indeed, the controller
computation is based on the model and on the wanted
closed-loop transfer. The proposed approach allows an
ease of computation and a (low-)order controller which is
adapted for embedded real-time microsystems where the
sampling time are often less than 0.5ms.

3.1 Closed-loop scheme

Consider the closed-loop control of an interval system
[G](s, [a]) as depicted in Fig. 1. [C](s) is the controller
to be computed. Let [H](s, [b]) be the interval closed-loop.
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Fig. 1. A closed-loop system.



3.2 Definition of the different transfers

The main objective of this paper is to design robust control
law for uncertain models with zero-order numerator. Let us
consider the following system with zero-order numerator:

[G](s, [a]) =
1

n∑
i=0

[ai]si

(7)

Such as: [a] = [[a0], ..., [an]] is a box of interval parameters.

We also assume an interval reference model [H](s, [b]) that
defines the closed-loop behavior as follows:

[H](s, [b]) =
1

m∑
j=0

[bj ]sj

(8)

Where [b] = [[b0], ..., [bm]] is a box of interval parameters.

3.3 Direct synthesis of the controller

The computation of the controller [C](s) is based on the
wanted closed-loop transfer [H](s, [b]) (derived from some
given specifications) and on the interval model [G](s, [a]).

According to Fig. 1, we have:

[H](s, [b]) =
1

1 + 1
[C](s)[G](s,[a])

(9)

From (9), we derive the interval controller [C](s) :

[C](s) =
1

[G](s, [a])
(

1
[H](s,[b]) − 1

) (10)

As the controller contains 1/[G](s, [a]), the method can be
classified as a compensation technique.

Introducing (8) in (10) and replacing [G](s, [a]), we get:

[C](s, [a], [b]) =

n∑
i=0

[ai]si

m∑
j=0

[bj ]sj − 1
(11)

The causality of the controller is ensured when m ≥ n.

Note that, there exists a set of controllers inside the inter-
val controller defined in (11) that guarantee the required
performances. However, if the specified performances are
too severe or the width of the parameters of the interval
model is too large, the set of controllers ensuring perfor-
mances may be reduced. Moreover, any point controller
chosen for the implementation should be validated using a
performances analysis based on H∞ approach.

3.4 Controller validation

The aim of this part consists to validate a posteriori that
a given controller ensures the imposed performances. The
idea consists to demonstrate that this controller ensures
the specified performances for any system inside the inter-
val model, i.e ∀G(s) ∈ [G] (s, [a]). This demonstration will
be performed via H∞ approach.

The H∞ synthesis consists to compute a controller en-
suring H∞ performances. The required performances are

transcribed into weighting functions during the synthesis.
According to the standard H∞ problem (Balas et al.
(2001)), the computed controller must satisfy:

‖Fl(K(s), P (s))‖∞ ≤ γ (12)

where Fl(K(s), P (s)) is the transfer function of the inter-
connection between an augmented system P (s) and the
controller to be designed K(s). The augmented system
P (s) includes the system to be controlled G(s) and the
weighting functions Wi(s) describing the specifications.

In our case, the controller is known: K(s) = C(s) ∈ [C](s).
The system is known but it is an interval: [G](s, [a]). Since
the system is interval, the augmented plant will also be an
interval [P ](s). Our objective is now to verify that:

‖Fl(K(s), [P ](s))‖∞ ≤ γ (13)

If γ is close to one, K(s) is valid and ensures the perfo-
mances for the entire interval system [G](s, [a]).

4. MODELING AND CONTROL OF
PIEZOACTUATORS

This section is focused on the application of the proposed
method to control piezoactuators used in microgrippers.
We particularly use unimorph piezocantilevers due to their
ease of fabrication relative to multimorph ones. A uni-
morph piezocantilever is made up of a piezoelectric layer
(often Lead-Zirconate-Titanate (PZT) ceramic) and one
passive layer (often Copper or Nickel). When a voltage U
is applied to the piezolayer, it expands/contracts resulting
a global deflection δ of the cantilever (see Fig. 2).

Usupport

passive layer

piezolayer
δ

Fig. 2. Principle of a unimorph piezocantilever.

Due to their high resolution, high bandwidth and the
ability to convert electrical energy into mechanical dis-
placement or vice-versa, piezocantilevers are widely used
in micro/nano-positioning applications where the displace-
ments must be small and highly accurate. In particular,
micormanipulation/microassembly tasks require ultra-fine
and repeatable motions, making piezoelectric materials a
suitable choice. However, these materials are very sensitive
to the environment (temperature, vibrations, etc.). As a
result, the required accuracy is significantly affected due to
the behavior variation (varying parameters). In addition,
the performances or even the stability may be lost in pres-
ence of such critical conditions. One way to model these
piezocantilevers is to use transfer functions with uncertain
parameters. For that, interval modeling techniques (Keel
and Bhattacharyya (1994)) are introduced to characterize
the uncertain parameters. Afterwards, we apply the pro-
posed controller design to enhance their performances.

The interval model [G](s, [a]) can be derived using a set
of piezocantilevers having nearly the same dimensions.



Despite their similarity in dimensions, small differences of
somes microns (due to the imprecision of the microfab-
rication process) yield non-negligible differences on their
model parameters. So, instead of having a model of one
piezocantilever with time-varying parameters during the
experiment, we use two piezocantilevers with different
parameters. Then, from the two derived models of piezo-
cantilevers, we define one interval model used to design
controller ensuring performances not only for the both
piezocantilevers but also for a set of piezocatilevers having
models inside the interval model [G](s, [a]).

4.1 Presentation of the setup

The experimental setup as in Fig. 3 is composed of:

• two unimorph piezocantilevers having a total width of
2mm, a length of 15mm and a thickness of 0.3mm.

• a computer-DSpace hardware and the Matlab-Simulink
software used for the data-acquisition and control,

• an optical sensor (Keyence LC-2420) with 10nm of
resolution used to measure the deflection.

• and a high-voltage (HV: ±200V ) amplifier,

amplifieroptical
sensor

 

  

 

 

HV

(a)

piezoelectric
cantilever

piezoelectric
cantilever

optical
sensor

(b)

Fig. 3. A photography of the experimental setup.

4.2 Identification of the piezocantilevers models

According to the works in Haddab et al. (2000), the
linear relation that relates the input voltage U applied to a
piezocantilever, the force F applied to the piezocantilever
at its tip and the resulting deflection δ (see Fig. 4) can be
written as follows:

δ = (dpU + spF )D(s) (14)

δ

voltage

U (v)

piezocantilever

F

Fig. 4. A piezocantilever under external excitations.

where sp > 0 is the elastic constant of the piezocantilever,
dp > 0 is the piezoelectric constant and D(s) represents
the dynamic part of the piezocantilever (with D(0) = 1).

In this paper, we assume that the force F = 0. As a
result the resulting deflection at the tip of a piezocantilever
when an input voltage U is applied to its electrodes can
be defined by the linear relation as follows:

δ = dpD(s)U = G(s)U (15)

where G(s) represents the model of piezocantilever.

Let G1(s) and G2(s) be the models of the two piezocan-
tilevers. In this contribution, we are interested to the first
mode (resonance). For that, a second order model was
chosen for each piezocantilever. Using the output error
method and the matlab software, we obtain:

G1(s) = 1
9.8×10−8s2+7.406×10−6s+1.439

G2(s) = 1
8.777×10−8s2+7.926×10−6s+1.284

(16)

4.3 Derivation of the interval model

Let us rewrite each model Gi(s) (i = 1, 2) as follows:

Gi(s) =
1

a2is2 + a1is + a0i
(17)

The interval model [G](s, [a]) is therefore derived using
the two point models Gi(s). Considering each parameter
of G1(s) and the corresponding parameter in G2(s) as an
endpoint of the interval parameter in [G](s, [a]), we have:

[G](s, [a]) =
1

[a2]s2 + [a1]s + [a0]
(18)

such as:
[a2] = [min(a21, a22),max(a21, a22)] = [8.777, 9.8]× 10−8

[a1] = [min(a11, a12),max(a11, a12)] = [7.4, 7.926]× 10−6

[a0] = [min(a01, a02),max(a01, a02)] = [1.284, 1.439]

In order to increase the stability margin of the closed-
loop system and to ensure that the interval model re-
ally contains the models (16), we propose to extend the
intervals of the model (18). However, when the interval
width of the parameters in the model is too large, it is
difficult to find a controller that respects both the stability
and performances of the closed-loop. After some trials of
controller design, we choose to expand the interval width
of each parameter of (18) by 10%. 10% is the maximal
value allowed in this application. Finally, the extended
parameters of the interval model are given as follows:

[a2] = [8.725, 9.851]× 10−8

[a1] = [7.38, 7.952]× 10−6

[a0] = [1.276, 1.446]
(19)

4.4 Computation of the interval reference model

We want to satisfy the following specifications for the
closed-loop:

• no overshoot,
• settling time: 15ms ≤ tr5% ≤ 30ms,
• static error: |ε| ≤ 1%.

From the condition on the causality of the controller, i.e.
m ≥ n, a 2nd order transfer is chosen for [H]. Since, the
wanted behavior of the closed-loop is without overshoot,
we take the following structure for [H]:



[H](s, [b]) =
[Kp]

([τ ]s + 1)
(

[τ ]
100s + 1

) (20)

Such as:

• [b] = [[Kp], [τ ]]
• [Kp] = 1 + ε = [0.99, 1.01],
• [τ ] = [tr5%]

3 = [5ms, 10ms].

4.5 Computation of the interval controller

Based on (11), the interval controller transfer is given by:

[C](s, [a], [b]) =
[a2]s2 + [a1]s + [a0]

0.01 [τ ]2

[Kp]s
2 + 1.01 [τ ]

[Kp]s + 1
[Kp] − 1

(21)

After numerical application, we obtain:

[C](s) = [8.725,9.851]×10−8s2+
[0.247,1.01]×10−6s2+

[7.38,7.952]×10−6s+[1.276,1.446]
[0.005,0.0102]s+[−0.01,0.01]

(22)

5. EXPERIMENTAL RESULTS

The computed controller given in (22) is interval and is
not directly implementable. It contains a set of point-
controllers that guarantee the required performances. One
of these point controllers must be chosen and has to be
implemented. A natural choice is the mid-point controller
whose the parameters are the mid-point of the interval
parameters of [C](s) in (22). Afterwars, a validation of
this mid-point controller via H∞ approach will be given.
The so-called mid-point controller is therefore:

Cmid(s) =
0.09288s2 + 7.666s + 1.362× 106

s(0.6285s + 7600)
(23)

To validate this controller (23), the method presented in
3.4 will be used. In our case, the interval system [G](s, [a])
and the controller K(s) = Cmid(s) are known. Finally,
the wanted performances already detailed in 4.4 can be
transcribed into a weighting function W1(s).

Fig. 5-a presents the closed-loop scheme augmented by
the weighting function W1(s). Its corresponding standard
scheme is shown in Fig. 5-b.

[G](s,[a])

K(s)

W (s)1

y
u

ε
e

yc

[G](s,[a])

K(s)

W (s)1

y
u

ε
e

yc

s

(b)

(a)

[G](s,[a])K(s)

W (s)1

e

yc uε

y
[G](s,[a])K(s)

W (s)1

e

yc uε

y
(s)

W (s)1

Fig. 5. Schemes of the augmented closed-loop and of the
standard form.

From Fig. 5 , we have:
Fl(Cmid(s), [P ](s)) = W1(s)[S](s) (24)

where [S](s) = (1 + Cmid(s)[G](s, [a]))−1 represents the
interval sensitivity function.

Using (13) and (24), we obtain the following problem:
‖W1(s) [S] (s)‖∞ ≤ γ (25)

which can be satisfied if:

|[S] (s)| ≤
∣∣∣∣ γ

W1(s)

∣∣∣∣ (26)

If the latter is satisfied, we have:

‖[S] (s)‖∞ ≤
∥∥∥∥ γ

W1(s)

∥∥∥∥
∞

(27)

To transcribe the specifications in 4.4 into weighting
W1(s), we choose the following structure:

W1(s) =
1

wp
s + 1

|ε|
wz

s + |ε|
(28)

where wz = 3

tr+

√(
1
|ε|

)2
−1

and wp = wz

√(
1+D%
|ε|

)2

− 1

D% represents the overshoot. We therefore have:∥∥∥∥ 1
W1(s)

∥∥∥∥
∞

=
∥∥∥∥ s + 1

s + 100

∥∥∥∥
∞

= 1 (29)

Next step consists to compute ‖[S](s)‖∞ which is an
interval. For an interval system the maximal H∞ norm
of its sensitivity function is achieved at twelve Kharitonov
vertices Wang (2002). Based on this result, the H∞ norm
of the sensitivity is therefore obtained: ‖[S] (s)‖∞ = 1.024.

Finally, we deduce from (27) that γ ≈ 1.024 which is close
to one, meaning that the chosen controller Cmid(s) can
ensure the performances.

A comparison between the magnitudes of 1
W1(s)

and of
the sensitivity function is also performed in order to prove
that the inequality (26) is satisfied. The obtained results
in Fig. 6 prove that the singular values of [S](s) is effec-
tively almost bounded by that of 1

W1(s)
, and consequently

the specified performances are ensured by the mid-point
controller.

1

Fig. 6. Singular values of [S](s) and of γ
W1(s)

The mid-point controller (23) is applied to both piezocan-
tilevers. Indeed, a step reference of 20µm is applied to the



closed-loops. Fig. 7 shows the experimental results com-
pared with the envelope of the desired behavior [H](s, [b]).
We especially mean by the envelope of [H](s, [b]), all
step responses between the step responses of H1(s) and
H2(s), the first one being with minimal time constant
τ = 5ms and maximal static gain K = 1.01 while the
second one being with maximal time constant τ = 10ms
and minimal static gain K = 0.99. As shown on the
figure, the controller has played its role and satisfied the
required specifications. Indeed, experimental settling times
are about tr1 = 20.3ms, tr2 = 21.8ms respectively for the
piezocantilevers 1 and 2, and the experimental static errors
are neglected and belong to the specified interval |ε| ≤ 1%.

δ[µm]
25

20

15

10

0

5

0 10 20 30 40 50
t[ms]

60 70 80

experimental results

on the two piezocantilevers

(        and        )

envelope of the wanted 

performances

Fig. 7. Step response of the closed-loop: experimental
results with Cmid(s) and the envelope of [H](s, [b]).

6. CONCLUSION

In this paper, the interval modeling and robust controller
design for piezoactuators were proposed. Due to its sim-
plicity and natural way to model uncertain parameters,
intervals were used to bound the uncertainties. The ap-
proach is valuable for zero-order numerator models which
are sufficient to account the behaviors of piezoelectric can-
tilevers. To derive the controller, we combined the interval
arithmetic with a linear control theory. The implemented
controller was validated using the H∞ approach. The ex-
perimental results on two piezoeactuators also proved the
efficiency of the proposed method. Future works concern
the extension of the proposed approach to generalized
models, i.e. not limited to zero-order numerator ones.
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