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Existence and uniqueness of traveling waves
for fully overdamped Frenkel-Kontorova

models

M. Al Haj1, N. Forcadel2, R. Monneau1

March 19, 2013

Abstract: In this article, we study the existence and the uniqueness of traveling waves for a
discrete reaction-diffusion equation with bistable non-linearity, namely a generalization of the
fully overdamped Frenkel-Kontorova model. This model consists in a system of ODE’s which
describes the dynamics of crystal defects in a lattice solids. Under very poor assumptions,
we prove the existence of a traveling wave solution and the uniqueness of the velocity of
propagation of this traveling wave. The question of the uniqueness of the profile is also
studied by proving Strong Maximum Principle or some weak asymptotics on the profile at
infinity.

Keywords: Frenkel-Kontorova models, traveling waves, viscosity solutions, comparison
principle.

1 Introduction

In this work, we are interested in the fully overdamped Frenkel-Kontorova (FK) model which
describes the dynamics of crystal defects in a lattice (see for instance the book of Braun and
Kivshar [8] for an introduction to this model). This model (and its generalization) is a
discrete reaction-diffusion equation with ”bistable” non-linearity. For this model, we show
the existence and the uniqueness of traveling waves.

1.1 Setting of the problem

We first give an example of the simplest fully overdamped Frenkel Kontorova model, and
then we provide a general framework for which we will establish our results.

(i) The simplest Frenkel-Kontorova model
The simplest fully overdamped FK model is a chain of atoms, where the position Xi(t) ∈ R
at the time t of the particle i ∈ Z solves

(1.1)
dXi

dt
= Xi+1 +Xi−1 − 2Xi − sin(2π(Xi − L))− sin(2πL),
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Vallée Cedex 2, France

2Université Paris-Dauphine, CEREMADE, UMR CNRS 7534, place de Lattre de Tassigny, 75775 Paris
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where dXi
dt

is the velocity of the ith particle, − sin(2πL) is a constant driving force which
will cause the movement of the chain of atoms and sin(2πXi) denotes the force created by
a periodic potential reflecting the periodicity of the crystal, whose period is assumed to be
1. Set, for simplicity,

(1.2) fL(x) := − sin(2π(x− L))− sin(2πL).

We look for particular traveling wave solutions of (1.1), namely solutions of the form

(1.3) Xi(t) = φ(i+ ct)

with

(1.4)

{
φ′ ≥ 0

φ(+∞)− φ(−∞) = 1.

Here c is the velocity of propagation of the traveling wave φ, and (1.4) reflects the existence
of a defect of one lattice space, called dislocation. Moreover, expression (1.3) means that the
defect moves with velocity c under the driving force L. In addition, φ is a phase transition
between φ(−∞) and φ(+∞) which are two ”stable” equilibriums of the crystal.

Clearly, if we plug (1.3) in (1.1), the profile φ and the velocity c have to satisfy

(1.5) cφ′(z) = φ(z + 1) + φ(z − 1)− 2φ(z) + fL(φ(z)),

with z = i+ ct and fL defined in (1.2).
Due to the equivalence (for c 6= 0) between solutions of (1.1) and (1.5), from now on, we

will focus on equation (1.5).

Theorem 1.1 (Existence and uniqueness of traveling waves for (FK) model)
There exists a unique real c and a function φ : R→ R solution of

(1.6)


cφ′(z) = φ(z + 1) + φ(z − 1)− 2φ(z) + fL(φ(z)) on R
φ is non-decreasing over R
φ(−∞) = 0 and φ(+∞) = 1,

in classical sense if c 6= 0 and almost every where if c = 0. Moreover, if c 6= 0, then the
profile φ is unique (up to space translation) and φ′ > 0 on R.

This theorem has be proved in several works (see for instance, the pioneering works [25] and
[18], and [22] in full generality).

(ii) A simple example not covered by the literature
Define the function G as

(1.7) G(Xi−1, Xi, Xi+1) := max

(
1

2
, Xi−1

)
+ min

(
1

2
, Xi+1

)
−Xi −

1

2
+ fL(Xi),

where fL defined in (1.2), then consider the following system

(1.8) Ẋi = G(Xi−1, Xi, Xi+1) for i ∈ Z.
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Theorem 1.2 (Existence and uniqueness of traveling waves for example (1.7))
For any L ∈

(−1
4
, 1
4

)
\{0}, the results of Theorem 1.1 hold true for system (1.6) replaced by

the following system

(1.9)


cφ′(z) = G

(
φ(z − 1), φ(z), φ(z + 1)

)
on R

φ is non-decreasing over R
φ(−∞) = 0 and φ(+∞) = 1.

Up to our knowledge, this result is new. Notice that this result is for instance not included

in Mallet-Paret’s work [22], since G does not satisfy
∂G

∂Xi−1
> 0 and

∂G

∂Xi+1

> 0. Such a con-

dition is important in [22] to construct the traveling waves using deformation (continuation)
method.

(iii) General framework
We now consider a generalization of equation (1.5). To this end, we introduce a real function
(whose properties to be specified later in Subsection 1.2):

(1.10) F : [0, 1]N+1 → R.

We then consider the following equation

(1.11) cφ′(z) = F (φ(z + r0), φ(z + r1), ..., φ(z + rN)),

where N ≥ 0 and ri ∈ R for i = 0, ..., N. We also normalize the limits of the profile at infinity
as follows:

(1.12) φ(−∞) = 0, φ(+∞) = 1.

Note that, for N = 2 and F = F0(X0, X1, X2) = X2 +X1 − 2X0 + fL(X0), equation (1.5) is
a particular case of (1.11). Moreover, F0 is compatible with (1.12).

Assume, without loss of generality, for the whole work that:

r0 = 0 and ri 6= rj if i 6= j.

1.2 Main results

In order to present our results, we have to introduce some assumptions on F defined in
(1.10). Note that, for later use, we split these assumptions into assumptions (A) and (B).

Assumption (A):

Regularity: F is globally Lipschitz continuous over [0, 1]N+1.

Monotonicity: F (X0, ..., XN) is non-decreasing w.r.t. each Xi for i 6= 0.
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We set f(v) = F (v, ..., v).

Assumption (B):

Instability: f(0) = 0 = f(1) and there exists b ∈ (0, 1) such that f(b) = 0,
f|(0,b) < 0, f|(b,1) > 0 and f ′(b) > 0.

Smoothness: F is C1 in a neighborhood of {b}N+1.

Remark 1.3

1. The point b is supposed to be unstable and this is the meaning of the condition f ′(b) > 0.

2. Notice that the instability part of assumption (B) means in particular that f is of ”Bistable”
shape (see [22]).

Theorem 1.4 (Existence of a traveling wave)
Under assumptions (A), (B), there exist a real c ∈ R and a function φ : R→ R that solves

(1.13)


cφ′(z) = F (φ(z + r0), φ(z + r1), ..., φ(z + rN)) on R
φ is non-decreasing over R
φ(−∞) = 0 and φ(+∞) = 1

in the classical sense if c 6= 0 and almost every where if c = 0.

Our method to construct a solution relies on the construction of a hull function for
an associated homogenization problem (see the work of Forcadel, Imbert, Monneau [23]).
In order to prove the uniqueness of the traveling wave, we need the following additional
assumptions:

Assumption (C): Inverse monotonicity close to {0}N+1 and E = {1}N+1

There exists β0 > 0 such that for a > 0, we have{
F (X + (a, ..., a)) < F (X) for all X, X + (a, ..., a) ∈ [0, β0]

N+1

F (X + (a, ..., a)) < F (X) for all X, X + (a, ..., a) ∈ [1− β0, 1]N+1.

This condition is important to get the comparison principle (see Theorem 4.1).
Assumption (D+):
i) All the ri’s ”Shifts” have the same sign: Assume that ri ≤ 0 for all i ∈ {0, ..., N}.
ii) Strict monotonicity: F is increasing in Xi+ with ri+ > 0.

Assumption (D−):
i) All the ri’s ”Shifts” have the same sign: Assume that ri ≥ 0 for all i ∈ {0, ..., N}.
ii) Strict monotonicity: F is increasing in Xi− with ri− < 0.

Assumption (E+):

i) Strict monotonicity close to 0: Assume that
∂F

∂Xi+
(0) > 0 with ri+ > 0.
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ii) Smoothness close to {0}N+1:
There exists ∇F (0), with f ′(0) < 0, and there exists α ∈ (0, 1) and C0 > 0 such that for all
X ∈ [0, 1]N+1

|F (X)− F (0)−X.∇F (0)| ≤ C0|X|1+α.

Assumption (E−):

i) Strict monotonicity close to 1: Assume, for E = (1, ..., 1) ∈ RN+1, that
∂F

∂Xi−
(E) > 0

with ri− < 0.

ii) Smoothness close to {1}N+1:
There exists ∇F (E) with f ′(1) < 0 and there exists α ∈ (0, 1) and C0 > 0 such that for all
X ∈ [0, 1]N+1

|F (X)− F (E)− (X − E).∇F (E)| ≤ C0|X − E|1+α,
with E = (1, ..., 1) ∈ RN+1.

Theorem 1.5 (Uniqueness of the velocity and of the profile)
Assume (A) and let (c, φ) be a solution of

(1.14)

{
cφ′(z) = F (φ(z + r0), φ(z + r1), ..., φ(z + rN)) on R
φ(−∞) = 0 and φ(+∞) = 1.

(a) Uniqueness of the velocity: Under the additional assumption (C), the velocity c is
unique.
(b) Uniqueness of the profile φ: If c 6= 0, then under the additional assumptions (C)
and (D+) i) or ii) or (E+) if c > 0 (resp. (D−) i) or ii) or (E−) if c < 0), the profile φ
is unique (up to space translation) and φ′ > 0 on R.

Remark 1.6 (Interpreting the assumptions)
(1) If c > 0: Assumptions (D+) i), ii) and (E+) are respectively important to prove a
Strong Maximum Principle (cf Lemma 6.2 and 6.4) and the asymptotics of the profile near
−∞ (cf Lemma 6.6) that we use to prove the uniqueness of the profile of a solution.

(2) If c < 0: Under (D−) i), ii) and (E−), we respectively get the same results as for c > 0,
however, the asymptotics are proven near +∞ in this case.

Remark also that Theorems 1.1 and 1.2 are particular cases of Theorem 1.4 and Theorem
1.5. Indeed, existence of the solution in Theorem 1.2 follows from Theorem 1.4 and the fact
that b 6= 1

2
in assumption (B), when L ∈

(
−1

4
, 1
4

)
\{0}. Uniqueness of the profile in Theorem

1.2 follows from Theorem 1.5 (b), and the fact that the function G defined in (1.7) verifies
assumptions (E±).

For the whole paper, we define

(1.15) r∗ = max
i=0,...,N

|ri|

and we set, as a notation, for a general function h :

F ((h(y + ri))i=0,...,N) := F (h(y + r0), h(y + r1), ..., h(y + rN)).
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1.3 Brief review of the literature

The study of traveling waves in reaction-diffusion equations has been introduced in pioneering
works of Fisher [16] and Kolmogorov, Petrovsky and Piskunov [20]. Existence of traveling
waves solutions has been for instance obtained in [2, 7, 19, 15]. More generally, there is a
huge literature about existence, uniqueness and stability of traveling waves with various non
linearities with applications in particular in biology and combustion and we refer for instance
to the references cited in [6, 10]. There are also several works on discrete or nonlocal versions
of reactions-diffusion equations (see for instance [5, 9, 11, 13, 14, 17, 24, 26] and [10, 22] and
the references cited therein).

As explained above, in the case of bistable non-linearity f, the existence and uniqueness
of traveling waves are well known for the model equation

(1.16) ut = uxx + f(u).

Starting from equation (1.16), and using a continuation method, Bates et al. [4] proved in
particular the existence of traveling waves for the convolution model

(1.17) ut = J ∗ u− u+ f(u)

where J is a kernel.
In [22], Mallet-Paret (see also Carpio et al. [9] for semi-linear case) used also a global

continuation method (i.e. a homotopy method) to get existence of traveling waves for bistable
non-linearities and information about the uniqueness and the dependence of solutions on
parameters. This continuation argument was applied to connect the discrete dynamical
system that he studied and a PDE model (similar to (1.16)) for which the existence and
uniqueness are known. He proved the continuation between the solutions of the two systems
using a general Fredholm alternative method [21] for the linearized traveling waves equations.

Traveling waves were also studied by Chow et al. [12] for lattice dynamical systems
(lattice ODE’s) and for coupled maps lattices (CML’s) that arise as time-discretizations of
lattice ODE’s. Using a geometric approach, the authors studied the stability of traveling
waves for lattice ODE’s and proved existence of traveling waves of their time discretized
CML’s. More precisely, they constructed a local coordinate system in a tubular neighborhood
of the traveling wave solution in the phase space of their system. Such an approach is used
to transform lattice ODE’s into a nonautonomous time-periodic ODE and traveling waves to
periodic solutions of this ODE. In addition, they gain from this transformation the possibility
to use the standard tools of dynamical systems and to see traveling waves of CML as certain
orbits for a circle diffeomorphism whose rotational number is equal to the wave speed.

Zinner [25] proved the existence of traveling waves for the discrete Nagumo equation

(1.18) ẋi = d(xi+1 − 2xi + xi−1) + f(xi) i ∈ Z.

The construction is done introducing first a simplified problem (using a projection to 0 or 1
for |i| ≥ N) for which the existence is attained by Brouwer’s fixed point theorem. Hankerson
and Zinner [18] also proved existence of traveling waves (for an equation more general than
(1.18)) obtained as the long time limit of the solution with Heaviside initial data, using an
interesting lap number argument.

In [10], Chen, Guo and Wu constructed traveling waves for a lattice ODE’s with bistable
non-linearity. They rephrase the solution φ of (1.11) as a fixed point of an integral formu-
lation. First, they considered a simplified problem (using a projection on 0 or 1 for large
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indices |i| ≥ N) and they show, for any c 6= 0, the existence of a solution φN, c using the
monotone iteration method. Finally, they recover the existence of a solution in the limit
N → +∞ for a suitable choice c = c(N) converging to a limit velocity.

In this paper, we introduce a completely new method at least to prove the existence of
traveling waves. In our approach, the existence of traveling waves relies on the construction of
hull functions of slope p (like correctors) for an associated homogenization problem. Passing
to the limit p→ 0, one important difficulty is to identify a traveling wave joining two stable
states. In particular, we have avoided this traveling wave to degenerate to the intermediate
unstable state. The uniqueness of the profile is proved using either strong maximum principle
or weak asymptotics of the profile. Notice that, using weak asymptotics (in comparison with
those of Mallet-Paret [22]) allow us to have weaker assumptions.

We also mention that our method is still effective in higher dimensional problems. Con-
sider, for instance, the model

(1.19)
d

dt
XI(t) = f(XI) +

∑
|J |=1

(
XI+J −XI

)
that describes the interaction of an atom I ∈ Zn with its nearest neighbors (XI ∈ R denotes
the position of atom I). We can look for traveling waves XI(t) = φ(ct+ν ·I) that propagates
in a direction ν ∈ Rn with |ν| = 1. That is for z = ct+ ν · I, we look for φ solution of

cφ′(z) = f(φ(z)) +
∑
|J |=1

(
φ(z + ν · J)− φ(z)

)
,

where f denotes a bistable non-linearity. Setting rj := ν · J, we recover an equation of type
(1.11) for N = 2n. Therefore, the results of higher dimensional problems follow from our one
dimensional results (Theorems 1.4 and 1.5) as far as they hold for general shifts rj’s.

We get the existence of solutions under very poor assumptions in comparison with similar
results in previous works. Our framework is very flexible, and does not require a setting in
any particular functional space. We also think that our method opens new perspectives and
could be used to study many models: for example, fully overdamped FK models with time
dependent non-linearities, accelerated FK models, FK with multi-particles.

1.4 Organization of the paper

In Section 2, we introduce an extension of F onto RN+1 and we recall, for the extension
function, the notion of viscosity solutions, the existence of hull functions for our model and
we prove some results about monotone functions. We prove Theorem 1.4 (for the extended
function) in Section 3. In Section 4, we prove the uniqueness of the velocity of a profile
(Theorem 1.5 part (a) = Proposition 4.5) and a comparison principle result on the half-line.
Section 5 is devoted to the asymptotics of a profile near ±∞ (Proposition 5.1). In Section
6, we prove the uniqueness of the profile (Theorem 1.5 part (b)). Finally, we prove in
the Appendices A and B the extension result, namely Lemma 2.1 and some results about
monotone function, namely Lemmas 2.10 and 2.11 respectively.

2 Preliminary results

This section is divided into four subsections. In the first subsection, we extend the function
F onto RN+1. In the second subsection, we recall the definition of a viscosity solution. We
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apply a result of existence of hull functions associated to the homogenization of our problem
with the extended F in the third subsection. We dedicate the fourth subsection for some
results about monotone functions that we will use in Section 3.

2.1 Extension of F

The proof of existence of traveling waves is based on the construction of hull functions (like
correctors) associated to a homogenization problem (see [23]). To this end, we first need to
extend the function F in F̃ defined over RN+1 and satisfying the following assumption:

Assumption (Ã):

Regularity: F̃ is globally Lipschitz continuous over RN+1.

Periodicity: F̃ (X0 + 1, ..., XN + 1) = F̃ (X0, ..., XN) for every X = (X0, ..., XN) ∈ RN+1.

Monotonicity: F̃ (X0, ..., XN) is non-decreasing w.r.t. each Xi for i 6= 0.

The extension result is the following:

Lemma 2.1 (Extension of F )
Given a function F defined over Q = [0, 1]N+1 satisfying (A) and F (1, ..., 1) = F (0, ..., 0),
there exists an extension F̃ defined over RN+1 such that

F̃|Q = F and F̃ satisfies (Ã).

The proof of this lemma is postponed in Appendix A.

Remark 2.2 We notice that, if φ is a traveling wave constructed for (1.13) with F replaced
by F̃ , then φ is a traveling wave of (1.13). This is a direct consequence of Lemma 2.1 and
the fact that {

φ is non-decreasing on R
φ(−∞) = 0 and φ(+∞) = 1.

By convention, we will say that F̃ satisfies (B) (resp. (C), (D) or (E)) if and only if F = F̃|Q
satisfies (B) (resp. (C), (D) or (E)).

We now give a result corresponding to Theorem 1.4 for F̃ , whose proof is given in Sec-
tion 3.

Proposition 2.3 (Result corresponding to Theorem 1.4 for F̃ )
Assume that F̃ satisfies (Ã), (B). Then there exist a real c and a function φ solution of

(2.20)


cφ′(z) = F̃ ((φ(z + ri))i=0,...,N) on R
φ is non-decreasing on R
φ(−∞) = 0 and φ(+∞) = 1,

in the classical sense if c 6= 0 and almost everywhere if c = 0.

For simplicity, in the rest of this section and in Section 3, we call F̃ as F.

Proof of Theorem 1.4
The proof of Theorem 1.4 is a straightforward consequence of Remark 2.2 and Proposition
2.3. �
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2.2 Viscosity solution

In the whole paper, we will use the notion of viscosity solution that we introduce in this
subsection. To this end, we recall that the upper and the lower semi-continuous envelopes,
u∗ and u∗, of a locally bounded function u are defined as

u∗(y) = lim sup
x→y

u(x) and u∗(y) = lim inf
x→y

u(x).

Definition 2.4 (Viscosity solution)
Let u : R→ R be a locally bounded function, c ∈ R and F defined on RN+1.

- The function u is a sub-solution (resp. a super-solution) of

(2.21) cu′(x) = F ((u(x+ ri))i=0,...,N) on R,

if u is upper semi-continuous (resp. lower semi-continuous) and if for all test function
ψ ∈ C1(R) such that u − ψ attains a local maximum (resp. a local minimum) at x∗,
we have

cψ′(x∗) ≤ F ((u(x∗ + ri))i=0,...,N)
(

resp. cψ′(x∗) ≥ F ((u(x∗ + ri))i=0,...,N)
)
.

- A function u is a viscosity solution of (2.21) if u∗ is a sub-solution and u∗ is a super-
solution.

We also recall the stability result for viscosity solutions (see [3, Theorem 4.1]).

Proposition 2.5 (Stability of viscosity solutions)
Consider a function F defined on RN+1 and satisfying (Ã). Assume that (uε)ε is a sequence of
sub-solutions (resp. super-solutions) of (2.21). Suppose that the functions (uε)ε are uniformly
locally bounded on R and let

u(x) = lim sup
ε→0

∗uε(x) := lim sup
(ε,y)→(0,x)

uε(y) and u(x) = lim inf
ε→0

∗uε(x) := lim inf
(ε,y)→(0,x)

uε(y),

be the relaxed upper and lower semi-limits. If u (resp. u) is finite, then u is a sub-solution
(resp. u is a super-solution) of (2.21).

2.3 On the hull function

In this subsection, we first adapt the result of existence of a hull function associated to
the homogenization of our problem, then we make the link between the existence of a hull
function and the existence of the traveling wave.

Lemma 2.6 (Existence of a hull function ([23, Theorem 1.5]))
Let F be a given function satisfying assumption (Ã) and p > 0. There exists a unique λp such
that there exists a locally bounded function hp : R→ R satisfying (in the viscosity sense):

(2.22)


λph

′
p = F ((hp(y + pri))i=0,...,N) on R

hp(y + 1) = hp(y) + 1

h′p(y) ≥ 0

|hp(y + y′)− hp(y)− y′| ≤ 1 for all y′ ∈ R.
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Such a function hp is called a hull function. Moreover, there exists a constant K > 0,
independent on p, such that

|λp| ≤ K(1 + p).

Notice that Lemma 2.6 is proven in [23] only for ri ∈ Z. However, the proof for the general-
ization ri ∈ R is still valid (it is exactly the same).
After this recall, and using the hull function hp, we define the function φp as:

(2.23) φp(x) := hp(px).

Moreover we set, as a velocity, the ratio

(2.24) cp :=
λp
p
.

Remark 2.7 It is possible that cp = 0 for all p > 0. Our proof of existence of traveling wave
is done for the general case. However, we state throw out the proof the different situations
for the velocity.

Notice that the above φp satisfies the following lemma:

Lemma 2.8 (Properties of φp)
Let p > 0 and assume (Ã). Then the function φp defined in (2.23) satisfies in the viscosity
sense:

(2.25)


cpφ
′
p = F ((φp(z + ri))i=0,...,N) on R

φ′p ≥ 0

φp

(
z +

1

p

)
= φp(z) + 1.

Moreover, if cp 6= 0 then there exists M > 0 independent on p such that

(2.26) |φ′p| ≤
M

|cp|
,

for 0 < p ≤ 1

r∗
, with r∗ given in (1.15).

Proof of Lemma 2.8.
Let hp be a viscosity solution given by Lemma 2.6. Then we get (2.25) by the change of
variables (2.23)-(2.24). We now show (2.26). We choose p > 0 such that

1

p
≥ r∗.

Since φp is non-decreasing, then we have
|φp(x+ ri)− φp(x)| ≤

∣∣∣∣φp(x+
1

p

)
− φp(x)

∣∣∣∣ = 1 if ri ≥ 0

|φp(x+ ri)− φp(x)| ≤
∣∣∣∣φp(x− 1

p

)
− φp(x)

∣∣∣∣ = 1 if ri ≤ 0
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Moreover, since F ∈ Lip(RN+1), then

|F ((φp(x+ ri)i=0,...,N))− F ((φp(x))i=0,...,N)| ≤ L

∣∣∣∣∣∣∣∣
1

...

1

∣∣∣∣∣∣∣∣ =: L1,

where L is the Lipschitz constant of F. On the other hand, f is bounded (because f is
Lipschitz and periodic) and F ((φp(x))i=0,...,N) = f(φp(x)), thus

|F ((φp(x+ ri)i=0,...,N))| ≤ L1 + |f |L∞ =: M.

This implies that
|cpφ′p| ≤M

in the viscosity sense. If in addition cp 6= 0, then we get the Lipschitz bound

|φ′p| ≤
M

|cp|
.

�

2.4 Useful results about monotone functions

In this subsection, we recall miscellaneous results about monotone functions that we will use
later in Section 3 for the proof of Proposition 2.3. We state Helly’s Lemma on the one hand,
and the equivalence between viscosity and almost everywhere solution on the other hand.

Lemma 2.9 (Helly’s Lemma, (see [1], Section 3.3, page 70))
Let (gn)n∈N be a sequence of non-decreasing functions on [a, b] verifying |gn| ≤M uniformly
in n. Then there exists a subsequence (gnj)j∈N such that

gnj → g a.e. on [a, b],

with g non-decreasing and |g| ≤M.

Lemma 2.10 (Complement of Helly’s Lemma)
Let (gn)n∈N be a sequence of non-decreasing functions on a bounded interval I and suppose
that

gn → g a.e. on I.

If g is constant on I̊ , then for every closed subset interval I ′ ⊂ I̊ ,

gn → g uniformly on I ′.

The proof of Lemma 2.10 is done in Appendix B.
We introduce now a lemma that shows the equivalence between viscosity and almost

everywhere solutions under the monotonicity of the solution.

Lemma 2.11 (Equivalence between viscosity and a.e. solutions)
Let F satisfying assumption (Ã). Let φ : R → R be a non-decreasing function.Then φ is a
viscosity solution of

(2.27) 0 = F ((φ(x+ ri))i=0,...,N) on R

if and only if φ is an almost everywhere solution of the same equation.

The proof of Lemma 2.11 is also delayed in Appendix B.
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3 Construction of a traveling wave: proof of Proposi-

tion 2.3

This section is devoted to the proof of existence of a traveling wave for system (2.20). We
control both the velocity of propagation and the finite difference of a solution in the first
subsection. Then we prove Proposition 2.3 in the second subsection.

3.1 Preliminary results

We have

Lemma 3.1 (Velocity cp is bounded)
Under the assumption (Ã), (B), let cp be the velocity given by (2.24). Then there exists
M1 > 0 such that

|cp| ≤M1

for 0 < p ≤ 1

r∗
, with r∗ given in (1.15).

Proof of Lemma 3.1.
Consider the function φp given by (2.23) which satisfies (2.25). Let cp be the associated
velocity given by (2.24) and assume by contradiction that when p→ p0 ∈ [0, 1

r∗
]

(3.28) lim
p→p0

cp = +∞,

(the case cp → −∞ being similar). Let φp(x) := φp(cpx) solution of

φ
′
p(x) = F

((
φp

(
x+

ri
cp

))
i=0,...,N

)
.

Since φp is invariant w.r.t. space translations, we may assume that

φp(0) = b− ε

for some ε > 0 small enough. Moreover, by (2.26) we have

|φ′p| = |cpφ′p| ≤M

for some M > 0 independent on p. Thus using Ascoli’s Theorem and the diagonal extraction
argument, φp converges as p→ p0 (up to a subsequence) to some φ locally uniformly on R,
and φ satisfies classically

φ
′
(x) = F ((φ(x))i=0,...,N)

= f(φ(x))

and φ(0) = b−ε. But φ
′
p ≥ 0 (because (3.28) implies trivially that cp ≥ 0), thus φ

′ ≥ 0. Hence

f(φ(x)) ≥ 0 for all x, in particular f(φ(0)) = f(b − ε), a contradiction since f(b − ε) < 0
(see assumption (B)). �

Next, we introduce an important proposition on the control of the finite difference that will
be used in the proof of existence of a traveling wave.
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Proposition 3.2 (Control on the finite difference)
Assume that F satisfies (Ã) and let a > r∗ with r∗ given by (1.15) and M0 > 0. For every
ε > 0, there exists δ > 0 such that for all function φ (viscosity) solution of

cφ′(x) = F ((φ(x+ ri))i=0,...,N) on R
φ′ ≥ 0

φ(x+ 1) ≤ φ(x) + 1

|c| ≤M0

|cφ′| ≤M0,

and for all x0 ∈ R satisfying

φ∗(x0 + a)− φ∗(x0 − a) ≤ δ,

we have
dist(α, {0, b}+ Z) < ε for all α ∈ [φ∗(x0), φ

∗(x0)].

Note that, {0, b}+ Z ≡ Z∪ (b+ Z). Roughly speaking, this proposition says that if φ is flat
enough around x0, then φ(x0) is close to a zero of f.

Proof of Proposition 3.2.
The proof is done by contradiction.
Step 1: construction of a sequence, by contradiction
We assume by contradiction that there exists ε0 > 0 such that for all δn → 0, there exists
φn solution of

(3.29)



cn(φn)′(x) = F ((φn(x+ ri))i=0,...,N)

(φn)′ ≥ 0

φn(x+ 1) ≤ φn(x) + 1

|cn| ≤M0

|cn(φn)′| ≤M0,

such that there exists xn ∈ R satisfying

(3.30) φn∗ (xn + a)− (φn)∗(xn − a) ≤ δn → 0,

and there exists αn ∈ [φn∗ (xn), (φn)∗(xn)] such that

(3.31) dist(αn, {0, b}+ Z) ≥ ε0 > 0.

Up to replace φn(x) by φn(x+ en) + kn with en ∈ R, kn ∈ Z, we can assume that

(3.32)

∣∣∣∣∣xn ≡ 0

φn(0) ∈ [0, 1) for all n.

Step 2: passing to limit n→ +∞
Because |cn| ≤M0 then, up to extract a subsequence as n→ +∞, we have

cn → c.
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Case 1: c 6= 0
For n large enough, we have |cn| ≥ |c|

2
6= 0. Hence

|(φn)′| ≤ 2M0

|c| for large n,

thus φn is uniformly Lipschitz continuous. Using Ascoli’s Theorem and the diagonal extrac-
tion argument, φn → φ (up to a subsequence) locally uniformly on R. Moreover, φ satisfies
(in the viscosity sense)

(3.33)

{
cφ′(x) = F ((φ(x+ ri))i=0,...,N)

φ′ ≥ 0

Case 2: c = 0
Notice that φn(x+ 1) ≤ φn(x) + 1 implies (using (3.32))

(3.34)

{
φn(x) ≤ dxe+ 1 for x ≥ 0

φn(x) ≥ −d|x|e for x ≤ 0.

Therefore, using Helly’s Lemma (Lemma 2.9) and the diagonal extraction argument, φn

converges (up to a subsequence) to φ locally a.e. Moreover, we have (using Lemma 2.11 if
cn = 0)

cn
∫ b2

b1

(φn)′(z)dz =

∫ b2

b1

F ((φn(z + ri))i=0,...,N)dz

for every b1 < b2. That is,

cn(φn(b2)− φn(b1)) =

∫ b2

b1

F ((φn(z + ri))i=0,...,N)dz.

But
F ((φn(z + ri))i=0,...,N)→ F ((φ(z + ri))i=0,...,N) a.e.

and
|F ((φn(z + ri))i=0,...,N)| ≤ m0(1 + |z|)

for some constant m0 > 0 (because of (3.34) and the fact that F is globally Lipschitz with
f bounded). Thus, using Lebesgue’s dominated convergence theorem, we pass to the limit
n→ +∞, and we get

0 =

∫ b2

b1

F ((φ(z + ri))i=0,...,N)dz

which implies (since b1 and b2 are arbitrary) that

0 = F ((φ(z + ri))i=0,...,N) a.e.

Since (φn)′ ≥ 0 implies φ′ ≥ 0, then by Lemma 2.11, φ verifies

(3.35)

{
0 = F ((φ(x+ ri))i=0,...,N)

φ′ ≥ 0
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in the viscosity sense.
Step 3: getting a contradiction
Passing to the limit in (3.30) with xn = 0 implies that

φ∗(a) ≤ φ∗(−a).

But φ is non-decreasing, then φ = const =: k over (−a, a). Since a > r∗, then from (3.33)
and (3.35), we get for x = 0

0 = F ((φ(x+ ri))i=0,...,N)

= F ((k)i=0,...,N) = f(k),

hence k ∈ {0, b} + Z. On the other hand, since αn ∈ [φn∗ (0), (φn)∗(0)], then (up to a subse-
quence)

αn → α ∈ {k} = [φ∗(0), φ∗(0)].

Moreover, if we pass to limit in (3.31), we get

dist(α = k, {0, b}+ Z) ≥ ε0 > 0,

which is a contradiction. �

3.2 Proof of Proposition 2.3

Proof of Proposition 2.3
The proof is done in several steps.
Step 0: introduction
Let p > 0 and φp (given by (2.23)) be a non-decreasing solution of

cpφ
′
p(x) = F ((φp(x+ ri))i=0,...,N)

with

φp

(
x+

1

p

)
= 1 + φp(x)

and cp is given by (2.24). Up to translate φp, let us suppose that

(3.36)

{
(φp)∗(0) ≤ b

(φp)
∗(0) ≥ b.

Our aim is to pass to limit as p goes to zero.
Step 0.1: introduce zp and yp
For any ε > 0 small enough (ε < 1

2
min(b, 1− b)), let zp, yp ∈ R such that

(3.37)

{
(φp)

∗(zp) ≥ b+ ε

(φp)∗(zp) ≤ b+ ε,

and

(3.38)

{
(φp)

∗(yp) ≥ b− ε
(φp)∗(yp) ≤ b− ε.
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From Proposition 3.2, since (φp)
∗(zp) > b and (φp)∗(yp) < b, we deduce that (for a > r∗)

(3.39) (φp)∗(zp + a)− (φp)
∗(zp − a) ≥ δ(ε) > 0

and

(3.40) (φp)∗(yp + a)− (φp)
∗(yp − a) ≥ δ(ε) > 0,

with δ(ε) independent of p. Moreover, we notice that

(3.41) yp ≤ 0.

(Otherwise, b− ε ≥ (φp)∗(yp) ≥ (φp)
∗(0) ≥ b, a contradiction).

Step 1: viscosity super-solution
Let

ψp(x) := (φp)∗ (x+ a)− (φp)
∗ (x− a).

Notice that ψp is lower semi continuous and ψp(x) ≥ 0 for all x ∈ R (because (φp)∗ is l.s.c,
(φp)

∗ is u.s.c and φp is non-decreasing). Since (in the viscosity sense){
cp((φp)∗)

′(x+ a) ≥ F (((φp)∗ (x+ a+ ri))i=0,...,N)

cp((φp)
∗)′(x− a) ≤ F (((φp)

∗ (x− a+ ri))i=0,...,N),

then we can show (using a doubling of variables) the following inequality

(3.42) cp (ψp)
′
∗ (x) ≥ F (((φp)∗ (x+ a+ ri))i=0,...,N)− F (((φp)

∗ (x− a+ ri))i=0,...,N),

which holds in the viscosity sense.
Step 2: passing to the limit p→ 0
Since cp is bounded (see Lemma 3.1), then

cp → c,

up to a subsequence.
Case 1: c 6= 0
For p small enough, we have |cp| ≥ |c|

2
6= 0. From (2.26), we deduce that

|φ′p| ≤
2M

|c| for p small,

thus φp is uniformly Lipschitz continuous. Using Ascoli’s Theorem and the diagonal extrac-
tion argument, φp → φ (up to a subsequence) locally uniformly on R. Moreover, φ satisfies,
at least in the viscosity sense (using the stability result, Proposition 2.5),

(3.43)

{
cφ′(x) = F ((φ(x+ ri))i=0,...,N)

φ′ ≥ 0,

and {
(φ)∗(0) ≤ b

(φ)∗(0) ≥ b.
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Case 2: c = 0
Let R > 0 and choose p small enough such that R < 1

2p
. Since

(3.44) φp

(
1

2p

)
= 1 + φp

(−1

2p

)
,

then for all x ∈ [−R,R], we have

|φp(x)− φp(0)| ≤
∣∣∣∣φp( 1

2p

)
− φp

(−1

2p

)∣∣∣∣ = 1.

Notice that (3.36), the monotonicity of φp and (3.44) implies that

b− 1 ≤ φp

(
− 1

2p

)
≤ (φp)∗(0) ≤ b ≤ (φp)

∗(0) ≤ φp

(
1

2p

)
≤ b+ 1,

thus
b− 1 ≤ φp(0) ≤ b+ 1.

Hence
|φp|L∞[−R,R] ≤ 3.

Using Helly’s Lemma (Lemma 2.9) and the diagonal extraction argument, φp converges
locally a.e. (up to a subsequence) to non-decreasing function φ. Thus, φ satisfies

(3.45)

{
0 = cφ′(x) = F ((φ(x+ ri))i=0,...,N)

φ′ ≥ 0

almost everywhere. Moreover, from Lemma 2.11, we deduce that φ is a viscosity solution of
(3.45) with {

φ∗(0) ≤ b

φ∗(0) ≥ b.

Step 3: first properties of the limit φ
Step 3.1: the oscillation of φ is bounded

Consider any R > 0. Choose p0 such that R ≤ 1

2p0
and let p ∈ (0, p0]. Then

φp(R)− φp(−R) ≤ φp

(
1

2p0

)
− φp

(−1

2p0

)
= 1.

But φp converges (up to a subsequence and at least almost everywhere) to φ, (see Step 2),
thus

φ(R)− φ(−R) ≤ 1

for almost every R. Now let R goes to +∞, we conclude that

φ(+∞)− φ(−∞) ≤ 1.

Step 3.2: φ(±∞) ∈ Z ∪ ({b}+ Z)
Since (3.43) is invariant by translation, then

φn(x) = φ(x− n)
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is a viscosity solution of

c(φn)′(x) = F ((φn(x+ ri))i=0,...,N).

Moreover, φ is non-decreasing bounded (see Step 3.1), thus (φn)n is a non-increasing sequence
of bounded functions. Therefore, φn converges pointwise as n→ +∞. Moreover, since

lim
n→+∞

(φn(x)− φ(−∞)) = 0,

then φn converges to φ(−∞). Now, using the stability for viscosity solutions (see Proposition
2.5), we deduce that φ(−∞) is a solution of

c(φ(−∞))′ = F ((φ(−∞))i=0,...,N) = f(φ(−∞)).

That is
f(φ(−∞)) = 0.

Similarly we get f(φ(+∞)) = 0. Therefore the assertion of the step follows from (B).
Step 4: φ(±∞) /∈ {b}+ Z
Since φ(+∞)− φ(−∞) ≤ 1 and {

φ∗(0) ≤ b

φ∗(0) ≥ b,

we get that φ(−∞) ∈ {b − 1, 0, b} and φ(+∞) ∈ {b, 1, b + 1}. We want to exclude the
cases φ(±∞) = b, b ± 1. Notice that if φ(+∞) = b + 1, then φ(−∞) = b. Similarly, if
φ(−∞) = b− 1, then φ(+∞) = b. Therefore, it is sufficient to exclude the cases φ(±∞) = b.
At the end, this will show that φ(+∞) = 1 and φ(−∞) = 0.
Suppose to the contrary that

φ(+∞) = b,

(the case φ(−∞) = b being similar). Let x0 = 2r∗, where r∗ = maxi=0,...,N |ri|. Since

b = φ(+∞) ≥ φ∗(0) ≥ b,

then φ(x) = b for all x > 0. Hence

φ(x0) = φ(x0 ± a) = b,

for r∗ < a < 2r∗. Using the uniform convergence of φp to φ (see Lemma 2.10 if c = 0), we
deduce that

φp(x0)→ b

and
ψp(x0) = (φp)∗(x0 + a)− (φp)

∗(x0 − a)→ 0 as p→ 0.

Step 4.1: Equation satisfied by ψp at its point of minimum
Since (for zp and yp defined in (3.37) and (3.38)) we have{

zp → +∞ as p→ 0 (φ is non-decreasing and φ(+∞) = b)

yp ≤ 0 (by (3.41)),
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then x0 ∈ [yp, zp] for p small enough. Next, set

mp = min
x∈[yp,zp]

ψp(x) = ψp(x
∗
p) ≥ 0 with x∗p ∈ [yp, zp],

thus

(3.46) mp = ψp(x
∗
p) ≤ ψp(x0)→ 0 as p→ 0.

In addition, since {
ψp(yp) ≥ δ(ε) > 0

ψp(zp) ≥ δ(ε) > 0,

then

(3.47) x∗p ∈ (yp, zp).

Therefore from (3.42), we get

(3.48) 0 = cp((ψp)∗)
′(x∗p) ≥ F (((φp)∗ (x∗p + a+ ri))i=0,...,N)− F (((φp)

∗ (x∗p − a+ ri))i=0,...,N)

in the viscosity sense (and pointwisely).
Step 4.2: ψp(x

∗
p + ri) ≥ ψp(x

∗
p) = mp for all i

Because of (3.47), we have

(3.49) b− ε ≤ (φp)
∗(yp) ≤ (φp)

∗(x∗p) ≤ (φp)∗(zp) ≤ b+ ε.

Therefore doing a reasoning similar to the one of Step 2, we show that

φp(x
∗
p + .)→ φ0 a.e. on R,

and φ0 is a viscosity solution of (3.43). Since

(3.50) mp = ψp(x
∗
p) = (φp)∗ (x∗p + a)− (φp)

∗ (x∗p − a)→ 0 as p→ 0,

we deduce that

(3.51) φ0 = const := k on (−a, a).

From Lemma 2.10 and (3.49), we deduce that k ∈ [b− ε, b+ ε]. Moreover, we have

0 = cφ′0(0) = F ((φ0(0 + ri))i=0,...,N) = f(k),

hence k = b. Again, using Lemma 2.10 we deduce that

sup
(x∗p−a+δ,x∗p+a−δ)

|φp(x)− b| → 0 for any δ > 0.

Moreover, because of (3.50), we can even conclude that

(3.52) (φp)∗(x
∗
p + a), (φp)

∗(x∗p − a)→ b as p→ 0.
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Now, since {
(φp)∗(yp) ≤ b− ε
(φp)

∗(zp) ≥ b+ ε,

then yp , zp /∈ (x∗p − a + δ, x∗p + a − δ) for every fixed δ. Since yp < x∗p < zp, thus choosing
0 < δ ≤ a− r∗ implies that

yp ≤ x∗p + ri ≤ zp for all i.

Therefore,

(3.53) ψp(x
∗
p + ri) ≥ ψp(x

∗
p) = mp.

Step 4.3: getting a contradiction
In this step, we assume that mp > 0 (it will be shown in Step 5) and we want to get a
contradiction. Set

ki =

{
(φp)∗ (x∗p + a+ ri) if ri ≤ 0

(φp)
∗ (x∗p − a+ ri) if ri > 0.

Hence from (3.53) and using the monotonicity of F together with inequality (3.48), we get

0 ≥ F ((ai)i=0,...,N)− F ((ci)i=0,...,N),

where

ai =

{
ki if ri ≤ 0

ki +mp if ri > 0
and ci =

{
ki −mp if ri ≤ 0

ki if ri > 0.

Notice that
ki ∈ [(φp)

∗(x∗p − a), (φp)∗(x
∗
p + a)].

Therefore from (3.52) and the fact that mp → 0, we deduce that

ai → b and ci → b as p→ 0.

Since F is C1 near {b}N+1 and ci + t(ai − ci) = ci + tmp, then

0 ≥
∫ 1

0

dt

N∑
i=0

(
(ai − ci)

∂F

∂Xi

((cj + t(aj − cj))j=0,...,N)

)

=

∫ 1

0

dt
N∑
i=0

(
mp

∂F

∂Xi

((cj + tmp)j=0,...,N)

)
.

Since mp > 0, we get

0 ≥
∫ 1

0

dt

N∑
i=0

∂F

∂Xi

((cj + tmp)j=0,...,N)

= f ′(b) +

∫ 1

0

dt

(
N∑
i=0

∂F

∂Xi

((cj + tmp)j=0,...,N)−
N∑
i=0

∂F

∂Xi

(b, ..., b)

)
.
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But F is C1 near {b}N+1 and ci + tmp → b for all i, thus∫ 1

0

dt

(
N∑
i=0

∂F

∂Xi

((cj + tmp)j=0,...,N)−
N∑
i=0

∂F

∂Xi

(b, ..., b)

)
→ 0 as p→ 0.

This implies that
0 ≥ f ′(b) > 0,

which is a contradiction because of assumption (B).

Step 5: mp > 0
We split this step into two cases:
Case 1: F is strongly increasing in some direction
Assume that F verifies in addition:

(3.54)
∂F

∂Xi1

≥ δ0 > 0,

for certain i1 with ri1 > 0 (assuming ri1 < 0 being similar).
Assume to the contrary that mp = 0. Thus

ψp(x
∗
p) = (φp)∗(x

∗
p + a)− (φp)

∗(x∗p − a) = 0.

Since φp is non-decreasing, then

φp(x
∗
p) = φp|(x∗p−a,x∗p+a)

= k = const,

where k is a zero of f, i.e

(3.55) f(k) = 0.

Let d ≥ x∗p + a be the first real number such that

φp(d+ η) > k for every η > 0.

Choose 0 < η < ri1 and set
x1 = d+ η − ri1 .

From the definition of d, we deduce that

φp = k on a neighborhood of x1,

hence φ′p(x1) = 0. Moreover, we have{
φp(x1 + ri) ≥ k for all i 6= i1

φp(x1 + ri1) = φp(d+ η) > k for i = i1,

therefore

0 = cφ′p(x1) = F ((φp(x1 + ri))i=0,...,N)

≥ F (k, ...,

i1︷ ︸︸ ︷
φp(x1 + ri1)), ..., k)

≥ f(k) + δ0(φp(d+ η)− k)

= δ0(φp(d+ η)− k) > 0,
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where we have used (3.55) for the last line. This is a contradiction.

Case 2: create the monotonicity
In fact, we can always assume hypothesis (3.54) for a modification Fp of F, where

Fp(X0, X1, ..., XN) = F (X0, X1, ..., XN) + p(Xi1 −X0).

Then the whole construction works for F replaced by Fp with the additional monotonicity
property (3.54) with δ0 = p. Once we pass to the limit p→ 0, we still get the same contra-
diction as in Step 4.3 and we recuperate the construction of traveling wave φ of (2.20) for
the function F. �

4 Uniqueness of the velocity c

We prove in this section the uniqueness of the velocity of a traveling wave φ solution of
(1.14) (part (a) of Theorem 1.5). We show in the first subsection a comparison principle on
the half-line, and we prove the uniqueness of the velocity in the second subsection.

4.1 Comparison principle on the half-line

In this subsection, we prove a comparison principle on the half-line that is essentially used
to prove the uniqueness of the velocity (in the second subsection of this section) and the
uniqueness of the profile φ that solves (1.14) (in Section 6).

Theorem 4.1 (Comparison principle on (−∞, r∗])
Let F : [0, 1]N+1 → R satisfying (A) and assume that

(4.56)

∣∣∣∣∣∣∣
there exists β0 > 0 such that if

Y = (Y0, ..., YN), Y + (a, ..., a) ∈ [0, β0]
N+1

then F (Y + (a, ..., a)) < F (Y ) if a > 0.

Let u, v : (−∞, r∗]→ [0, 1] be respectively a sub and a super-solution of

(4.57) cu′(x) = F ((u(x+ ri))i=0,...,N) on (−∞, 0)

in the sense of Definition 2.4. Assume moreover that

u ≤ β0 on (−∞, r∗]

and
u ≤ v on [0, r∗].

Then
u ≤ v on (−∞, r∗].

Before giving the proof of this result, we give a corollary which is a comparison principle on
[−r∗,+∞).
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Corollary 4.2 (Comparison principle on [−r∗,+∞))
Let F : [0, 1]N+1 → R satisfying (A) and assume that:

(4.58)

∣∣∣∣∣∣∣
there exists β0 > 0 such that if

X = (X0, ..., XN), X + (a, ..., a) ∈ [1− β0, 1]N+1

then F (X + (a, ..., a)) < F (X) if a > 0.

Let u, v : [−r∗,+∞)→ [0, 1] be respectively a sub and a super-solution of (4.57) on (0,+∞)
in sense of Definition 2.4. Moreover, assume that

v ≥ 1− η0 on [−r∗,+∞),

and that
u ≤ v on [−r∗, 0].

Then
u ≤ v on [−r∗,+∞).

Remark 4.3 (Inverse monotonicity)
Notice that assumptions (4.56) and (4.58) are satisfied if F is C1 on a neighborhood of
{0}N+1 and {1}N+1 in [0, 1]N+1 and f ′(0) < 0, f ′(1) < 0. This condition means that 0 and
1 are stable equilibria.

Lemma 4.4 (Transformation of a solution of (4.57))
Let u, v : (−∞, r∗]→ [0, 1] be respectively a sub and super-solution of (4.57) in the sense of
Definition 2.4. Then

û(x) := 1− u(−x) and v̂(x) := 1− v(−x)

are respectively a super and a sub-solution of (4.57) on [−r∗,+∞) with F, c and ri (for all

i ∈ {0, ..., N}) replaced by F̂ , ĉ and r̂i, given by

(4.59)


F̂ (X0, ..., XN) = −F (1−X0, ..., 1−XN)

ĉ := −c
r̂i := −ri.

Moreover,
F̂ : [0, 1]N+1 → R

satisfies (A), (B) and (C), where b and f are replaced by{
b̂ := 1− b
f̂(v) := −f(−v)

in (B).

Notice that, Lemma 4.4 is still true even though u, v : R → [0, 1] are a sub and a super-
solution of (4.57) on R.
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Proof of Lemma 4.4
Let u : (−∞, r∗] → [0, 1] be a sub-solution of (4.57) and set û(x) = 1 − u(−x). It is then
easy to see that in the viscosity sense

cû′(x) = cu′(−x) ≤ F ((u(−x+ ri))i=0,...,N)

= F ((1− û(x− ri))i=0,...,N).

Hence û is a super-solution of (4.57) on [−r∗,+∞) with F, ri and c replaced by F̂ , r̂i := −ri
and ĉ := −c given in (4.59). Similarly, we show that v̂ is a sub-solution of the same equation
on [−r∗,+∞). �

Proof of Corollary 4.2.
Let u, v : [−r∗,+∞) → [0, 1] be a sub and super-solution of (4.57) on (0,+∞) such that
v ≥ 1 − β0 on [−r∗,+∞). We set û(x) = 1 − u(−x) and v̂(x) = 1 − v(−x). It is then easy
to see that û, v̂ ∈ [0, 1], v̂ ≤ β0 on (−∞, r∗].

Using Lemma 4.4, we show that û and v̂ are respectively a super and a sub-solution of
(4.57) with (F, c, ri) replaced by (F̂ , ĉ, r̂i) defined in (4.59). Moreover, using the fact that F

satisfies (4.58), we deduce that F̂ satisfies (4.56).
We then deduce by Theorem 4.1 that

v̂ ≤ û on (−∞, r∗]

i.e.
u ≤ v on [−r∗,−∞).

�

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1.
Let u, v : (−∞, r∗]→ [0, 1] be respectively a sub and a super-solution of (4.57) such that

u ≤ β0 on (−∞, r∗],

and u ≤ v on [0, r∗].

Step 0: Introduction
Set

v := min(v, β0).

According to (4.56) we have

F (β0, ..., β0) < F (0, ..., 0) = f(0) = 0

thus the constant β0 is a super-solution of (4.57). Hence v is a super-solution of (4.57) on
(−∞, 0) with u ≤ v on [0, r∗]. Moreover, since v ≤ v, it is sufficient to prove the comparison
principle (Theorem 4.1) between u and v which satisfy in addition u, v ∈ [0, β0].
For simplicity, we note v as v with u, v ∈ [0, β0] and u ≤ v on [0, r∗].

Step 1: Doubling the variables
Suppose by contradiction that

M = sup
x∈(−∞,r∗]

u(x)− v(x) > 0.
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Let ε, α > 0 and define

Mε,α := sup
x, y∈(−∞,r∗]

(
u(x)− v(y)− |x− y|

2

2ε
− α|x|2

)
= u(xε)− v(yε)−

|xε − yε|2
2ε

− α|xε|2,

for certain xε, yε ∈ (−∞,−r∗]. Note that the maximum is reached since the function

(x, y) 7→ ψ(x, y) = u(x)− v(y)− |x− y|
2

2ε
− α|x|2

is upper semi-continuous and satisfies ψ(x, y) → −∞ as |x|, |y| → +∞. Moreover, for all
δ > 0, there exists xδ ∈ (−∞, r∗] such that

M ≥ u(xδ)− v(xδ) ≥M − δ.

Hence

Mε,α ≥ u(xδ)− v(xδ)− α|xδ|2
≥ M − δ − α|xδ|2

≥ M

2
> 0,

for δ =
M

4
and α chosen small enough such that α <

M

4|xδ|2
. Moreover, since u(xε)−v(yε) ≤

β0, we have

(4.60)
|xε − yε|2

2ε
+ α|xε|2 ≤ β0.

Step 2: There exists α small enough and ε→ 0 such that xε ∈ [0, r∗] or yε ∈ [0, r∗]
Assume that xε ∈ [0, r∗] (the case yε ∈ [0, r∗] being similar). Using (4.60), we deduce that
yε ∈ [−√2β0ε, r

∗]. Then xε and yε converge (up to a subsequence) to a certain x0 ∈ [0, r∗]
as ε→ 0 (from (4.60), the two limits coincide). We then deduce that

0 <
M

2
≤ lim sup

ε→0
(u(xε)− v(yε))

≤ u(x0)− v(x0) ≤ 0,

which is a contradiction. The last inequality takes place since u ≤ v on [0, r∗].

Step 3: For all α and ε small enough, we have xε, yε ∈ (−∞, 0)
Step 3.1: Viscosity inequalities
We have

u(x) ≤ v(yε) +Mε,α +
|x− yε|2

2ε
+ α|x|2 := φ(x),

and u(xε) = φ(xε). Thus

(4.61) c

(
xε − yε

ε
+ 2αxε

)
= cφ′(xε) ≤ F ((u(xε + ri))i=0,...,N).
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Similarly, we get

(4.62) c

(
xε − yε

ε

)
≥ F ((v(yε + ri))i=0,...,N).

Subtracting (4.62) from (4.61) implies that

(4.63) 2cαxε ≤ F ((u(xε + ri))i=0,...,N)− F ((v(yε + ri))i=0,...,N).

Note that from (4.60)

α|xε| ≤
√
αβ0.

This implies that for ε fixed, αxε → 0 as α→ 0.

Step 3.2: Passing to the limit α→ 0
We have

u(x)− v(y)− |x− y|
2

2ε
− α|x|2 ≤ u(xε)− v(yε)−

|xε − yε|2
2ε

− α|xε|2.

Set ∣∣∣∣∣uαi = u(xε + ri)

vαi = v(yε + ri),

then {
uαi ≤ vαi +mα + δαi if i 6= 0

uα0 = vα0 +mα if i = 0,

where mα = uα0 − vα0 and δαi = 2αxεri + α|ri|2. For ε fixed, since uαi , v
α
i ∈ [0, β0] and

M

2
≤ mα ≤ β0, we deduce that as α→ 0 and up to a subsequence,

uαi → u0i
vαi → v0i
mα → m0

δαi → 0,

with u0i , v
0
i ∈ [0, β0], 0 < M

2
≤ m0 ≤ β0 and{

u0i ≤ v0i +m0 if i 6= 0

u00 = v00 +m0 if i = 0.

Moreover, passing to the limit in (4.63) implies that

(4.64) 0 ≤ F ((u0i )i=0,...,N)− F ((v0i )i=0,...,N).

Step 4: Getting a contradiction
We claim that for all i, there exists li, l

′
i ≥ 0 such that

(4.65) u0i + li = v0i − l′i +m0,
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and {
u0i := u0i + li ≤ β0

v0i := v0i − l′i ≥ 0.

Recall that for all i ∈ {0, ..., N}, we have
u0i , v

0
i ∈ [0, β0]

u0i ≤ v0i +m0

u00 − v00 = m0 ≤ β0.

If for some i, u0i = v0i +m0, then it suffices to take li = l′i = 0. Assume then that u0i < v0i +m0.

Case 1: u0i , v
0
i ∈ (v00, u

0
0)

Set li = u00 − u0i and l′i = v0i − v00. Then{
u0i = u0i + li = u00 ≤ β0

v0i = v0i − l′i = v00 ≥ 0,

and u0i = v0i +m0.

Case 2: u0i > u00 and v0i > v00
Since u0i − v00 > m0, then there exists l′i < v0i − v00 such that

u0i = v0i − l′i +m0

and v0i = v0i − l′i > v00 ≥ 0. Thus, it is sufficient to take li = 0.

Case 3: u0i < u00 and v0i < v00
This case can be treated as Case 2 by taking l′i = 0 and li < u00 − u0i .

Finally, going back to (4.64), since F is non-decreasing, we deduce that

0 ≤ F ((u0i )i=0,...,N)− F ((v0i )i=0,...,N)

≤ F ((u0i )i=0,...,N)− F ((v0i )i=0,...,N)

= F ((u0i )i=0,...,N)− F ((u0i −m0)i=0,...,N)

< 0.

Last inequality takes place since F verifies (4.56) for u0i , u
0
i − m0 ∈ [0, β0] and m0 > 0.

Therefore, we get a contradiction. �

4.2 Uniqueness of the velocity

This subsection is devoted to prove the uniqueness of the velocity c of a traveling wave that
solves (1.14).

Proposition 4.5 (Uniqueness of c)
Under assumptions (A), consider the function F defined on [0, 1]N+1. Let (cj, φj) be a solution
of (1.14) for j = 1, 2. If F satisfies in addition (C), then c1 = c2.
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Proof of Proposition 4.5.
Suppose that for j = 1, 2, (cj, φj) is a solution of (1.14) and assume by contradiction that
c1 < c2. We have,

φj(−∞) = 0 and φj(+∞) = 1.

We set δ = min(β0,
1
4
) where β0 is given in assumption (C). Up to translate φ1 and φ2, we

can assume that
φ1(x) ≥ 1− δ ∀x ≥ −r∗

and
φ2(x) ≤ δ ∀x ≤ r∗.

This implies that
φ2 ≤ φ1 over [−r∗, r∗].

Moreover, since c1 < c2, we have

c1φ
′
2(x) ≤ c2φ

′
2(x) = F ((φ2(x+ ri))i=0,...,N).

Hence (c1, φ2) is a sub-solution of (1.14). Since

φ1 ≥ 1− δ on [−r∗,+∞),

we deduce using Corollary 4.2 that

φ2 ≤ φ1 over [−r∗,+∞).

Similarly, since
φ2 ≤ δ on (−∞, r∗],

we deduce using Theorem 4.1 that

φ2 ≤ φ1 over (−∞, r∗].

Therefore,
φ2 ≤ φ1 over R.

Next, set ∣∣∣∣∣u1(t, x) = φ1(x+ c1t)

u2(t, x) = φ2(x+ c2t),

then for j = 1, 2, we have

(4.66) ∂tuj(t, x) = F ((uj(t, x+ ri))i=0,...,N).

Moreover, at time t = 0, we have

u1(0, x) = φ1(x) ≥ φ2(x) = u2(0, x) over R,

thus applying the comparison principle for equation (4.66) (see [23]), we get

u1 ≥ u2 ∀ t ≥ 0 ∀x ∈ R.
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Taking x = y − c1t, we get

φ1(y) ≥ φ2(y + (c2 − c1)t), ∀ t ≥ 0, ∀ y ∈ R.

Using that c1 < c2, and passing to the limit t→ +∞, we get

φ1(y) ≥ φ2(+∞) = 1, ∀ y ∈ R.

But φ1(−∞) = 0, hence a contradiction. Therefore c1 ≥ c2. Similarly, we show that c2 ≥ c1,
hence c1 = c2. �

5 Asymptotics for the profile

In this section, our main result is the asymptotics near ±∞ for solutions φ : R→ [0, 1] of

(5.67) cφ′(x) = F ((φ(x+ ri))i=0,...,N) on R,

namely Proposition 5.1.

Proposition 5.1 (Asymptotics near ±∞)
Consider a function F defined on [0, 1]N+1 satisfying (A) and (C), and assume that c 6= 0.
Then

i) asymptotics near −∞
Let φ : R→ [0, 1] be a solution of (5.67), satisfying

φ(−∞) = 0 and φ ≥ δ > 0 on [0, r∗]

for some δ > 0 and assume (E+) ii). If there exists a unique λ+ > 0 solution of

(5.68) cλ =
N∑
i=0

∂F

∂Xi

(0, ..., 0)eλri

then for any sequence (xn)n, xn → −∞, there exists a subsequence (xn′)n′ and A > 0 such
that

φ(x+ xn′)

eλ+xn′
−→ Aeλ

+x locally uniformly on R as n′ → +∞.

ii) asymptotics near +∞
Let φ : R→ [0, 1] be a solution of (5.67), satisfying

φ(+∞) = 1 and φ ≤ 1− δ < 1 on [0, r∗]

for some δ > 0 and assume (E−) ii). If there exists a unique λ− < 0 solution of

(5.69) cλ =
N∑
i=0

∂F

∂Xi

(1, ..., 1)eλri ,

then for any sequence (xn)n, xn → +∞, there exists a subsequence (xn′)n′ and A > 0 such
that

1− φ(x+ xn′)

eλ−xn′
−→ Aeλ

−x locally uniformly on R as n′ → +∞.
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5.1 Uniqueness and existence of λ±

In this subsection, we address the question of the existence and uniqueness of λ±.

Lemma 5.2 (Uniqueness and existence of λ+)
Assume (A) and suppose that ∇F (0) exists with f ′(0) < 0. Then there is at most one
solution λ+ > 0 of (5.68). Moreover, if c < 0 or if we assume (E+) i), then there exists a
(unique) solution λ+ > 0 of (5.68).

Proof of Lemma 5.2
Step 1: Uniqueness
Let

(5.70) g(λ) :=
N∑
i=0

∂F

∂Xi

(0, ..., 0)eλri − cλ.

Because of assumption (A), the function g is convex and

g(0) = f ′(0) < 0.

Thus, there exists at most one solution λ+ > 0 of (5.68) and if λ+ exists, then we have

(5.71) g < 0 on (0, λ+) and g > 0 on (λ+,+∞).

Step 2: Existence
Assume c < 0. We have

g(λ) ≥ ∂F

∂X0

(0, ..., 0)− cλ,

which implies that lim
λ→+∞

g(λ) = +∞. On the other hand, if we assume (E+) i), then

g(λ) ≥ ∂F

∂X0

(0, ..., 0) +
∂F

∂Xi+

(0, ..., 0)eλri+ − cλ,

which implies that lim
λ→+∞

g(λ) = +∞.
Therefore, there exists a unique λ+ > 0 such that g(λ+) = 0. �

In the same way (or using Lemma 4.4), we can prove the following lemma concerning λ−

Lemma 5.3 (Uniqueness and existence of λ−)
Assume (A) and suppose that ∇F (1, ..., 1) exists with f ′(1) < 0. Then there is at most one
solution λ− < 0 of (5.69). Moreover, if c > 0 or if we assume (E−) i), then there exists a
(unique) solution λ− < 0 of (5.69).
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5.2 Proof of Proposition 5.1

In this subsection, we prove that any solution of (5.67) is exponentially bounded (from above
and below) near −∞. Finally, we prove Proposition 5.1 i).

Lemma 5.4 (Exponential bounds for a solution of (5.67) near −∞)
Assume (A), (C) and (E+) ii). Let φ : (−∞, 0]→ [0, 1] be a solution of (5.67) on (−∞,−r∗)
satisfying φ(−∞) = 0 and assume that there exists λ+ > 0 solution of (5.68). Then there
exists k2 such that

φ(x) ≤ k2e
λ+x for all x ≤ 0.

Moreover, if

(5.72) φ ≥ δ > 0 on [−r∗, 0] for some δ > 0,

then there exists k1 > 0 such that

k1e
λ+x ≤ φ(x) for all x ≤ 0.

Remark 5.5 Notice that the exponential bounds of Lemma 5.4 do not holds if we do not
assume (E+) ii). To see this, it suffices to define f(u) = −u′ with u(x) = −xex. A simple
computation then gives that 

f(0) = 0
f ′(0) = −1

f ′(u)− f ′(0) ∼u→0
−1

lnu

and so f does not satisfies (E+) ii) and u is not exponentially bounded.

Proof of Lemma 5.4
The idea of the proof is to construct a sub and super-solution of

(5.73) cφ′(x) = F ((φ(x+ ri))i=0,...,N) on (−∞,−r∗)

then, using the comparison principle (Theorem 4.1), we deduce the existence of k1 and k2.
Let λ+ > 0 be the solution of (5.68) and consider the perturbation λ+ < λ′ < (1 + α)λ+

with α given in assumption (E+) ii).

Step 1: existence of k1
Step 1.1: construction of a sub-solution of (5.73)
Set

φ(x) = A
(
eλ

+x + eλ
′x
)

defined on (−∞, 0], where A > 0 will be chosen such that φ is a sub-solution of (5.73). Since
λ+ is a solution of (5.68), then for x ∈ (−∞,−r∗) we have

cφ′(x) = cλ+Aeλ
+x + cAλ′eλ

′x

= ∇F (0, ..., 0).((Aeλ
+(x+ri))i=0,...,N) + cAλ′eλ

′x

= ∇F (0, ..., 0).((φ(x+ ri))i=0,...,N)− Aeλ′x
(
∇F (0, ..., 0).((eλ

′ri)i=0,...,N)− cλ′
)

≤ F ((φ(x+ ri))i=0,...,N) + C0|Φ(x)|1+α − Aeλ′xg(λ′),
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where for the last line we have used (E+) ii), Φ(x) =
(
(φ(x+ ri))i=0,...,N

)
and g defined in

(5.70). Using the fact that for x ∈ (−∞,−r∗), we have φ(x+ ri) ≤ 2Aeλ
+(x+r∗). We get

cφ′(x)− F ((φ(x+ ri))i=0,...,N) ≤ A
(

21+αC0A
αe(1+α)λ

+(x+r∗)|E|1+α − eλ′xg(λ′)
)

≤ A
(

21+αC0A
αe(1+α)λ

+r∗|E|1+α − g(λ′)
)
eλ
′x,

with E = (1, ..., 1) ∈ RN+1. Since g(λ′) > 0 (see (5.71)),

cφ′(x) ≤ F ((φ(x+ ri))i=0,...,N) ≤ 0 for A small enough.

This shows that φ is a sub-solution of (5.73) on (−∞,−r∗).
Step 1.2: applying the comparison principle
Up to decrease A > 0, let us assume moreover that 2A ≤ min(δ, β0) with δ given in (5.72)
and β0 given in assumption (C) (this is possible since A can be chosen as small as we want).
Thus

φ ≥ δ ≥ 2A ≥ φ on [−r∗, 0]

and
φ ≤ 2A ≤ β0 on (−∞, 0].

Hence using the comparison principle (Theorem 4.1 and a shift of the functions), we deduce
that

φ(x) ≤ φ(x) for all x ≤ 0.

This implies that φ satisfies

k1 := A ≤ φ(x)

eλ+x
for all x ≤ 0.

Step 2: existence of k2
Step 2.1: construction of a super-solution of (5.73)
Define for x ∈ (−∞, 0] the function

φ(x) = A
(

2eλ
+x − eλ′x

)
.

Repeating the same proof as in Step 1, we get

cφ
′
(x)− F ((φ(x+ ri))i=0,...,N) ≥ A

(
−21+αC0A

αe(1+α)λ
+(x+r∗)|E|1+α + eλ

′xg(λ′)
)

≥ A
(
−21+αC0A

αe(1+α)λ
+r∗|E|1+α + g(λ′)

)
eλ
′x,

with E = (1, ..., 1) ∈ RN+1. Again, since g(λ′) > 0, then φ is a super-solution of (5.73) for
A > 0 small enough.

Step 2.2: applying the comparison principle
Define, for a > 0 large enough, the function φ̃(x) = φ(x− a) such that

φ̃ ≤ min
(
β0, Ae

−λ+r∗
)

on (−∞, 0],
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with β0 given in assumption (C). This is possible because we assume that φ(−∞) = 0. Thus

φ̃ ≤ Ae−λ
+r∗ ≤ φ on [−r∗, 0].

Hence, applying the comparison principle result (Theorem 4.1, up to a shift of the functions),
we deduce that

φ̃ ≤ φ on (−∞, 0].

This implies that
φ(x)

eλ+x
≤ 2Aeλ

+a for all x ≤ −a.
Using the fact that φ ≤ 1, we get

φ(x)

eλ+x
≤ k2 for all x ≤ 0,

where k2 := max

(
2Aeλ

+a, max
x∈[−a,0]

φ(x)

eλ+x

)
. �

We only prove Proposition 5.1 i) (the proof of Proposition 5.1 ii) being similar).

Proof of Proposition 5.1 i)
Let φ : [0, 1]→ R be a solution of (5.67) such that

φ(−∞) = 0 and φ ≥ δ for some δ > 0.

We recall, from Lemma 5.4, that

(5.74) 0 < k1 ≤
φ(x)

eλ+x
≤ k2 < +∞ for all x ≤ 0,

where λ+ is the solution of (5.68).

Step 1: Shifting and rescaling φ
For a sequence xn → −∞ and for all x ≤ 0, define the function vn as

vn(x− xn) :=
φ(x)

eλ+x
.

We have

(5.75) cφ′(x) = ceλ
+x
(
v′n(x− xn) + λ+vn(x− xn)

)
= F

(
(vn(x+ ri − xn)eλ

+(x+ri))i
)

That is, for y = x− xn,

c
(
v′n(y) + λ+vn(y)

)
= e−λ

+(y+xn)F
(
(vn(y + ri)e

λ+(y+xn+ri))i
)

= e−λ
+(y+xn)

[
F
(
(vn(y + ri)e

λ+(y+xn+ri))i
)
−∇F (0).

(
(vn(y + ri)e

λ+(y+xn+ri))i
)]

+
N∑
i=0

∂F

∂Xi

(0)vn(y + ri)e
λ+ri .

From assumption (E+) ii), we then have

c
(
v′n(y) + λ+vn(y)

)
=

N∑
i=0

∂F

∂Xi

(0)vn(y + ri)e
λ+ri +O

(
e−λ

+(y+xn)
∣∣(vn(y + ri)e

λ+(y+xn+ri))i
∣∣1+α)
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i.e,
(5.76)

c
(
v′n(y) + λ+vn(y)

)
=

N∑
i=0

∂F

∂Xi

(0)vn(y + ri)e
λ+ri +O

(
eλ

+α(y+xn)
∣∣(vn(y + ri)e

λ+ri)i
∣∣1+α)

Step 2: Passing to the limit n→ +∞
Because of (5.74), we have

(5.77) 0 < k1 ≤ vn(y) ≤ k2 < +∞ for y ≤ −xn

and for any compact set K ⊂ R

eλ
+α(y+xn)

∣∣(vn(y + ri)e
λ+ri)i

∣∣1+α → 0 as n→ +∞ (because xn → −∞)

uniformly in y ∈ K. As c 6= 0, we get from (5.76) that there exists some CK > 0 (independent
on n) such that

|v′n| ≤ CK on K.

Applying Ascoli’s theorem, there exists a subsequence vn′ such that

vn′ −→ v∞ locally uniformly on R.

Moreover v∞ satisfies

(5.78) c
(
v′∞(y) + λ+v∞(y)

)
=

N∑
i=0

∂F

∂Xi

(0)v∞(y + ri)e
λ+ri

and (using (5.77))

(5.79) k1 ≤ v∞ ≤ k2 on R.

Step 3: Applying Fourier transform
Applying Fourier transform to (5.78), implies that

v̂∞(ξ)G(ξ) = 0,

where G(ξ) = c(iξ + λ+)−
N∑
j=0

∂F

∂Xj

(0, ..., 0)eλ
+rjeiξrj .

Step 3.1: G(ξ) = 0 ⇐⇒ ξ = 0
Clearly, if ξ = 0 then G(ξ) = 0 (because λ+ solves (5.68)).
Assume that G(ξ) = 0 with ξ ∈ R. Hence

(5.80) cλ+ =
N∑
j=0

∂F

∂Xj

(0, ..., 0)eλ
+rj cos(ξrj)

and

(5.81) cξ =
N∑
j=0

∂F

∂Xj

(0, ..., 0)eλ
+rj sin(ξrj).
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Using the fact that
∂F

∂Xj

(0) ≥ 0 for j 6= 0, we deduce from (5.68) and (5.80) that for all

j ∈ {1, ..., N}, we have

(5.82)



∂F

∂Xj

(0, ..., 0) = 0

or

ξrj = 0 mod(2π) and
∂F

∂Xj

(0) > 0.

Substituting (5.82) in (5.81), taking into consideration that r0 = 0, implies that cξ = 0 and
thus ξ = 0, because c 6= 0.

Step 3.2: v∞ = const
From step 3.1, we deduce that supp{v̂} ⊂ {0}. Therefore,

v̂(0) =
∑
finite

ckδ
(k)
0 .

Inverse Fourier transform implies that v∞ is a polynomial. But v∞ is bounded (see (5.79)),
hence

v∞ = const := A.

Consequently,
φ(x+ xn′)

eλ+(x+xn′ )
= vn′(x)→ A.

�

6 Uniqueness of the profile and proof of Theorem 1.5

We prove, in this section, the uniqueness of the profile (under the assumption (D) or (E)).
Under Assumption (D) we will use a Strong Maximum Principle, while under assumption
(E) we will need the asymptotics joint to a Half Strong Maximum Principle (just on the
half-line, see Lemma 6.1). We show, in a first subsection, three different kinds of Strong
Maximum Principle satisfied by (1.14) when c 6= 0. In a second subsection, we prove the
uniqueness of the profile and Theorem 1.5.

6.1 Different kinds of Strong Maximum Principle

Here, we prove three different kinds of Strong Maximum Principle for (1.14) when c 6= 0. We
also add a technical lemma (Lemma 6.5) that allow us to compare two different solutions on
R with at least one contact point.

We prove the Strong Maximum Principle (Lemma 6.1, 6.3 and 6.4) for c > 0. However,
when c < 0, the corresponding results can be deduced from the case c > 0 using the
transformation of Lemma 4.4.
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Lemma 6.1 (Half Strong Maximum Principle)
Let F : [0, 1]N+1 → R satisfying assumption (A) and let φ1, φ2 : R→ [0, 1] be respectively a
viscosity sub and a super-solution of (2.21). Assume that{

φ2 ≥ φ1 on R
φ2(0) = φ1(0).

If c > 0 (resp. c < 0), then

φ1 = φ2 for all x ≤ 0 (resp. x ≥ 0).

Proof of Lemma 6.1
Assume that c > 0 and let w(x) := φ2(x) − φ1(x). Since φ2 is a super-solution and φ1 is
a sub-solution of (2.21), then using the Doubling of variable method we show that w is a
viscosity super-solution of

cw′(x) ≥ F ((φ2(x+ ri))i=0,...,N)− F ((φ1(x+ ri))i=0,...,N) on R.

But F is non-decreasing w.r.t. Xi for all i 6= 0, thus we get

cw′(x) ≥ F (φ1(x) + w(x), (φ1(x+ ri))i=1,...,N)− F ((φ1(x+ ri))i=0,...,N).

Now, since F is globally Lipschitz, then

(6.83) w′(x) ≥ −L
c
w(x),

with L is the Lipschitz constant of F.
Notice that y(x) = w(x0)e

−L
c

(x−x0) satisfies the equality in inequality (6.83) for any
x0 ∈ R. As y(x0) = w(x0), then using the comparison principle for the ”ode” (6.83), we
deduce that

(6.84) w(x) ≥ w(x0)e
−L
c

(x−x0) for all x ≥ x0.

If w(x0) > 0, hence w(x) > 0 for all x ≥ x0. This implies that

φ2 > φ1 for all x ≥ x0.

Finally, since φ2(0) = φ1(0), then we deduce that

φ2 = φ1 for all x ≤ 0,

(otherwise, if there is x1 < 0 such that φ2(x1) > φ1(x1), then from the above argument, we
deduce that φ2(0) > φ1(0), a contradiction). �

Lemma 6.2 (Strong Maximum Principle under (D±) ii))
Let F : [0, 1]N+1 → R satisfying (A). Let φ1, φ2 : R → [0, 1] be respectively a viscosity sub
and super-solution of (2.21) such that

φ2 ≥ φ1 on R and φ2(0) = φ1(0)
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a) If F is increasing w.r.t. Xi0 for certain i0 6= 0 then

φ2(kri0) = φ1(kri0) for all k ∈ N.

b) If we assume moreover that F satisfies (D+) ii) if c > 0, or (D−) ii) if c < 0, then

φ1(x) = φ2(x) for all x ∈ R.

Proof of Lemma 6.2
a) Assume for simplicity that i0 = 1. Let φ1, φ2 be respectively a viscosity sub and a viscosity
super-solution of (2.21). Then using the Doubling of variable method, we can show that the
function w = φ2 − φ1 satisfies

(6.85) cw′(x) ≥ F ((φ2(x+ ri))i=0,...,N)− F ((φ1(x+ ri))i=0,...,N) on R

in the viscosity sense. As w is a viscosity super-solution of (6.85), w(0) = 0 and w ≥ 0 on
R, we deduce that

0 ≥ F ((φ2(ri))i=0,...,N)− F ((φ1(ri))i=0,...,N) at x = 0.

Thus using the fact that φ2(0) = φ1(0) and that F is monotone w.r.t. Xi for all i 6= 0, we
get

F ((φ2(ri))i=0,...,N) = F ((φ1(ri))i=0,...,N).

Next, since F is increasing w.r.t. X1, we deduce that

φ2 = φ1 at x = r1,

(otherwise, F ((φ2(ri))i=0,...,N) > F ((φ1(ri))i=0,...,N), because F is non-decreasing w.r.t. Xi

for i 6= 0, 1 and increasing w.r.t. X1). Therefore, upon repeating the above argument for
x = r1, we show that

φ2(kr1) = φ1(kr1) for all k ∈ N.

b) Assume that c > 0 and that F satisfies (D+) ii) (the other case being similar). By
contradiction, suppose that there exists x ∈ R such that φ1(x) < φ2(x). Let k ∈ N big
enough such that kri+ > x. Then, using Lemma 6.1 (up to shift the functions), and the fact
that φ1(kri+) = φ2(kri+), we get that φ1(x) = φ2(x), which is a contradiction.

�

Lemma 6.3 (Comparison principle, under (D±) i))
Assume that c > 0 (resp. c < 0) and let F satisfying (A) and (D+) i) (resp. (D−) i)). Let
φ1, φ2 be respectively a viscosity sub and a viscosity super-solution of (2.21). Assume that
φ1(0) = φ2(0) and

φ1 ≤ φ2 on [−r∗, 0]
(
resp. on [0, r∗]

)
,

then
φ1(x) ≤ φ2(x) for all x ≥ −r∗

(
resp. x ≤ r∗

)
.
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Proof of Lemma 6.3
Assume that c > 0 (the case c < 0 being similar). If r∗ = 0, then the result follows from the
comparison principle for ODEs.

Let us assume that r∗ > 0. Since φ1 ≤ φ2 on [−r∗, 0] and ri < 0 for all i 6= 0 (see
assumption (D+) i)), then for all x ∈ [0,min

i 6=0
(−ri)], the function w(x) := φ1(x) − φ2(x)

satisfies (in the viscosity sense)

cw′(x) ≤ F ((φ1(x+ ri))i=0,...,N)− F ((φ2(x+ ri))i=0,...,N)

≤ F (w(x) + φ2(x), (φ2(x+ ri))i 6=0)− F ((φ2(x+ ri))i=0,...,N)

≤ L|w(x)| (because F is L-Lipschitz).

where we have used in the second line the fact that φ1(x+ ri) ≤ φ2(x+ ri) for i 6= 0, because
−r∗ ≤ x + ri ≤ 0 for all i 6= 0. But w(0) = 0 and y ≡ 0 is a solution of cw′ = L|w|, then
using the comparison principle of the ”ode,” we deduce that

w ≤ 0 for all x ∈ [0,min
i 6=0

(−ri)].

This implies that
φ1 ≤ φ2 for all x ∈ [0,min

i 6=0
(−ri)].

Finally, the result of this lemma (φ1 ≤ φ2 for all x ≥ −r∗) follows by repeating the above
argument several times, each on the new extended interval. �

Lemma 6.4 (Strong Maximum principle under (D±) i))
Assume c > 0 (resp. c < 0) and let F satisfying (A) and (D+) i) (resp. (D−) i)). Let
φ1, φ2 be two solutions of (2.21) such that

φ1(0) = φ2(0) and φ1 ≤ φ2 on R.

Then
φ1(x) = φ2(x) for all x ∈ R.

Proof of Lemma 6.4
Let c > 0 (the case c < 0 is deduced from the case c > 0 using Lemma 4.4). Using Lemma
6.1, we deduce that

φ1 = φ2 for all x ≤ 0.

Thus, it is sufficient to prove that φ1 ≥ φ2 for all x ≥ 0 (because φ1 ≤ φ2 for x ≥ 0). We
have,

φ1(0) = φ2(0) and φ1 ≥ φ2 on [−r∗, 0] (since φ1 = φ2 ∀x ≤ 0),

and φ2, φ1 are respectively a viscosity sub and super-solution of (2.21). Hence using the
comparison principle (Lemma 6.3), we deduce that

φ1 ≥ φ2 for all x ≥ −r∗.

Therefore, φ1(x) = φ2(x) for all x ∈ R. �
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Lemma 6.5 (Ordering two solutions of (1.14) up to translation)
Assume that c 6= 0 and let F : [0, 1]N+1 → R satisfying (A) and (C). Let φ1 and φ2 be
two solutions of (1.14). There exists a shift a∗ ∈ R and some x0 ∈ [−r∗, r∗] such that
φa
∗

2 (x) := φ2(x+ a∗) and φ1 satisfy {
φa
∗

2 ≥ φ1 on R
φa
∗

2 (x0) = φ1(x0).

Proof of Lemma 6.5
The idea of the proof is to translate φ2 and then to compare the translation with φ1.

Step 1: Family of solutions above φ1

For a ∈ R, let us define
φa2(x) := φ2(x+ a).

For some a > 0 large enough, (because of the conditions at ±∞ in (1.14)), we have

φa2 ≥ φ1 on [−r∗, r∗] for all a ≥ a,

and then using the comparison principle (Theorem 4.1 and Corollary 4.2), we deduce that
for all a ≥ a, we have

φa2 ≥ φ1 on R.

Step 2: There exists a∗ such that φa
∗

2 and φ1 touch at x0 ∈ [−r∗, r∗]
Let

a∗ = inf{a ∈ R, φa2 ≥ φ1 on R for all a ≥ a}.
Recall that c 6= 0 and then φi ∈ C1(R) for i = 1, 2.

Assume by contradiction that

inf
[−r∗,r∗]

(
φa
∗

2 − φ1

)
≥ δ > 0.

Then for all 0 ≤ ε ≤ ε0 with ε0 small enough, we have

φa
∗−ε

2 − φ1 ≥ 0 on [−r∗, r∗].

Applying the comparison principle (Theorem 4.1 and Corollary 4.2), we get

φa
∗−ε

2 − φ1 ≥ 0 on R,

which is a contradiction with the definition of a∗. Thus

inf
[−r∗,r∗]

φa
∗

2 − φ1 = 0.

Hence, there exists x0 ∈ [−r∗, r∗] such that

φa
∗

2 = φ1 at x0,

knowing that φa
∗

2 (x) ≥ φ1(x) for all x ∈ R. �
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6.2 Proof of Theorem 1.5 (b)

We devote this subsection for the proof of the uniqueness of the profile which is done in
several lemmas. The proof of Theorem 1.5 is given at the end of this subsection. All the
proofs are made in the case c > 0 since the case c < 0 is similar (or is deduced using Lemma
4.4).

Lemma 6.6 (Uniqueness of the profile, under (E+))
Assume that c > 0 and let F satisfying (A), (C) and (E+). Let φ : R→ [0, 1] be a solution
of (1.14), then φ is unique up to space translation. Moreover φ is non-decreasing.

Proof of Lemma 6.6
Assume that c > 0 and let φ1, φ2 : R → [0, 1] be two solutions of (1.14). The goal of the
proof is to show that there exists a translation φa

∗
2 of φ2 such that φa

∗
2 = φ1. To simplify the

notation we denote ri+ (introduced in (E+)) by r1.

Step 1: Constructing a translation and applying Lemma 6.1
Using Lemma 6.5, there exists a∗ ∈ R such that the translation φa

∗
2 of φ2 satisfies:

(6.86)

{
φa
∗

2 ≥ φ1 on R
φa
∗

2 (x0) = φ1(x0).

Since c > 0, then applying Lemma 6.1, we deduce that

(6.87) φa
∗

2 = φ1 for all x ≤ x0.

Step 2: Asymptotics of φ1 and φa
∗

2

Using Lemma 5.2 and Proposition 5.1, we get that there exists a subsequence (n′) of (n)n∈N
(because x0 − nr1 → −∞ as n→ +∞) and two constants A1, A2 > 0 such that

(6.88)
φa
∗

2 (x0 − n′r1 + x)

eλ+(x0−n′r1+x) → A1 locally uniformly on R.

φ1(x0 − n′r1 + x)

eλ+(x0−n′r1+x) → A2 locally uniformly on R.

Using equation (6.87), we deduce that A1 = A2 := A.

Step 3: Exchange φ1 and φ2

Applying Lemma 6.5, upon exchanging φ1 and φ2, we deduce that there exists b∗ ≥ 0 and
y0 such that {

φb
∗

1 (x) := φ1(x+ b∗) ≥ φ2 on R
φb
∗

1 (y0) = φ2(y0).

Moreover, from Lemma 6.1, we get

φb
∗

1 (x) = φ2 for all x ≤ y0 (since c > 0).

Now, using and Lemma 5.2 and Proposition 5.1 and since y0−n′r1 → −∞ as n′ → +∞,
we get the existence of a subsequence of (n′) (still denoted by (n′)) such that

(6.89)
φb
∗
1 (y0 − n′r1 + x)

eλ+(y0−n′r1+x) ,
φ2(y0 − n′r1 + x)

eλ+(y0−n′r1+x) → B locally uniformly on R.
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Step 4: Conclusion, φ1 = φa
∗

2

For any fixed x ∈ R, we have

(6.90)
φ2(x0 + a∗ − n′r1 + x)

eλ+(x0−n′r1+x) → A,

(6.91)
φ1(x0 − n′r1 + x)

eλ+(x0−n′r1+x) → A,

(6.92)
φ1(y0 + b∗ − n′r1 + x)

eλ+(y0−n′r1+x) → B

and

(6.93)
φ2(y0 − n′r1 + x)

eλ+(y0−n′r1+x) → B.

For x = y0 + b∗, equation (6.91) implies that

φ1(x0 − n′r1 + y0 + b∗)

eλ+(x0−n′r1+y0) → Aeλ
+b∗ .

Also, equation (6.92) with x = x0 implies that

φ1(x0 − n′r1 + y0 + b∗)

eλ+(x0−n′r1+y0) → B,

thus
Aeλ

+b∗ = B.

Similarly, if we substitute x = y0 in (6.90) and x = x0 + a∗ in (6.93), we show that

A = Beλ
+a∗ .

Therefore,
a∗ = −b∗.

But
φa
∗

2 (x) = φ2(x+ a∗) ≥ φ1(x)

and
φb
∗

1 (x) = φ1(x+ b∗) = φ1(x− a∗) ≥ φ2(x),

hence we get
φ2(x+ a∗) = φ1(x).

Moreover φ2(x+ a) ≥ φ1(x) for all a ≥ a∗, which shows that the profile is nondecreasing. �

Lemma 6.7 (Uniqueness of the profile, under (D+)i) or ii))
Assume that c > 0 and let F satisfying (A) and (C). Let φ : R → [0, 1] be a solution of
(1.14). If, in addition, F satisfies (D+) (i) or ii), then φ is unique up to space translation.
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Proof of Lemma 6.7
The proof follows from Lemma 6.5 and the Strong Maximum Principle (Lemma 6.4 or Lemma
6.2). �

Lemma 6.8 (Monotonicity of the profile)
Assume that c > 0 (resp. c < 0) and let F : [0, 1]N+1 → R satisfying (A) and (C). Let
φ : R → [0, 1] be a solution of (1.14). If F satisfies (D+) i) or ii) or (E+) (resp. (D−) i)
or ii) or (E−)), then φ′ > 0 on R.

Proof of Lemma 6.8
Assume that c > 0 (the proof when c < 0 being similar) and let φ be a solution of (1.14).

Step 1: φ is non-decreasing
The goal is to show that φ(x + a) ≥ φ(x) for all a ≥ 0. As in the proof of Lemma 6.5, we
deduce that for a ≥ 0 large enough and for all a ≥ a, we have

φa(x) := φ(x+ a) ≥ φ(x) on [−r∗, r∗].

Thus using the comparison principle (Theorem 4.1 and Corollary 4.2), we deduce that for
all a ≥ a, we have

φa(x) ≥ φ(x) on R.

Set
a∗ = inf{a ≥ 0, φa(x) ≥ φ(x) on R for all a ≥ a},

we want to prove that a∗ = 0. By definition of a∗, there exists some x0 such that

(6.94)

{
φa
∗ ≥ φ on R

φa
∗
(x0) = φ(x0).

Case 1: F satisfies (E+)
From Lemma 6.6, φ is nondecreasing and then a∗ = 0.

Case 2: F satisfies (D+) i) or ii)
Using (6.94) and the Strong Maximum Principle (Lemma 6.2 or Lemma 6.4), we get that
φa
∗

= φ, i.e., φ is periodic of period a∗. But φ(−∞) = 0 and φ(+∞) = 1, thus a∗ = 0.

Step 2: φ is increasing
Let a > 0, we want to show that φ(x + a) > φ(x). From Step 1, we have φ(x + a) ≥ φ(x).
Assume that there exists x0 such that

φ(x0 + a) = φ(x0).

Repeating the same argument, as in Step 1, under (D+) i) or ii) or (E+), we prove that
a = 0, which is a contradiction. Thus

φ(x+ a) > φ(x) on R for any a > 0.
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Step 3: φ′ > 0
For a > 0, we define

wa(x) =
φ(x+ a)− φ(x)

a
.

Using the same arguments as in the proof of Lemma 6.1 (see (6.84)), we get that for all
x0 ∈ R

wa(x) ≥ wa(x0)e
−L
c

(x−x0) for all x ≥ x0.

Passing to the limit a→ 0, we get that

(6.95) φ′(x) ≥ φ′(x0)e
−L
c

(x−x0) ≥ 0 for all x ≥ x0.

By contradiction, assume that there exists x1 such that φ′(x1) = 0. This implies that

(6.96) φ′(x) = 0 for all x ≤ x1.

Indeed, if there exists x0 < x1 such that φ′(x0) > 0, then (6.95) implies that

φ′(x1) ≥ φ′(x0)e
−L
c

(x1−x0) > 0,

which is a contradiction.
But φ is increasing so (6.96) is a contradiction and so φ′ > 0.

�

Proof of Theorem 1.5
(a) Uniqueness of the velocity

The proof of the uniqueness of the velocity is follows from Proposition 4.5 in Section 4.

(b) Uniqueness of the profile and strict monotonicity
The uniqueness and the strict monotonicity of the solution when c > 0 is done in Lemma

6.6, 6.7 and Lemma 6.8. However the case c < 0 is a consequence of Lemma 4.4 and the
previous results. �

Appendix A Construction of a monotone Lipschitz

continuous periodic extension of F

We devote the Appendix A for the proof of Lemma 2.1. To this end, we need to start with
two useful results about the orthogonal projection. For any convex set K in Rd and for any
y ∈ Rd, we call

Proj|K (y)

the orthogonal projection of y on K.

Lemma A.1 (Characterization of the orthogonal projection)
Let N ≥ 1 and y = (y1, ..., yN) ∈ RN . Then

Proj|
[0,1]N

(y) =
((
Proj|[0,1](yi)

)
i=1,...,N

)
.
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Proof of Lemma A.1
Let y = (y1, ..., yN) ∈ RN and set y0i = Proj|[0,1](yi). By definition of the orthogonal projec-
tion, we have

(yi − y0i , yi − y0i ) ≤ 0 ∀ yi ∈ [0, 1].

This implies that

(1.97) (y − y0, y − y0) ≤ 0 ∀ y = (y1, ..., yN) ∈ [0, 1]N ,

with y0 = (y01, ..., y
0
N). But (1.97) is a characterization of the orthogonal projection of y on

[0, 1]N , thus
y0 = Proj|

[0,1]N
(y).

�

Using the above lemma, one can easily check the following consequences:

Corollary A.2 (Ordering and a kind of linearity)
Let y = (y1, ..., yN), z = (z1, ..., zN) ∈ RN and set e = (1, ..., 1) ∈ RN . Assume that

y ≥ z

in the sense that yi ≥ zi for all i ∈ {1, ..., N}. Let Q0 = [0, 1]N , then
i) Order preservation
We have

Proj|Q0
(y) ≥ Proj|Q0

(z).

ii) ”Linearity”
We have

Proj|Q0
(y + e) = Proj|Q0−e

(y) + e,

where Q0 − e = [−1, 0]N .

After these preliminary results, we now go back to the proof of Lemma 2.1.

Proof of Lemma 2.1.
The proof is splitted into two main steps. In the first step (the main part of the proof), we
construct the extension F̃ of F on [0, 1]×RN . In the second step, we extend F̃ on the whole
R× RN . The function F̃ that we want to construct must satisfy{

F̃|Q = F for Q := [0, 1]N+1

F̃ (X + E) = F̃ (X) with E = (1, ..., 1) ∈ RN+1.

This implies that for any y ∈ Q0 = [0, 1]N and e = (1, ..., 1) ∈ RN , we have (see Figure 1){
F̃ (1, y + e) = F̃ (0, y) = F (0, y)

F̃ (0, y − e) = F̃ (1, y) = F (1, y).

Step 1: extension on [0, 1]× RN

Recall that Q0 = [0, 1]N , e = (1, ..., 1) ∈ RN then set

Q−1 := Q0 − e and Q1 := Q0 + e.
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We first define the auxiliary functions Gα on [0, 1]×Qα for α = −1, 0, 1. For
y = (y1, ..., yN) ∈ RN , we set

(1.98)

∣∣∣∣∣∣∣
G0(x, y) = F (x, y) for all (x, y) ∈ [0, 1]×Q0

G−1(x, y) = F (1, y + e)− F (1, e) for all (x, y) ∈ [0, 1]×Q−1
G1(x, y) = F (0, y − e)− F (0, 0) for all (x, y) ∈ [0, 1]×Q1.

By construction and using (assumption (A)), we notice that Gα is Lipschitz continuous and
non-decreasing w.r.t. yi for all i ∈ {1, ..., N} on [0, 1]×Qα, for α = −1, 0, 1. Moreover, we
have

(1.99)

∣∣∣∣∣G−1(x, 0) = 0 for all x ∈ [0, 1]

G1(x, e) = 0 for all x ∈ [0, 1].

Now, for every y ∈ RN , we set for each α = −1, 0, 1,

Yα(y) = Proj|Qα (y).

Then we define the extension G of F on [0, 1]× RN by:

G(x, y) = G0(x, Y0(y)) + (1− x)G−1(x, Y−1(y)) + xG1(x, Y1(y)).

Clearly, because of (1.99), we have

G(x, y) = F (x, y) for any (x, y) ∈ [0, 1]×Q0.

Step 1.1: G(0, z) = G(1, z + e) for any z ∈ RN .
From the definition of G, we have for any z ∈ RN

G(1, z) = G0(1, Y0(z)) +G1(1, Y1(z))

G(0, z) = G0(0, Y0(z)) +G−1(0, Y−1(z)).

Therefore,

G(1, z + e) = G0(1, Y0(z + e)) +G1(1, Y1(z + e))

= G0(1, Y−1(z) + e) +G1(1, Y0(z) + e)

= F (1, Y−1(z) + e) + F (0, Y0(z))− F (0, 0)

= F (1, Y−1(z) + e) +G0(0, Y0(z))− F (1, e)

= G0(0, Y0(z)) +G−1(0, Y−1(z))

= G(0, z),

where the second equality follows from Corollary A.2 ii), while the third follows from (1.98)
and the fourth follows from the fact that F (1, e) = F (0, 0).
Step 1.2: G(x, y) is monotone in yi
The result of this step follows from the fact that the orthogonal projection preserves the
order (Corollary A.2 i)) and that for any α = −1, 0, 1, Gα is non-decreasing on [0, 1]×Qα

w.r.t. yi for all i ∈ {1, ..., N}.
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Step 1.3: G is globally Lipschitz
Let (x, y), (x, y) ∈ [0, 1]× RN , then

|G(x, y)−G(x, y)| ≤ |G0(x, Y0(y))−G0(x, Y0(y))|+ |x− x|.|G−1(x, Y−1(y))|
+ |1− x|.|G−1(x, Y−1(y))−G−1(x, Y−1(y))|+ |x− x|.|G1(x, Y1(y))|
+ |x|.|G1(x, Y1(y))−G1(x, Y1(y))|.

Since for α = −1, 0, 1, the functions Gα are Lipschitz continuous and bounded on [0, 1]×Qα

and using the fact that the orthogonal projection is 1-Lipschitz, we conclude that

|G(x, y)−G(x, y)| ≤M |(x− x, y − y)|,

where M = L0 +L−1 +L1 +M−1 +M1, with Lα is the Lipschitz constant of Gα, Mα the L∞

norm of Gα for α = −1, 0, 1.
Step 2: extension on R× RN

Let k ∈ Z and set

F̃ (x+ k, y + ke) = G(x, y) for all (x, y) ∈ [0, 1]× RN .

First of all, F̃ is well defined because of Step 1.1. Moreover by construction, we have the
periodicity property

F̃ (x+ 1, y + e) = F̃ (x, y) for any (x, y) ∈ R× RN .

In addition, F̃ is Lipschitz continuous, non-decreasing in each yi for i ∈ {1, ..., N}. �
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Q′ − (1, ..., 1)
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x0 = 0

F (0, .)

(0, y)

F (1, .)

Figure 1: A cut of {x0 = 0} × RN
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Appendix B Proof of miscellaneous properties of mono-

tone functions

Appendix B is dedicated to the proof of some results about monotone functions, namely
Lemma 2.10 and Lemma 2.11

We first prove Lemma 2.10.

Proof of Lemma 2.10
Assume for simplicity that g = 0 on I̊ . Suppose to the contrary that there exists a closed
interval I0 ⊂ I̊ , δ > 0 and a subsequence xnj ∈ I0 with xnj → x0 ∈ I0 such that

|gnj(xnj)| ≥ δ.

Assume that gnj(xnj) ≥ δ (the case gnj(xnj) ≤ −δ being similar). Let ε > 0 and consider a

closed interval Iε such that I0 ⊂⊂ Iε ⊂ I̊ . Since gnj(x) is non-decreasing in x, then

gnj(x) ≥ δ for all x ∈
(
Iε\I0

)
∩
(
{x ≥ xnj}

)
:= I+.

Choose x1 ∈ I+ such that gnj(x1)→ g(x1) (gn converges a.e. on I+). Thus

0 = g(x1) ≥ δ > 0,

a contradiction. �

Now, we give the proof of Lemma 2.11. To this end, we recall and prove the following
result:

Lemma B.1 (Properties of monotone functions)
Let φ : R→ R be a non-decreasing function.
i) Countable set of jumps:
The set

(2.100) S = {x such that φ is discontinuous at x}

is at most countable.
ii) Density of test points:
Let x0 ∈ R, there exists a sequence of functions ψ+

n ∈ C∞(R) (resp. ψ−n ∈ C∞(R)) and a
real sequence (x+n )n (resp. (x−n )n) such that

x+n → x0 (resp. x−n → x0)

and φ∗−ψ+
n (resp. φ∗−ψ−n ) attains a local maximum (resp. a local minimum) at x+n (resp.

at x−n ) for all n.

The meaning of point ii) is that the set of points where φ∗ is tested (in the sense of Definition
2.4) from above (resp. φ∗ is tested from below) is dense in R.

Proof of Lemma B.1.
a) Proof of i):
This is classical.
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b) Proof of ii) for φ∗:
Let x0 ∈ R. We want to prove that there exists ψn ∈ C∞(R) and xn → x0 such that φ∗−ψn
reaches a local maximum at xn. For every ε > 0 and for any b ∈ R, we define the test
function

ψbn =
1

ε

(
x−

(
x0 +

1

n

))2

+ b,

then we set

β = inf E for E =

{
b ∈ R, ψbn(x) ≥ φ∗(x) ∀ x ∈

[
x0, x0 +

2

n

]}
.

Indeed, since φ∗ is locally bounded (because φ is a real non-decreasing function) and E is
bounded from below (by definition of E), then E 6= ∅. From the definition of β, there always
exists xn ∈

[
x0, x0 + 2

n

]
such that

(2.101) ψβn(xn) = φ∗(xn) and ψβn(x) ≥ φ∗(x) on I =

[
x0, x0 +

2

n

]
.

We want to show that xn belongs to the interior of I (at least for ε large enough). We have

(2.102) ψβn(x0) =
1

εn2
+ β > β = ψβn

(
x0 +

2

n

)
≥ φ∗

(
x0 +

2

n

)
≥ φ∗ (x0) ,

the last two inequalities are true because of (2.101) and the fact that φ∗ is non-decreasing
respectively. Assuming

1

ε
> n2

(
φ∗
(
x0 +

2

n

)
− φ∗(x0)

)
,

we get

ψβn

(
x0 +

2

n

)
> φ∗

(
x0 +

2

n

)
− φ∗(x0) + β

≥ φ∗
(
x0 +

2

n

)
,

where the last inequality follows from (2.102). This implies that φ∗ − ψβn reaches a local
maximum at xn ∈

(
x0, x0 + 2

n

)
and xn → x0 as n→ +∞.

c) Proof of ii) for φ∗:
Applying argument b) for φ(x) replaced by −φ(−x), we get the result. �

Proof of Lemma 2.11.
We set

T =
N⋃
i=0

(S − {ri})

with S defined in (2.100). Using Lemma B.1 i), we get that T is countable.
Step 1: viscosity sense implies a.e. sense
Assume that φ is a viscosity solution of (2.27) (see Definition 2.4) and let x0 ∈ R\T .
By definition, φ is continuous at x0 + ri for all i = 0, ..., N. There exists two sequences of
real numbers (x+n )n and (x−n )n such that φ∗ is tested from above at x+n and φ∗ is tested from
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below at x−n by smooth functions (the sets of such points is dense in R (by Lemma B.1, ii)),
and such that

lim
n→+∞

x±n = x0.

Moreover, from Definition 2.4, we have

(2.103) 0 ≤ F ((φ∗(x+n + ri))i=0,...,N)

and

(2.104) 0 ≥ F ((φ∗(x
−
n + ri))i=0,...,N).

Now, using the fact that

lim
n→+∞

φ∗(x+n + ri) = φ(x0 + ri) for i = 0, ..., N.

and that F is Lipschitz continuous (see (Ã)), we pass to the limit n→ +∞ in (2.103), and
we get

0 ≤ lim sup
n→+∞

F ((φ∗(x+n + ri))i=0,...,N)

≤ F ((φ(x0 + ri))i=0,...,N).

Similarly, we show that

0 ≥ lim inf
n→+∞

F ((φ∗(x
−
n + ri))i=0,...,N)

≥ F ((φ(x0 + ri))i=0,...,N).

Thus
0 = F ((φ(x0 + ri))i=0,...,N),

hence φ solves equation (2.27) at x0. But x0 ∈ R\T is arbitrary, thus φ solves (2.27) point-
wisely on R\T . Since T is countable, we get that φ satisfies (2.27) a.e..

Step 2: a.e. sense implies viscosity sense
Let x0 ∈ R. We want to show that φ is a viscosity sub-solution at x0. Let ψ ∈ C1 such that
φ ≤ ψ with equality at x0, and we want to prove that

0 ≤ F ((φ∗(x0 + ri))i=0,...,N).

Case 1: x0 /∈ T
If x0 /∈ T , then φ is continuous at x0 + ri for all i. Because φ solves (2.27) a.e. on R, then
there exists a sequence xn → x0 such that φ solves (2.27) at xn. Hence we have

0 = F ((φ(xn + ri))i=0,...,N).

Passing to the limit n→ +∞, we get

0 ≤ F ((φ∗(x0 + ri))i=0,...,N) = F ((φ(x0 + ri))i=0,...,N).
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Case 2: x0 ∈ T
Now, assume that x0 ∈ T . Since T is countable, then choose ak > ak+1 > 0 such that ak → 0
and x0 + ak /∈ T for all k. Since x0 + ak /∈ T , then we deduce from Case 1 that

0 ≤ F ((φ(x0 + ak + ri))i=0,...,N).

Now letting ak → 0, we get

0 ≤ lim sup
ak→0

F ((φ(x0 + ak + ri))i=0,...,N)

= F (( lim
ak→0

φ(x0 + ak + ri))i=0,...,N)

≤ F ((φ∗(x0 + ri))i=0,...,N).

Here, we use the fact that φ∗(x) = limk→+∞ φ(x + ak) for any x ∈ R (because φ is non-
decreasing and ak > 0 with ak → 0). Hence φ is a viscosity sub-solution of (2.27) at x0.

Similarly, we show that φ is a viscosity super-solution at any point, and then φ is a
viscosity solution. �
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