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Introduction

With the development of modern industry, various pollulants discharge in the air rivers, lakes and oceans. The changes of pollulants in the air or in the water consist of the physical, chemical and biochemical process and so on. The physical changes of pollution involve two main important processes, that is, advection and diffusion. The mathematical model describing these two processes is the well known advection-diffusion equation. In two dimensions this equation is as follows 

∂U ∂t + β x ∂U ∂x + β y ∂U ∂y = α x ∂ 2 U ∂x 2 + α y ∂ 2 U ∂y 2 ; t > 0, x = x y T ∈ Ω ⊂ R (1) 
with the initial condition U (x, 0) = f (x) [START_REF] Boztosun | On the numerical solution of linear advection-diffusion equation using compactly supported radial basis functions[END_REF] and the boundary conditions

aU (x 0 , t) + b ∂U ∂n | (x 0 ,t) = g(t) in Γ (3) 
being f (x) and g(t) two known functions, a, b are constants, Γ is the boundary of Ω, U (x, y, t) is a transported (advected and diffused) scalar variable, β x > 0, β y > 0 are constant speeds of advection and α x > 0, α y > 0 are constant diffusivities in the x-, and y-direction respectively.

Various numerical techniques can be used to solve this partial differential equation with the associated initial and boundary conditions [START_REF] Boztosun | On the numerical solution of linear advection-diffusion equation using compactly supported radial basis functions[END_REF][START_REF] Dehghan | Numerical solution of the three-dimensional advection-diffusion equation[END_REF][START_REF] Grima | Accurate discretization of advection-diffusion equations[END_REF][START_REF]Karaham Implicit finite difference techniques for the advection-diffusion equation using spreadsheets[END_REF][START_REF] Noye | Finite difference methods for the two-dimensional advection-diffusion equation[END_REF][START_REF] Ureña | Application of the generalized finite difference method to solve the advection-diffusion equation[END_REF]. Normally these techniques incorporate numerical diffusion [START_REF] Dehghan | Numerical solution of the three-dimensional advection-diffusion equation[END_REF]. An active field of research is the use of meshless methods. An evolution of the method of finite differences has been the development of generalized finite difference method (GFDM) that can be applied as a meshless or meshfreee method to irregular grids or clouds of points. Benito, Ureña and Gavete have made interesting contributions to the development of this method [START_REF] Benito | Leading-Edge Applied Mathematical Modelling Research[END_REF][START_REF] Benito | Influence of several factors in the generalized finite difference method[END_REF][START_REF] Benito | An h-adaptive method in the generalized finite differences[END_REF][START_REF] Benito | Solving parabolic and hyperbolic equations by Generalized Finite Difference Method[END_REF][START_REF] Benito | A posteriori error estimator and indicator in Generalized Finite Differences. Application to improve the approximated solution of elliptic pdes[END_REF][START_REF] Benito | Application of the Generalized Finite Difference Method to improve the approximated solution of pdes[END_REF][START_REF] Gavete | Improvements of generalized finite difference method and comparison other meshless method[END_REF]. The main goal of this paper is the modeling of the advection-diffusion equation by GFDM without numerical diffusion. The paper is structured in six sections. In section 2, we describe briefly the GFDM. In section 3 we describe the explicit scheme used to approximate the advection-diffusion equation. In section 4 we study the truncation error and the stability. In Section 5 an error analysis is done comparing with a test case. Section 6 contains concluding remarks.

The Generalized finite difference method

In the GFDM the intention is to obtain explicit linear expressions for the approximation of partial derivatives in the points of a domain. First of all, an irregular grid or cloud of points is generated in the domain. On defining the composition central node with a set of N points surrounding it (henceforth referred as nodes), the star then refers to the group of established nodes in relation to a central node. Each node in the domain have an associated star assigned to it [START_REF] Benito | Leading-Edge Applied Mathematical Modelling Research[END_REF][START_REF] Benito | Influence of several factors in the generalized finite difference method[END_REF][START_REF] Benito | Application of the Generalized Finite Difference Method to improve the approximated solution of pdes[END_REF]. If u 0 is an approximation of second-order for the value of the function at the central node (U 0 ) of the star, with coordinates (x 0 , y 0 ) and u j is an approximation of secondorder for the value of the function at the rest of nodes, of coordinates (x j , y j ) with j = 1, • • • , N , then, according to the Taylor series expansion where h j = x j -x 0 and k j = y j -y 0 .

U j = U 0 + h j ∂U 0 ∂x + k j ∂U 0 ∂y + h 2 j 2 ∂ 2 U 0 ∂x 2 + k 2 j 2 ∂ 2 U 0 ∂y 2 + h j k j ∂ 2 U 0 ∂x∂y + • • • (4) 
If in equation 4 the terms over second order are ignored. It is then possible to define the function B(u) as

B(u) = N j=1 [(u 0 -u j + h j ∂u 0 ∂x + k j ∂u 0 ∂y + h 2 j 2 ∂ 2 u 0 ∂x 2 + k 2 j 2 ∂ 2 u 0 ∂y 2 + h j k j ∂ 2 u 0 ∂x∂y )w(h j , k j )] 2 (5) 
where w(h j , k j ) is the denominated weight function.

If the function 5 is minimized with respect to the partial derivatives, the following linear equation system is obtained

AD u = b (6) 
where Modelling of advection-diffusion and solving system 6 the explicit difference formulae are obtained as in [START_REF] Benito | An h-adaptive method in the generalized finite differences[END_REF][START_REF] Benito | Application of the Generalized Finite Difference Method to improve the approximated solution of pdes[END_REF].

b = small                                              N j=1 (-u 0 + u j )h j w 2 N j=1 (-u 0 + u j )k j w 2 N j=1 (-u 0 + u j ) h 2 j 2 w 2 N j=1 (-u 0 + u j ) k 2 j 2 w 2 N j=1 (-u 0 + u j )h j k j w 2                                              (7) 
A =                        N j=1 h 2 j w 2 N j=1 h j k j w 2 N j=1 h 3 j 2 w 2 N j=1 h j k 2 j 2 w 2 N j=1 h 2 j k j w 2 N j=1 k 2 j w 2 N j=1 h 2 j k j 2 w 2 N j=1 k 3 j 2 w 2 N j=1 h j k 2 j w 2 N j=1 h 4 j 4 w 2 N j=1 h 2 j k 2 j 4 w 2 N j=1 h 3 j k j 2 w 2 N j=1 k 4 j 4 w 2 N j=1 h j k 3 j 2 w 2 S Y M N j=1 h 2 j k 2 j w 2                        (8) 
D u = ∂u 0 ∂x ∂u 0 ∂y ∂ 2 u 0 ∂x 2 ∂ 2 u 0 ∂y 2 ∂ 2 u 0 ∂x∂y T (9) 
           Y (k) = -u 0 5 i=1 M ki c i + N j=1 u j ( 5 i=1 M ki d ji ), k = 1, • • • , 5 D u (k) = 1 q kk (Y (k) - 5-k i=1 q (k+1)k D u (k + i)), k = 1, • • • , 5 (10) 
where

M ij =            (-1) 1-δ ij 1 q ij i-1 k=j q(ik)M (kj) f or j < i 1 q ij f or j = i 0 f or j > i with i, j = 1, • • • , 5
, and where q ij are elements of Q, δ ij the Kronecker delta function,

c i = N j=1 d ji d j1 = h j w 2 ; d j2 = k j w 2 ; d j3 = h 2 j 2 w 2 d j4 = k 2 j 2 w 2 ; d j5 = h j k j w 2
The explicit formulae of partial derivatives given in 10 can be expressed

                                   ∂U ∂x | (x 0 ,y 0 ,n t) = -λ 0 u n 0 + N j=1 λ j u n j ∂U ∂y | (x 0 ,y 0 ,n t) = -µ 0 u n 0 + N j=1 µ j u n j ∂ 2 U ∂x 2 | (x 0 ,y 0 ,n t) = -m 0 u n 0 + N j=1 m j u n j ∂ 2 U ∂y 2 | (x 0 ,y 0 ,n t) = -η 0 u n 0 + N j=1 η j u n j (11) 
with

λ 0 = N j=1 λ j ; µ 0 = N j=1 µ j ; m 0 = N j=1 m j ; η 0 = N j=1 η j
where λ 0 , λ j , µ 0 , µ j , m 0 , m j , η 0 , η j are coefficients that depends of ( [START_REF] Benito | Leading-Edge Applied Mathematical Modelling Research[END_REF][START_REF] Benito | Influence of several factors in the generalized finite difference method[END_REF][START_REF] Benito | Application of the Generalized Finite Difference Method to improve the approximated solution of pdes[END_REF]):

• The number of nodes of the star (N ), in this paper N = 8.

• The relative coordinates of the nodes of the star with regards to the central node h j , k j (criterion of selection of nodes of the star).

• The weighting function w = w(h j , k j ). Luis Gavete, Francisco Ureña, Juan José Benito, María Lucía Gavete

A new GFDM explicit scheme for the advection-diffusion

This scheme uses the forward-difference form for the time derivative

∂U ∂t | (x 0 ,y 0 ,n t) = u n+1 0 -u n 0 t (12) 
and generalized finite difference forms for all spatial derivatives as in equation 11.

On including the explicit expressions for the values of the partial derivatives 11 and 12 in the differential equation of problem 1 we obtain the explicit difference scheme:

u n+1 0 = u n 0 -t[β x (-λ 0 u n 0 + N j=1 λ j u n j ) + β y (-µ 0 u n 0 + N j=1 µ j u n j )]+ t[α x (-m 0 u n 0 + N j=1 m j u n j ) + α y (-η 0 u n 0 + N j=1 η j u n j )] (13) 
Then by using the modified equivalent partial differential equation approach of Warming and Hyett [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF] we obtain the following expansion equation 2 6

∂U ∂t + t 2 ∂ 2 U ∂t 2 + ( t)
∂ 3 U ∂t 3 + • • • + β x [ ∂U ∂x + N j=1 γ 1,j (h j , k j ) ∂ 3 U ∂x 3 + • • • ] + β y [ ∂U ∂y + N j=1 γ 2,j (h j , k j ) ∂ 3 U ∂y 3 + • • • ] -α x [ ∂ 2 U ∂x 2 + N j=1 γ 3,j (h j , k j ) ∂ 3 U ∂x 3 + • • • ]- α y [ ∂ 2 U ∂y 2 + N j=1 γ 4,j (h j , k j ) ∂ 3 U ∂y 3 + • • • ] = 0 (14)
and the modified equation

∂U ∂t + β x ∂U ∂x + β y ∂U ∂y -[α x - β 2 x 2 t] ∂ 2 U ∂x 2 -[α y - β 2 x 2 t] ∂ 2 U ∂y 2 + • • • = 0 ( 15 
)
The equation 15 shows that this GFD scheme 13 incorporates numerical diffusion.

A new GFD scheme free of numerical diffusion can be created as follows 

u n+1 0 = u n 0 -t[β x (-λ 0 u n 0 + N j=1 λ j u n j ) + β y (-µ 0 u n 0 + N j=1 µ j u n j )]+ t[(α x + β 2 x 2 t)(-m 0 u n 0 + N j=1 m j u n j ) + (α y + β 2 y 2 t)(-η 0 u n 0 + N j=1 η j u n j )] (16) 

Modelling of advection-diffusion

Then by using the modified equivalent partial differential equation approach, [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF], we obtain the following expansion equation 2 6

∂U ∂t + t 2 ∂ 2 U ∂t 2 + ( t)
∂ 3 U ∂t 3 + • • • + β x [ ∂U ∂x + N j=1 γ 1,j (h j , k j ) ∂ 3 U ∂x 3 + • • • ] + β y [ ∂U ∂y + N j=1 γ 2,j (h j , k j ) ∂ 3 U ∂y 3 + • • • ] -(α x + β 2 x 2 t)[ ∂ 2 U ∂x 2 + N j=1 γ 3,j (h j , k j ) ∂ 3 U ∂x 3 + • • • ]- (α y + β 2 y 2 t)[ ∂ 2 U ∂y 2 + N j=1 γ 4,j (h j , k j ) ∂ 3 U ∂y 3 + • • • ] = 0 (17)
and the modified equation

∂U ∂t + β x ∂U ∂x + β y ∂U ∂y -α x ∂ 2 U ∂x 2 -α y ∂ 2 U ∂y 2 + • • • = 0 (18)
The equation 18 shows that the new GFD scheme 16 is free of numerical diffusion, then we shall use it in the rest of the paper.

Convergence

According to Lax's equivalence theorem, if the consistency condition is satisfied, stability is the necessary and sufficient condition for convergence. In this section we study firstly the truncation error of the advection-diffusion equation, and secondly consistency and stability.

Truncation error. Consistency

We split the truncation error (T T E) in time derivative error (T E t ) and space derivatives error (T E x ). As the first order time derivative is given by

∂U (x0, t) ∂t = U (x0, t + t) -U (x0, t) t - t 2 ∂ 2 U (x0, t1) ∂t 2 + Θ(( t) 2 ), t < t1 < t + t ( 19 
)
then the truncation time error, T E t , is given by

(T E t ) = - t 2 ∂ 2 U (x 0 , t 1 ) ∂t 2 + Θ(( t) 2 ), t < t 1 < t + t (20) 
In order to obtain the truncation error for space GFD derivatives, Taylor's series expansion including higher order derivatives is used and then higher order function B * (u) is obtained If B * (u) is minimized with respect to the partial derivatives up to second order, the following linear equation system is defined

B * (u) = N j=1 [(u 0 -u j + h j ∂u 0 ∂x + k j ∂u 0 ∂y + 1 2 (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 2) + 1 3! (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 3) + 1 4! (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 4) + • • • )w(h j , k j )]
AD u = N j=1 Ξ j h j N j=1 Ξ j k j N j=1 Ξ j h 2 j 2 N j=1 Ξ j h 2 j 2 N j=1 Ξ j h j k j ( 22 
)
where A and D u are given in 8 and 9 respectively, and

Ξ j = (-u 0 + u j - 1 3! (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 3) - 1 4! (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 4) -• • • )w(h j , k j ) 2 (23)
and then

T E x = CA -1 N j=1 Υ j h j N j=1 Υ j k j N j=1 Υ j h 2 j 2 N j=1 Υ j k 2 j 2 N j=1 Υ j h j k j ( 24 
)
where

Ξ j = (- 1 3! (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 3) - 1 4! (h j ∂u 0 ∂x + k j ∂u 0 ∂y ) 4) -• • • )w(h j , k j ) 2 (25) 
C = -β x -β y -(α x + β 2 x t 2 ) -(α x + β 2 x t 2 ) 0 (26) 
Then by solving 24, we obtain

T E x = -β x [ N j=1 (ψ 1,j ∂ 3 U ∂x 3 + N j=1 (ψ 2,j ∂ 3 U ∂x 2 ∂y + N j=1 (ψ 3,j ∂ 3 U ∂x∂y 2 + N j=1 (ψ 1,j ∂ 3 U ∂y 3 + • • • ]- -β y [ N j=1 (ψ 5,j ∂ 3 U ∂x 3 + N j=1 (ψ 6,j ∂ 3 U ∂x 2 ∂y + N j=1 (ψ 7,j ∂ 3 U ∂x∂y 2 + N j=1 (ψ 8,j ∂ 3 U ∂y 3 + • • • ]- -(α x + β 2 x t 2 )[ N j=1 (ψ 9,j ∂ 3 U ∂x 3 + N j=1 (ψ 10,j ∂ 3 U ∂x 2 ∂y + N j=1 (ψ 11,j ∂ 3 U ∂x∂y 2 + N j=1 (ψ 12,j ∂ 3 U ∂y 3 +• • • ]- -(α y + β 2 y t 2 )[ N j=1 (ψ 13,j ∂ 3 U ∂x 3 + N j=1 (ψ 14,j ∂ 3 U ∂x 2 ∂y + N j=1 (ψ 15,j ∂ 3 U ∂x∂y 2 + N j=1 (ψ 16,j ∂ 3 U ∂y 3 + • • • ] + Θ(h j , k j ) (27)
where ψ i,j (h j , k j ) are second-order rational functions and Θ(h j , k j ) is a series of thirdand higher-order functions. The total truncation error for advection-diffusion equation without numerical diffusion is

T T E = T E t + T E x ( 28 
)
By considering bounded derivatives in T T E, we have consistency lim 

( t,h j ,k j )→(0,0,0) (T T E) → 0 (29) 

Stability criteria

"Boundary conditions are neglected by the von Neumann method which applies in theory only to pure initial value problems with periodic initial data. It does however provide necessary conditions for stability of constant coefficient problems regardless of the type of boundary condition" [START_REF] Mitchell | The Finite Difference Method in Partial Differential Equations[END_REF].

From the previously obtained formula 16

u n+1 0 = (1 + t[β x λ 0 + u n 0 + β y µ 0 -(α x + β 2 x 2 t)m 0 -(α y + β 2 y 2 t)η 0 ])u n 0 - t(β x N j=1 λ j u n j + β y N j=1 µ j u n j -(α x + β 2 x 2 t) N j=1 m j u n j ) -(α y + β 2 y 2 t) N j=1 η j u n j )] (30) 
For the stability analysis a harmonic decomposition is made of the approximate solution at grid points at a given time level n u n 0 = ξ n e i(κxx 0 +κyy 0 ) ; u n j = ξ n e i(κx(x 0 +h j )+κy(y 0 +k j )) (31)

Incluiding the equation 31 and 11 into the equation 30, cancellation of ξ n e i(κxx 0 +κyy 0 ) , leads to

ξ = (1 -t N j=1 [(α x + β 2 x 2 t)m j + (α y + β 2 y 2 t)η j -β x λ j -β y µ j ](1 -cos(κ x h j + κ y k j )) i t N j=1 [(α x + β 2 x 2 t)m j + (α y + β 2 y 2 t)η j -β x λ j -β y µ j ] sin(κ x h j + κ y k j ) (32)
Taking into account that the stability condition is ξ ≤ 1, then:

• |Re(ξ)| ≤ 1 |(1-t N j=1 [(α x + β 2 x 2 t)m j +(α y + β 2 y 2 t)η j -β x λ j -β y µ j ](1-cos(κ x h j +κ y k j ))| ≤ 1 ⇔ -1 ≤ (1-t N j=1 [(α x + β 2 x 2 t)m j +(α y + β 2 y 2 t)η j -β x λ j -β y µ j ](1-cos(κ x h j +κ y k j )) ≤ 1 (33) 
Taking into account that 0 ≤ 1 -cos(κ x h j + κ y k j ) ≤ 2 and the expression 33 can be written as

λ 0 = N j=1 λ j ; µ 0 = N j=1 µ j ; m 0 = N j=1 m j ; η 0 = N j=1 η j F o r P e e r
0 ≤ t[(α x + β 2 x 2 t)m 0 + (α y + β 2 y 2 t)η 0 -β x λ 0 -β y µ 0 ] ≤ 1 (34) • |Im(ξ)| ≤ 1 | t N j=1 [(α x + β 2 x 2 t)m j +(α y + β 2 y 2 t)η j -β x λ j -β y µ j ] sin(κ x h j +κ y k j )| ≤ 1 (35)
Taking into account that

0 ≤ | sin(κ x h j + κ y k j )| ≤ 1
and

λ 0 = N j=1 λ j ; µ 0 = N j=1 µ j ; m 0 = N j=1 m j ; η 0 = N j=1 η j
the expression 34 is obtained Both formulae 34 and 37 give us the conditions for the stability of the new GFDM scheme 16.

• ξ ≤ 1 ξ = [(1-t N j=1 [(α x + β 2 x 2 t)m j +(α y + β 2 y 2 t)η j -β x λ j -β y µ j ](1-cos(κ x h j +κ y k j ))] 2 + [ t N j=1 [(α x + β 2 x 2 t)m j + (α y + β 2 y 2 t)η j -β x λ j -β y µ j ] sin(κ x h j + κ y k j )] 2 ≤ 1 ⇔ t[ N j=1 [(α x + β 2 x 2 t)m j + (α y + β 2 y 2 t)η j -β x λ j -β y µ j ] sin(κ x h j + κ y k j )] 2 ≤ ( N j=1 [(α x + β 2 x 2 t)m j + (α y + β 2 y 2 t)η j -β x λ j -β y µ j ](1 -cos(κ x h j + κ y k j )))× (2-t N j=1 [(α x + β 2 x 2 t)m j +(α y + β 2 y 2 t)η j -β x λ j -β y µ j ](1-cos(κ x h j +κ y k j ))) (36) 
As we have demonstrated the consistency and stability then the convergence is assured.

Numerical results

In order to illustrate the application of the numerical explicit GFD scheme developed previously, several problems (discretized with irregular cloud of points for which its exact solutions are available) are required so that approximate results obtained can be compared with its exact solutions. In all academic examples the weighting function used is

w(h j , k j ) = 1 ( h 2 j + k 2 j ) 3 (38) 
The global error is evaluated for each time increment, in the last time step considered, using the following formula

Global error = M j=1 (sol(j)-exac(j)) 2 M |exac max | (39) 
where sol(j) is the GFDM solution at the node j, exac(j) is the exact value of solution at the node i, |exac max | is the maximum value of the exact solution in the cloud of nodes considered and M is the total number of nodes of the domain.

Academic examples

Example 1

The problem to be solved is

∂U (x, t) ∂t + ∂U (x, t) ∂x + ∂U (x, t) ∂y = 0.1( ∂ 2 U (x, t) ∂x 2 + ∂ 2 U (x, t) ∂y 2 ), t > 0, 9 < x 2 + y 2 < 25 (40) The exact soluion is U (x, y, t) = e -1.8t+x+y (41) 
with Dirichlet boundary conditions at 9 = x 2 + y 2 = 25, and the initial condition

U (x, y, 0) = e -1.8t (42) 
In this problem we consider different irregular clouds of points as given in Fig. 1. The influence on global error of using different number of nodes is given in Fig. 2. Also we consider for the irregular cloud of 1248 nodes the influence on global error versus different values of time increment in Fig. 3. As it is shown in Fig. 2 and3, the global error decreases by increasing the number of nodes or decreasing the time increment. All the time increments used accomplish with the stability criteria (34 and 37) The problem to be solved is

∂U (x, t) ∂t + ∂U (x, t) ∂x + ∂U (x, t) ∂y = 0.1( ∂ 2 U (x, t) ∂x 2 + ∂ 2 U (x, t) ∂y 2 ), t > 0, (x, y) ∈ R 2 (43)
The exact solution is U (x, y, t) = e -0.2t sin(x -y)

with Dirichlet boundary conditions, and the initial condition

U (x, y, 0) = sin(x -y) (45) 
In this problem we consider the irregular cloud of points as given in Fig. 4 Table 1: Global error versus the number of the time steps (n)(Fig. 4) 

n

Conclusions

An explicit solution of advection-diffusion equation has been presented for the case of using a GFDM scheme without numerical diffusion over irregular grids. We have defined the truncation error of the scheme in the case of irregular grids of nodes. Then, we have established the consistency and stability (following the von Neumann stability analysis) criteria for this scheme. Two academic tests have been presented to illustrate the application of this method. The fully explicit generalized finite difference schemes are simple to implement and economical to use. They are very efficient and very quick.

They are conditionally stable. The modified equivalent partial differential equation approach of Warming and Hyett [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF] has been employed which permits the order of accuracy of the numerical method to be determined and also to know that the GFDM scheme used is free of numerical diffusion. 

|λ j | 2 α x m 0 + 5 6 β 2 |µ j | 2 α y η 0 + 5 6 β 2

 2222 Taking into account the expression 34 and that |λ j | > |m j |; |µ j | > |η j |, operating with the equations 36, canceling with conservative criteria, the following expression

Page 11 of 14 URL

 14 : http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.Luis Gavete, Francisco Ureña, Juan José Benito, María Lucía Gavete

Figure 1 :
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 234 Figure 2: Global error versus the number of nodes for the first time step
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Table 1

 1 shows the results of the Global error versus the number of time steps, n, using GFDM with numerical diffusion[START_REF] Noye | Finite difference methods for the two-dimensional advection-diffusion equation[END_REF] and without numerical diffusion (16), t = 0.0005. As it is shown in Table1the error increases with the number of time steps, due to the accumulation of the error in each one of the time steps. Also shown in Table1the error decreases for the GFDM scheme without numerical diffusion.Luis Gavete, Francisco Ureña, Juan José Benito, María Lucía Gavete
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		Global error with num. diff. Global error without num. diff.
	200	0.000326	0.000323
	500	0.007293	0.007252
	700	0.058680	0.058400

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.comInternational Journal of Computer Mathematics

Acknowledgements

The authors acknowledge the support from Ministerio de Ciencia e Innovación of Spain, project CGL2008 -01757/CLI. URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics