THE ACTION OF ABELIAN C^1 -DIFFEOMORPHISMS GROUP FIXING A POINT, ON \mathbb{C}^n

YAHYA N'DAO AND ADLENE AYADI

ABSTRACT. In this paper, we study the action of any abelian subgroup G of $Diff^1(\mathbb{C}^n)$ on \mathbb{C}^n fixing 0. Suppose that there is $x \in \mathbb{C}^n$, having an orbit which generates \mathbb{C}^n and also $\widetilde{E}(x) = \mathbb{C}^n$, where $\widetilde{E}(x)$ is the vector space generated by $\{Df_0x, f \in G\}$. We prove the existence of a G-invariant open set U, dense in \mathbb{C}^n , in which every orbit is minimal. Moreover, if G has a dense orbit in \mathbb{C}^n then every orbit of U is dense in \mathbb{C}^n .

1. Introduction

Denote by $Diff^1(\mathbb{C}^n)$ the group of all C^1 -diffemorphisms of \mathbb{C}^n . Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$ fixing 0. There is a natural action $G \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$. $(f,x) \longmapsto f(x)$. For a point $x \in \mathbb{C}^n$, denote by $G(x) = \{f(x), f \in G\} \subset \mathbb{C}^n$ the orbit of G through x. A subset $E \subset \mathbb{C}^n$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. Denote by \overline{E} (resp. $\stackrel{\circ}{E}$) the closure (resp. interior) of E.

A subset E of \mathbb{C}^n is called a minimal set of G if E is closed in \mathbb{C}^n , non empty, G-invariant and has no proper subset with these properties. It is equivalent to say that E is a G-invariant set such that every orbit contained in E is dense in it. If Ω is a G-invariant set in \mathbb{C}^n , we say that E is a minimal set in Ω if it is a minimal set of the restriction $G_{/\Omega}$ of G to G. An orbit $G \subset G$ is called minimal in G if $G \cap G$ is a minimal set in G. This means that for every $G \cap G$ we have $G \cap G \cap G$ is a closed orbit in G is minimal in G. In particular, every point in G is minimal in G.

Many authors have studied the existence of commune fixed point of any abelian group of diffeomorphisms. In [5], S.Frimo proved that if G is an abelian subgroup of $Diff^1(\mathbb{R}^2)$ generated by any family of commuting diffeomorphisms of the plane wich are C^1 -close to the identity and having a bounded orbit then $Fix(G) \neq \emptyset$. In [7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated abelian subgroup of $Diff^1_+(\mathbb{R}^2)$ and if there is a compact G-invariant set $C \subset \mathbb{R}^2$, then Fix(G) is non-empty.

This paper can be viewed as a generalization of the results given in [1] and [3]. We use a construction analogous to that given by S.Chihi in [10] for abelian linear group.

²⁰⁰⁰ Mathematics Subject Classification. 37C85, 47A16, 37E30, 37C25.

 $Key\ words\ and\ phrases.$ Diffeomorphisms, abelian, group, orbit, action.

This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-15.

Denote by $L_G = \{Df_0, f \in G\}$, it is an abelian subgroup of $GL(n, \mathbb{C})$ (see Lemma 3.3) and $vect(L_G)$ be the vector space generated by L_G . For every $u \in \mathbb{C}^n$, denote by:

- $L_G(u) = \{Au, A \in L_G\}$ the orbit of u defined by the natural action of the linear group L_G on \mathbb{C}^n .
- E(u) be the vector space generated by $L_G(u)$.
- $-\mathcal{A}(G)$ be the algebra generated by G.
- $-E(x) = \{ f(x), f \in \mathcal{A}(G) \}.$

The group G is called dominant if there is a point $x \in \mathbb{C}^n$ such that each set G(x) and $L_G(x)$ generates \mathbb{C}^n (i.e. G is dominant if $E(x) = E(x) = \mathbb{C}^n$ for some $x \in \mathbb{C}^n$).

We generalize the result given in [1] for abelian subgroup of $GL(n,\mathbb{C})$ in the following Theorem:

Theorem 1.1. Let G be an abelian dominant subgroup of Diff¹(\mathbb{C}^n), such that $0 \in Fix(G)$. Then there exist a G-invariant connected open set U, dense in \mathbb{C}^n in which every orbit is minimal.

We have the following corollaries.

Corollary 1.2. Let G be an abelian dominant subgroup of $Diff^1(\mathbb{C}^n)$, such that $0 \in Fix(G)$. If G has a dense orbit then every orbit in U is dense in \mathbb{C}^n .

This paper is organized as follows: In Section 2, we give some results for abelian linear group. The Section 3 is devoted to prove the main results. In the section 4, we give two examples for n=2.

2. Some results for abelian linear group

Let $M_n(\mathbb{C})$ be the set of complex square matrices of order $n \geq 1$, and let $GL(n,\mathbb{C})$ be the group of the invertible matrices of $M_n(\mathbb{C})$. Denote by

- $\mathbb{T}_n(\mathbb{C})$ the set of all lower-triangular matrices over \mathbb{C} , of order n and with only one eigenvalue.
- $\mathbb{T}_n^*(\mathbb{C}) = \mathbb{T}_n(\mathbb{C}) \cap GL(n,\mathbb{C})$ (i.e. the subset of matrix of $\mathbb{T}_n(\mathbb{C})$ having a non zero eigenvalue), it is a subgroup of $GL(n,\mathbb{C})$.
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$.

Let $r \in \mathbb{N}^*$ and $\eta = (n_1, \dots, n_r) \in \mathbb{N}_0^r$ such that $\sum_{i=1}^r n_i = n$. Denote by:

- $-\mathcal{K}_{\eta,r}(\mathbb{C}) = \{ M = \operatorname{diag}(T_1, \dots, T_r) \in M_n(\mathbb{C}) : T_k \in \mathbb{T}_{n_k}(\mathbb{C}), \ k = 1, \dots, r \} .$
- $\mathcal{K}_{\eta,r}^*(\mathbb{C}) = \mathcal{K}_{\eta,r}(\mathbb{C}) \cap GL(n,\mathbb{C})$, it is a subgroup of $GL(n,\mathbb{C})$.
- v^T the transpose of a vector $v \in \mathbb{C}^n$.
- $\mathcal{E}_n = (e_1, \dots, e_n)$ the standard basis of \mathbb{C}^n .
- $-I_n$ the identity matrix on \mathbb{C}^n .

- $u_0 = [e_{1,1}, \dots, e_{r,1}]^T \in \mathbb{C}^n$, where $e_{k,1} = [1, 0, \dots, 0]^T \in \mathbb{C}^{n_k}$, $1 \le k \le r$. For any subset E of \mathbb{C}^n (resp. $M_n(\mathbb{C})$), denote by vect(E) the vector space generated by E.

In [2], the authors proved the following Proposition:

Proposition 2.1. ([2], Proposition 6.1.) Let L be an abelian subgroup of $GL(n, \mathbb{C})$, then there exists $P \in GL(n, \mathbb{C})$ such that $\widetilde{L} = P^{-1}LP$ is a subgroup of $\mathcal{K}_{\eta,r}^*(\mathbb{C})$, for some $1 \leq r \leq n$ and $\eta \in \mathbb{N}_0^r$.

For such matrix P define $v_0 = Pu_0$. Let L be an abelian subgroup of $\mathcal{K}_{\eta,r}^*(\mathbb{C})$. denote by:

-
$$V = \prod_{k=1}^r \mathbb{C}^* \times \mathbb{C}^{n_k-1}$$
. One has $\mathbb{C}^n \backslash V = \bigcup_{k=1}^r H_k$, where

$$H_k = \{ u = [u_1, \dots, u_r]^T, u_k \in \{0\} \times \mathbb{C}^{n_k - 1}, u_j \in \mathbb{C}^{n_j}, j \neq k \}.$$

See that each H_k is a L-invariant vector space of dimension n-1.

Lemma 2.2. ([10], Proposition 3.1) Let L be an abelian subgroup of $GL(n, \mathbb{C})$ and $u \in \mathbb{C}^n$. Then for every $v \in vect(L(u))$ there exist $B \in vect(L)$ such that Bu = v.

Proposition 2.3. Let \widetilde{L} be an abelian linear subgroup of $\mathcal{K}_{\eta,r}^*(\mathbb{C})$ with $\eta = (n_1, \ldots, n_r)$. Then the following assertions are equivalent:

- (i) L is dominant.
- (ii) For every $u \in V$, we have $vect(\widetilde{L}(u)) = \mathbb{C}^n$. In particular, $vect(\widetilde{L}(u_0)) = \mathbb{C}^n$.

Proof. Suppose that \widetilde{L} is dominant, then there is $u \in \mathbb{C}^n$ such that $vect(\widetilde{L}(v)) = \mathbb{C}^n$. Remark that $u \in V$, since $\mathbb{C}^n \setminus V$ is a union of r \widetilde{L} -invariant vector spaces with dimensions n-1 and let $v \in V$. By applying lemma 2.2 on \widetilde{L} , there exist $B \in vect(\widetilde{L})$ such that Bu = v. As $\mathcal{K}_{\eta,r}(\mathbb{C})$ is a vector space then $Vect(L) \subset \mathcal{K}_{\eta,r}(\mathbb{C})$. Write $u = [u_1, \ldots, u_r]^T$, $v = [v_1, \ldots, v_r]^T$ with $u_k = [x_{k,1}, \ldots, x_{k,n_k}]^T$, $v_k = [y_{k,1}, \ldots, y_{k,n_k}]^T \in \mathbb{C}^* \times \mathbb{C}^{n_k-1}$ and $B = diag(B_1, \ldots, B_r)$ with

$$B_k = \begin{bmatrix} \mu_{B_k} & & & 0 \\ a_{2,1}^{(k)} & \ddots & & & \\ \vdots & \ddots & \ddots & & \\ a_{n_k,1}^{(k)} & \dots & a_{n_k,n_k-1}^{(k)} & \mu_{B_k} \end{bmatrix}, \quad 1 \le k \le r$$

then $\mu_{B_k} x_{k,1} = y_{k,1}$, so $\mu_{B_k} = \frac{y_{k,1}}{x_{k,1}} \neq 0$, hence $B \in GL(n,\mathbb{C})$. Then $B(\widetilde{L}(u)) = \widetilde{L}(v)$. We conclude that $vect(\widetilde{L}(v)) = \mathbb{C}^n$. The converse is obvious.

Denote by:

- $\Psi_x : vect(L_G) \longrightarrow \widetilde{E}(x) \subset \mathbb{C}^n$ the linear map given by $\Psi_x(A) = Ax$.

Lemma 2.4. Let G be an abelian subgroup of $Diff^1(\mathbb{C})$ such that $0 \in Fix(G)$. Then $\widetilde{E}(x)$ is L_G -invariant and the linear map $\Psi_x : vect((L_G)_{/\widetilde{E}(x)}) \longrightarrow \widetilde{E}(x)$ is an isomorphism, where $(L_G)_{/\widetilde{E}(x)}$ is the restriction of L_G on $\widetilde{E}(x)$. *Proof.* By construction, $\widetilde{E}(x)$ is L_G -invariant and Ψ_x is linear and surjective. Let $A \in Ker(\Psi_x)$ and $y \in vect(L_G(x))$. Then there is $B \in vect((L_G)_{/\widetilde{E}(x)})$ such that y = Bx. Now, Ay = ABx = BAx = 0, so A = 0. Hence Ψ_x is injective, so it is an isomorphism.

Corollary 2.5. Let G be an abelian dominant subgroup of $Diff^1(\mathbb{C})$ such that $0 \in Fix(G)$. Then $dim(vect(L_G)) = n$.

Proof. Since G is dominant, then there is $x \in \mathbb{C}^n$ such that $\widetilde{E}(x) = \mathbb{C}^n$. Then by lemma 2.4, $\Psi_x : vect(L_G) \longrightarrow \mathbb{C}^n$ is an isomorphism, so $dim(vect(L_G)) = n$.

Denote by:

 $-\widetilde{\Omega}_n = \{ x \in \mathbb{C}^n, \ dim(vect(\widetilde{L}(x))) = n \}.$

For an abelian subgroup L of $L(n,\mathbb{C})$, it is called dominant if $vect(L(x)) = \mathbb{C}^n$ for some $x \in \mathbb{C}^n$, where $L(x) = \{Ax, A \in G\}$.

Lemma 2.6. Let \widetilde{L} be a dominant abelian subgroup of $\mathcal{K}_{n,r}^*(\mathbb{C})$. Then $\widetilde{\Omega}_n = V$.

Proof. Since \widetilde{L} is dominant, then by Proposition 2.3, for every $u \in V$, $vect(\widetilde{L}(u)) = \mathbb{C}^n$, hence $V \subset \widetilde{\Omega}_n$. For the converse, let $u \in \widetilde{\Omega}_n$, then $dim(vect(\widetilde{L}(u))) = n$. It follows that $u \in V$ because $\mathbb{C}^n \setminus V$ is a union of r \widetilde{L} -invariant vector spaces of dimension n-1. This completes the proof.

3. Proof of main results

Let G be an abelian dominant subgroup of C^1 -diffeomorphisms of \mathbb{C}^n fixing 0. Denote by:

- $C^1(\mathbb{C}^n, \mathbb{C}^n)$ the vector space of all C^1 -differentiable maps of \mathbb{C}^n , it is well known that $C^1(\mathbb{C}^n, \mathbb{C}^n)$ is an algebra.
- $\mathcal{A}(G)$ be the algebra generated by G. (i.e. The smaller vector subspace of $C^1(\mathbb{C}^n,\mathbb{C}^n)$ containing G and stable by compositions).
- For a fixed point $x \in \mathbb{C}^n$, we define the linear map $\Phi_x : \mathcal{A}(G) \longrightarrow \mathbb{C}^n$ given by $\Phi_x(f) = f(x), f \in \mathcal{A}(G)$.
- $-E(x) = \Phi_x(\mathcal{A}(G)).$

Lemma 3.1. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$ and $x \in \mathbb{C}^n$. Then E(x) is G-invariant.

Proof. Suppose that E(x) is generated by $f_1(x), \ldots, f_p(x)$, with $f_k \in \mathcal{A}(G)$, $k = 1, \ldots, p$. Let $y = \sum_{k=1}^p \alpha_k f_k(x) \in E(x)$ and $f \in G$, then y = g(x), with $g = \sum_{k=1}^p \alpha_k f_k \in \mathcal{A}(G)$. Therefore $f(y) = f \circ g(x) = \Phi_x(f \circ g) \in E(x)$, since $f \circ g \in \mathcal{A}(G)$.

Lemma 3.2. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$, fixing 0. Then g(0) = 0 for every $g \in \mathcal{A}(G)$.

Proof. Let $g = \sum_{k=1}^{p} \alpha_k f_k \subset \mathcal{A}(G)$ with $f_k \in G$, $\alpha_k \in \mathbb{C}$, so $g(0) = \sum_{k=1}^{p} \alpha_k f_k(0) = 0$. Now, let $f_1, \dots, f_m, g_1, \dots, g_q \in \mathcal{A}(G)$ such that $f_k(0) = g_j(0) = 0$, $1 \leq k \leq m$, $1 \leq j \leq q$, so for every $\alpha_1, \dots, \alpha_q, \beta_1, \dots, \beta_m \in \mathbb{C}$ we have

$$\left(\sum_{j=1}^{q} \beta_j g_j\right) \circ \left(\sum_{k=1}^{m} \alpha_k f_k\right) (0) = \sum_{j=1}^{q} \beta_j g_j \left(\sum_{k=1}^{m} \alpha_k f_k(0)\right)$$
$$= \sum_{j=1}^{q} \beta_j g_j(0)$$
$$= 0$$

Since $\mathcal{A}(G)$ is the algebra generated by G, so it is stable by composition and by linear combinations, hence we obtain the results.

Denote by $\varphi : \mathcal{A}(G) \longrightarrow M_n(\mathbb{C})$ the linear map given by $\varphi(f) = Df_0$, for every $f \in \mathcal{A}(G)$. One observes that $L_G = \varphi(G)$.

Lemma 3.3. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$, fixing 0. Then L_G is an abelian subgroup of $GL(n,\mathbb{C})$.

Proof. Let
$$f, g \in G$$
, so $\varphi(f \circ g) = D(f \circ g)(0) = Df(g(0)).Dg(0)$. By Lemma 3.2, $g(0) = 0$, so $\varphi(f \circ g) = D(f)(0).Dg(0) = \varphi(f).\varphi(g)$. The proof is completed.

Denote by:

- r(x) = dim(E(x)).
- $U_k = \{x \in \mathbb{C}^n, \ r(x) \ge k\}, \text{ for every } k \in \mathbb{N}.$
- $-r_G = \max\{r(x), x \in \mathbb{C}^n\}.$

Proposition 3.4. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$, such that $0 \in Fix(G)$. Then for every $0 \le k \le r_G$, U_k is a G-invariant open subset of \mathbb{C}^n .

Proof. In the first, remark that the rank r(y) is constant on any orbit G(y), $y \in E(x)$. So U_k is G-invariant for every $0 \le k \le r_G$. Let's show that U_t is an open set: Let $y \in U_t$ and $r = r_y$, so $r \ge t$. Then there exist $f_1, \ldots, f_r \in G$ such that the r vectors $f_1(y), \ldots, f_r(y)$ are linearly independent in E(y). For all $z \in \mathbb{C}^n$, we consider the Gram's determinant

$$\Delta(z) = \det \left(\langle f_i(z) \mid f_j(z) \rangle \right)_{1 \le i,j \le r}$$

of the vectors $f_1(z), \ldots, f_r(z)$ where $\langle .|. \rangle$ denotes the scalar product in \mathbb{C}^n . It is well known that these vectors are independent if and only if $\Delta(z) \neq 0$, in particular $\Delta(y) \neq 0$. Let

$$V_y = \{ z \in \mathbb{C}^n, \ \Delta(z) \neq 0 \}$$

The set V_y is open in \mathbb{C}^n , because the map $z \longmapsto \Delta(z)$ is continuous. Now $\Delta(y) \neq 0$, and so $y \in V_y \subset U_k$. The proof is completed.

3.1. Hamel basis and norm. [4] The main of this section is to justify the existence of a basis of every vector space. This result is trivial in the finite case, is in fact rather surprising when one thinks of infinite dimensionial vector spaces, and the definition of a basis. Recall that a *Hamel basis* or simply a basis of a vector space E is a linearly independent set \mathcal{B} (every finite subset of \mathcal{B} is linearly independent) such that for each nonzero $x \in E$ there are $a_1, \ldots, a_k \in \mathcal{B}$ and nonzero scalars $\alpha_1, \ldots, \alpha_k$ (all uniquely determined) such that $x = \sum_{i=1}^k \alpha_i a_i$. The following theorem is equivalent to the axiom of choice family of axioms and theorems. In [4], C.D.Aliprantis and K.C.Border proved, in the following theorem, that Zorn's lemma implies that every vector space has a basis.

Theorem 3.5. ([4], Theorem 1.8) Every nontrivial vector space has a Hamel basis.

As a consequence, we found the important following results:

Theorem 3.6. Every nontrivial vector space has a norm called Hamel norm.

Proof. Let E be a nontrivial vector space over \mathbb{C} . By Theorem 3.5, E has a Hamel basis called $\mathcal{B} = (a_i)_{i \in I}$, for any set I of indices (not necessary countable). In this basis, every vector $x \in E$ has the form $x = \sum_{i \in I_x} \alpha_i a_i$, where $\alpha_i \in \mathbb{C}$ and $I_x \subset I$ with finite cardinal. The family $(\alpha_i)_{i \in I}$ with $\alpha_i = 0$ for every $i \in I \setminus I_x$, is called the coordinate of x. Now, define $||x|| = \sum_{i \in I_x} |\alpha_i|$. It is easy to verify that ||.|| defines a norm on E by using the coordinate in the Hamel basis. We say that ||.|| is the Hamel norm associated to the Hamel basis \mathcal{B} .

Remark that any vector for the Hamel basis is with norm 1.

- 3.2. Linear map and isomorphism. A subset $E \subset \mathbb{C}^n$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. For a fixed vector $x \in \mathbb{R}^n \setminus \{0\}$, denote by:
- F_x is an algebraic supplement of $Ker(\Phi_x)$ in $\mathcal{A}(G)$. It is easy to show that $p_x := dim(F_x) = dim(E(x)) \le n$ since $E(x) = \Phi_x(\mathcal{A}(G))$.
- $C_x = (a_1, \ldots, a_{p_x})$ is a basis of F_x .
- $\mathcal{B}_x = (b_i)_{i \in I}$ is a Hamel basis (Theorem 3.5) of $Ker(\Phi_x)$.
- $\mathcal{E}_x = (\mathcal{C}_x, \mathcal{B}_x)$ is a Hamel basis of $\mathcal{A}(G)$. By Theorem 3.6, $\mathcal{A}(G)$ is provided with the Hamel norm associated to the basis \mathcal{E}_x .

Lemma 3.7. The linear map $\Phi_x : \mathcal{A}(G) \longrightarrow E(x)$ is continuous. In particular, $Ker(\Phi_x)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since Φ_x is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of Φ_x on 0. Let $f \in \mathcal{A}(G)$ and write $f = f_1 + f_2$ with $f_1 \in F_x$ and $f_2 \in Ker(\Phi_x)$. Set $(\alpha_i)_{1 \leq i \leq p_x}$ and $(\beta_i)_{i \in I}$ be respectively the coordinates of f_1 and f_2 in \mathcal{C}_x and \mathcal{B}_x . Write $f = \sum_{i=1}^{p_x} \alpha_i a_i + \sum_{i \in I_2} \beta_i b_i$ where $I_2 \subset I$ with finite cardinal.

We have $||f|| = \sum_{i=1}^{p_x} |\alpha_i| + \sum_{i \in I_2} |\beta_i|$ and $b_i(x) = 0$ for all $i \in I_2$. Therefore

$$\|\Phi_x(f)\| = \|f(x)\| = \left\| \sum_{i=1}^{p_x} \alpha_i a_i(x) + \sum_{i \in I_2} \beta_i b_i(x) \right\|$$

$$\leq \sum_{i=1}^{p_x} |\alpha_i| \|a_i(x)\|$$

$$\leq \|f\| \sum_{i=1}^{p_x} \|a_i(x)\|$$

Since $\sum_{i=1}^{p_x} ||a_i(x)||$ is constant relative to f, then Φ_x is continuous.

Lemma 3.8. Suppose that $dim(vect(L_G)) = n$. Then the linear map $\varphi : \mathcal{A}(G) \longrightarrow vect(L_G)$ is continuous. In particular, $Ker(\varphi)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since φ is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of φ on 0. Firstly, see that $cod(Ker(\varphi)) = n$ is finite since $dim(vect(L_G)) = n$. let F be an algebraic supplement to $Ker(\varphi)$ in \mathcal{A} , $\mathcal{C}' = (a'_1, \ldots, a'_n)$ and $\mathcal{B}' = (b'_i)_{i \in J}$ are respectively the Hamel basis of F and $Ker(\varphi)$ (Lemma 3.5). Let $f \in \mathcal{A}(G)$ and write $f = f_1 + f_2$ with $f_1 \in F$ and $f_2 \in Ker(\varphi)$. Set $(\alpha_i)_{1 \leq i \leq q}$ and $(\beta_i)_{i \in J}$ be respectively the coordinates of f_1 and f_2 in \mathcal{C}' and \mathcal{B}' . Write $f = \sum_{i=1}^n \alpha_i a'_i + \sum_{i \in I_2} \beta_i b'_i$ where $I_2 \subset f$ with finite cardinal. We have

$$||f|| = \sum_{i=1}^{n} |\alpha_i| + \sum_{i \in I_2} |\beta_i|$$
 and $\varphi(b_i') = Db_i'(0) = 0$ for all $i \in I_2$. Therefore

$$\|\varphi(f)\| = \|Df(0)\| = \left\| \sum_{i=1}^{n} \alpha_i Da_i'(0) + \sum_{i \in I_2} \beta_i Db_i'(0) \right\|$$

$$\leq \sum_{i=1}^{n} |\alpha_i| \|Da_i'(0)\|$$

$$\leq \|f\| \sum_{i=1}^{n} \|Da_i'(0)\|$$

Since $\sum_{i=1}^{n} ||Da_i'(0)||$ is constant relative to f, then φ is continuous.

Lemma 3.9. ([6], 3.5) Let E be a topological vector space, and let M be a closed subspace of finite codimension. Then $E = M \oplus N$ is a topological sum, for every algebraic complementary subspace N of M.

Corollary 3.10. The algebraic sum $\mathcal{A}(G) = F_x \oplus Ker(\Phi_x)$ is topological. In particular, $F_x \oplus Ker(\Phi_x)$ and $\mathcal{A}(G)$ are topological isomorphic by the map: $(f_1, f_2) \longmapsto f_1 + f_2$.

Proof. By the Theorem 3.6, $\mathcal{A}(G)$ is a normed vector space so it is a topological vector space. By Lemma 3.7, Φ_x is continuous and so its kernel is closed vector space with finite codimension. The results follows directly by applying the Lemma 3.9 for $E = \mathcal{A}(G)$ and $M = Ker(\Phi_x)$.

By Corollary 3.10, we can identify $\mathcal{A}(G)$ with $F_x \oplus Ker(\Phi_x)$, so every $f \in \mathcal{A}(G)$ is denoted by $f = (f_1, f_2) = f_1 + f_2$ with $f_1 \in F_x$ and $f_2 \in Ker(\Phi_x)$.

Lemma 3.11. Let H and K be two closed vector subspaces of $\mathcal{A}(G)$ such that $cod(H) = cod(K) = j \geq 1$. Let $\psi \in \mathcal{A}(G) \setminus (H \cup K)$. Then there exists a vector space F of $\mathcal{A}(G)$, containing ψ and satisfying $\mathcal{A}(G) = F \oplus H = F \oplus K$.

Proof. There are two cases;

Case 1: If j = 1, then we take $F = \mathbb{C}\psi$.

Case 2: Suppose that $j \geq 2$. Denote by $H' = H \oplus \mathbb{C}\psi$ and $K' = K \oplus \mathbb{C}\psi$. Suppose that $H' \neq K'$ (otherwise, it is easy to take a comment supplement) and let $f_1 \in H' \setminus K'$ and $g_1 \in K' \setminus H'$, so $h_1 = f_1 + g_1 \notin H' \cup K'$. Denote by $H_1 = \mathbb{C}h_1 \oplus H'$ and $K_1 = \mathbb{C}h_1 \oplus K'$. We establish two cases:

- If $H_1 = K_1$, then any supplement F of H_1 in $\mathcal{A}(G)$ is a supplement of K_1 in $\mathcal{A}(G)$, the proof follows then.
- If $H_1 \neq K_1$, we take $f_2 \in H_1 \backslash K_1$ and $g_2 \in K_1 \backslash H_1$, so $h_2 = f_2 + g_2 \notin H_1 \cup K_1$. Denote by $H_2 = \mathbb{C}h_2 \oplus H_1$ and $K_2 = \mathbb{C}h_2 \oplus K_1$.

We repeat the same processes until j-2 times and we obtain:

- If $H_{j-2} = K_{j-2}$, then any supplement F of H_{j-2} in $\mathcal{A}(G)$ is a supplement of K_{j-2} in $\mathcal{A}(G)$.
- If $H_{j-2} \neq K_{j-2}$, we take $f_{j-1} \in H_{j-2} \setminus K_{j-2}$ and $g_{j-1} \in K_{j-2} \setminus H_{j-2}$, so $h_{j-1} = f_{j-1} + g_{j-1} \notin H_{j-2} \cup K_{j-2}$. Denote by $H_{j-1} = \mathbb{C}h_{j-1} \oplus H_{j-2}$ and $K_{j-1} = \mathbb{C}h_{j-1} \oplus K_{j-2}$. We obtain then $H_{j-1} = K_{j-1} = \mathcal{A}(G)$. Hence the proof is completed by taking $F = vect(\psi, h_1, \dots, h_{j-1})$.

Denote by $\widetilde{r}_x = dim(\widetilde{E}(x))$.

Lemma 3.12. If $r(x) = \tilde{r}_x$, then there exists a commune vector space $F_x \subset \varphi^{-1}(L_G)$ supplement to $Ker(\Phi_x)$ and to $ker(\varphi)$ in $\mathcal{A}(G)$. (i.e $F_x \oplus Ker(\Phi_x) = F_x \oplus Ker(\varphi) = \mathcal{A}(G)$).

Proof. Since L_G is abelian so $vect(L_G)$ is an abelian algebra and φ is a morphism of algebra, then $\varphi^{-1}(L_G)$ is an algebra containing G. hence $\varphi^{-1}(L_G) = \mathcal{A}(G)$. Therefore any supplement of $Ker(\Phi_x)$ in $\mathcal{A}(G)$ is contained in $\varphi^{-1}(L_G)$. Now by Lemma 3.8, φ is continuous. By Lemmas 3.7 and 3.8 both $Ker(\Phi_x)$ and $Ker(\varphi)$ are closed and since $cod(Ker(\Phi_x)) = cod(Ker(\varphi)) = n$, then by lemma 3.11, there exists a commune supplement F_x to $Ker(\Phi_x)$ and to $ker(\Phi_x)$ in $\mathcal{A}(G)$ containing id (identity map of \mathbb{C}^n), because $id \in \mathcal{A}(G) \setminus Ker(\Phi_x) \cup Ker(\varphi)$.

Lemma 3.13. Then the linear map $\Phi_x : F_x \longrightarrow E(x)$ given by $\Phi_x(f) = f(x)$ is an isomorphism.

Proof. Here, F_x is considered as a supplement to $Ker(\Phi_x)$ in $\mathcal{A}(G)$. The proof follows directly from the fact that Φ_x is linear surjective and $dim(F_x) = dim(E(x)) = n$.

Lemma 3.14. If $r(x) = \widetilde{r}_x = n$, then the restriction $\varphi_1 : F_x \longrightarrow vect(L_G)$ of φ from F_x unto $vect(L_G)$ is an isomorphism.

Proof. Here, F_x is considered as a supplement to $Ker(\varphi)$ in $\mathcal{A}(G)$. The proof follows directly from the fact that φ_1 is linear surjective and $dim(F_x) = dim(vect(L_G)) = n$ (Corollary 2.5).

Lemma 3.15. If $r(x) = \widetilde{r}_x = n$, then the map $\varphi_x := \widetilde{\Phi}_x \circ \varphi_1 \circ \Phi_x^{-1} : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ defined by $\varphi_x(f(x)) = Df_0(x)$, $f \in F_x$, is an isomorphism and satisfying: (i) $\varphi_x(G(x)) = L_G(x)$.

- (ii) Let $y \in \mathbb{C}^n$ and $z = \varphi_x(y)$ then $\varphi_x(G(y)) = L_G(z)$.
- (iii) for every $y \in \overline{G(x)}$ we have $z = \varphi_x(y) \in \overline{L_G(x)}$.

Proof. By Lemma 3.12, we can assume that F_x is a commune supplement to $Ker(\Phi_x)$ and to $Ker(\varphi)$ in $\mathcal{A}(G)$. Since $r(x) = \widetilde{r}_x = n$, then $E(x) = \widetilde{E}(x) = \mathbb{C}^n$. (i) φ_x is an isomorphisms, since $\varphi_x = \widetilde{\Phi}_x \circ \varphi_1 \circ \Phi_x^{-1}$ and by Lemmas 3.14, 2.4 and 3.13, it is composed by isomorphisms.

Let $f_1, \ldots, f_r \in \mathcal{A}(G)$ be the generator of F_x . So the restriction $(\Phi_x)_{/F_x}$ (resp. $(\psi_x)_{/F_x}$) of Φ_x (resp. ψ_x) on F_x are bijective from F_x to \mathbb{C}^n . Then $f_1(x), \ldots, f_n(x)$ generate E(x) and $Df_1(0)(x), \ldots, Df_n(0)(x)$ generate \mathbb{C}^n . Now, let $f = \sum_{k=1}^n \alpha_k f_k \in F_x$, so $\varphi_x(f(x)) = \sum_{k=1}^n \alpha_k Df_k(0)(x) = Df_0(x) \in L(x)$. It follows that $\varphi_x(G(x)) = L_G(x)$.

- (ii) Let $y \in E(x)$ and $z = \varphi_x(y)$. Let $f \in G$ and write $f = \sum_{k=1}^n \alpha_k f_k$, where (f_1, \ldots, f_n) be a basis of F_x . Then by Lemma 3.2, g(0) = 0 and so $\varphi_x(f(y)) = \varphi_x(f \circ g(x)) = Df_0.Dg_0(x) = Df_0(z) \in L_G(z)$. It follows that $\varphi_x(G(y)) \subset L_G(z)$. Conversely, let $a \in L_G(z)$, so $a = Df_0(z)$ for some $f \in G$. Since $z = Dg_0(x)$ and $g \in G$, so $a = D(f \circ g)_0(x) = \varphi_x(f \circ g)$. Hence $a \in \varphi_x(G(x))$.
- (iii) Since $y \in \mathbb{C}^n$, there exists $g \in F_x$ such that y = g(x), so $z = Dg_0(x)$. By continuity of φ_x and by (i), we have $z \in \varphi_x(\overline{G(x)}) \subset \overline{\varphi_x(G(x))} = \overline{L_G(x)}$.

Denote by:

- $\widetilde{\Omega}_k = \{ y \in \mathbb{C}^n, \ \widetilde{r}_y \geq k \}$, for every $0 \leq k \leq n$. By applying Lemma 3.11 given in [10] to the abelian linear group L_G , we found the following result:

Lemma 3.16. ([10], Lemma 3.11) $\widetilde{\Omega}_k$ is a L_G -invariant dense open subset of \mathbb{C}^n .

Lemma 3.17. ([10], Theorem 3.10) Let $x \in \widetilde{\Omega}_n$ then for every $y \in \overline{L_G(x)} \cap \widetilde{\Omega}_n$ we have $\overline{L_G(y)} \cap \widetilde{\Omega}_n = \overline{L_G(x)} \cap \widetilde{\Omega}_n$.

Lemma 3.18. (Under the above notations) Suppose that $r(x) = \widetilde{r}_x = n$. For every $x \in \Omega_n$, we have $\varphi_x(\Omega_n) = \widetilde{\Omega}_n$.

Proof. Let $y \in \Omega_n$ and $z = \varphi_x(y)$. By Lemma 3.15,(ii), $\varphi_x(G(y)) = L_G(z)$. Since φ_x is linear, then $\varphi_x(E(y)) = \widetilde{E}(z)$, so $r(y) = \widetilde{r}_z = n$. It follows that $z \in \widetilde{\Omega}_n$. For the converse we use the same proof for φ_x^{-1} .

Proof of Theorem 1.1. Since G is dominant, then there is $x \in \mathbb{C}^n$ such that $r(x) = \widetilde{r}_x = n$. Let $y \in \overline{G(x)} \cap \Omega_n$. By Lemma 3.15, there exists an isomorphism $\varphi_x : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ satisfying $\varphi_x(G(x)) = L_G(x)$ and $\varphi_x(G(y)) = L_G(z)$ with $z = \varphi_x(y)$. By Lemma 3.18, we have $\varphi_x(\Omega_n) = \widetilde{\Omega}_n$, so $z \in \varphi_x(\overline{G(x)} \cap_n) = \overline{L_G(x)} \cap \widetilde{\Omega}_n$. By Lemma 3.17, we have

$$\overline{L_G(z)} \cap \widetilde{\Omega}_n = \overline{L_G(x)} \cap \widetilde{\Omega}_n \qquad (1).$$

Therefore by (1) we obtain

$$\overline{G(x)} \cap \Omega_n = \varphi_x^{-1}(\overline{L_G(x)}) \cap \varphi_x^{-1}(\widetilde{\Omega}_n)$$

$$= \varphi_x^{-1}(\overline{L_G(x)} \cap \widetilde{\Omega}_n)$$

$$= \varphi_x^{-1}(\overline{L_G(z)}) \cap \widetilde{\Omega}_n)$$

$$= \varphi_x^{-1}(\overline{L_G(z)}) \cap \varphi_x^{-1}(\widetilde{\Omega}_n)$$

$$= \overline{G(y)} \cap \Omega_n.$$

On the other hand, $U = \Omega_n = \varphi_x(\widetilde{\Omega}_n)$ and by Lemma 2.6, $\widetilde{\Omega}_n = V$ which is connected and dense open set in \mathbb{C}^n , so is U since $U = \varphi_x(V)$. This completes the proof.

Remark 3.19. As a consequence of the proof of Theorem 1.1, $U = \varphi_x(V)$, for a particular point $x \in \mathbb{C}^n$ satisfying $E(x) = \widetilde{E}(x) = \mathbb{C}^n$.

Proof of Corollary 1.2. Let O be a dense orbit in \mathbb{C}^n (i.e. $\overline{O} = \mathbb{C}^n$). Then for every $x \in O$, we have r(x) = n, so $O \subset U$ and $\overline{O} \cap U = U$. Since O is minimal in U (Theorem 1.1), then for every orbit $L \subset U$, we have $\overline{L} \cap U = \overline{O} \cap U$. Therefore $\overline{L} = \overline{O} = \mathbb{C}^n$.

3.3. The Theorem 1.1 in the dimension n = 1. We can remove the condition G is dominant in the Theorem 1.1, we obtain a global decomposition as follow:

Corollary 3.20. Let G be an abelian subgroup of $Diff^1(\mathbb{C})$, such that $0 \in Fix(G)$. Then every orbit of $\mathbb{C}\setminus\{0\}$ is minimal in it.

Proof. Since $id \in G$, then $id \in L_G$ and so $dim(E(1)) = dim(\widetilde{E}(1)) = 1$. On the other hand $V = \mathbb{C}^*$. The proof results directly from Theorem 1.1 and Remark 3.19, because $U = \varphi_1(V) = \mathbb{C}^*$.

4. Example in the dimension n=2

We give some examples of abelian subgroup of $Diff^1(\mathbb{C})$ which are near enough th linear group. Recall that $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

Example 4.1. Let Γ be the group abelian of all diffeomorphisms f of \mathbb{C}^2 defined by $f(x,y)=(x,y+P(x)),\ P\in\mathbb{C}[X]$ and G be a subgroup of Γ generated by $f:(x,y)\longmapsto(x,y+P(x))$ and $g:(x,y)\longmapsto(x,y+Q(x))$ with $P,Q\in\mathbb{C}[X],\ Q(0)=P(0)=0,\ P(1)\neq 0$ and $P'(0)\neq 0$. Then every orbit is minimal in the open set $\mathbb{C}^*\times\mathbb{C}$.

Proof. We can easily verify that G is abelian, $0 \in Fix(G)$. In the begin, we have $f^n \circ g^m(x,y) = (x,y+nP(x)+mQ(x))$ for every $n,m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$h(x,y) = (\alpha x, \ \beta y + R(x))$$
 where $R \in \mathbb{C}[X]$ (1)

We have $Df_0 = \begin{bmatrix} 1 & 0 \\ P'(0) & 1 \end{bmatrix}$. Then $L_G \subset \mathbb{T}_2^*(\mathbb{C})$. Here $u_0 = e_1 = (1,0)$ then $\widetilde{E}(u_0)$ is generated by e_1 and $Df_0(u_0) = (1, P'(0))$, so $dim(\widetilde{E}(u_0)) = 2$, hence $\widetilde{E}(e_1) = \mathbb{C}^2$. On the other hand, $f(u_0) = [1, P(1)]^T$ and $id(u_0) = [1, 0]^T$, so $dim(E(u_0)) = dim(\widetilde{E}(u_0)) = 2$ since $P(1) \neq 0$, so G is dominant. By Lemma 2.6, $\widetilde{\Omega}_2 = \mathbb{C}^* \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{e_1}(\Omega_2) = \widetilde{\Omega}_2$, then

$$\Omega_2 = \varphi_{e_1}^{-1}(\mathbb{C}^* \times \mathbb{C}) \qquad (2)$$

By Theorem 1.1, every orbit of Ω_2 is minimal in it. Now let's prove that $\varphi_{e_1}^{-1}(\mathbb{C}^* \times \mathbb{C}) = \mathbb{C}^* \times \mathbb{C}$: Recall that $\varphi_{e_1}(x,y) = \widetilde{\Phi}_{e_1} \circ \varphi \circ \Phi_{e_1}^{-1}(x,y)$ (see Lemma 3.15). Let $(x,y) \in \mathbb{C}^* \times \mathbb{C}$. Then there exists $h \in \mathcal{A}(G)$ such that $(x,y) = Dh_0e_1$. Using (2) and by integration, h has the form $h: (s,t) \longrightarrow (xs, \beta t + ys + sR(s) + \gamma)$, with $R \in \mathbb{C}[X]$, then $h(e_1) = (x,y+R(1))$ and $Dh_0e_1 = (x,y)$. Therefore

$$\begin{split} \varphi_{e_1}^{-1}(x,y) &= \Phi_{e_1} \circ \varphi^{-1} \circ \widetilde{\Phi}_{e_1}^{-1}(x,y) \\ &= \Phi_{e_1} \circ \varphi^{-1}(Dh_0) \\ &= \Phi_{e_1}(h) \\ &= h(e_1) \\ &= (x,y+R(1)+\gamma) \in \mathbb{C}^* \times \mathbb{C} \end{split}$$

Conversely, Let $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ then there is $h \in \mathcal{A}(G)$ such that $h(e_1) = (a, b)$. By (2), h has the form $h(s, t) = (as, \beta t + bs + sR(s) + \gamma)$, then $Dh_0(e_1) = (a, b + R(1) + R'(1))$. Therefore

$$\varphi_{e_1}(a,b) = \widetilde{\Phi}_{e_1} \circ \varphi \circ \Phi_{e_1}^{-1}(a,b)$$

$$= \widetilde{\Phi}_{e_1} \circ \varphi(h)$$

$$= \Phi_{e_1}(Dh_0)$$

$$= h(e_1)$$

$$= (a,b+R(1)+R'(1)) \in \mathbb{C}^* \times \mathbb{C}$$

It follows that $\varphi_{e_1}^{-1}(\mathbb{C}^* \times \mathbb{C}) = \mathbb{C}^* \times \mathbb{C}$.

Example 4.2. Let G be the abelian group generated by $f(x,y) = (x^q, y + x^k)$ and $g(x,y) = (x^{q'}, y + x^{k'})$ q and q' are odd integers, $k, k' \in \mathbb{N}$. Then every orbit of $\mathbb{C}^* \times \mathbb{C}$ is minimal in it.

Proof. We can easily verify that G is abelian, $0 \in Fix(G)$. In the begin, we have $f^n(x,y) = (x^{nq}, y + x^k + \sum_{i=1}^n x^{iqk}))$ and so

$$f^n \circ g^m(x,y) = \left(x^{nqmq'}, \ y + x^k + \sum_{i=1}^n x^{iqk} + x^{nqk'} + \sum_{j=1}^m x^{nqjq'k'} \right)$$

for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$h(x,y) = (\alpha x, \beta y + R(x)) \text{ where } R \in \mathbb{C}[X]$$
 (1)

We have
$$Did_0 = id$$
 and $Df_0 = Dg_0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then $L_G \subset \mathbb{T}_1^*(\mathbb{C}) \oplus \mathbb{T}_1^*(\mathbb{C})$.

Here $u_0 = e_1 + e_2 = (1, 1)$ then $\widetilde{E}(u_0)$ is generated by e_1 and $Df_0(u_0) = (0, 1)$, so $dim(\widetilde{E}(u_0)) = 2$, hence $\widetilde{E}(u_0) = \mathbb{C}^2$. By Lemma 2.6, $\widetilde{\Omega}_2 = \mathbb{C}^* \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{u_0}(\Omega_2) = \widetilde{\Omega}_2$, then

$$\Omega_2 = \varphi_{u_0}^{-1}(\mathbb{C}^* \times \mathbb{C}) \qquad (2)$$

On the other hand, $f(u_0) = [1,2]^T$ and $id(u_0) = [1,1]^T$, so $dim(E(u_0)) = dim(\widetilde{E}(u_0)) = 2$, so G is dominant. By Theorem 1.1, every orbit of Ω_2 is minimal in it. As in the proof of example 4.1, we prove that $\varphi_{u_0}^{-1}(\mathbb{C}^* \times \mathbb{C}) = \mathbb{C}^* \times \mathbb{C}$.

Question1: Is there an abelian subgroup of $Diff^1(\mathbb{C}^n)$ fixing some point having no minimal set in $\mathbb{C}^n \backslash Fix(G)$?

Question2: An abelian subgroup of $Diff^1(\mathbb{C}^n)$ fixing some point and satisfying $r(x) = \widetilde{r}_x$ for every $x \in \mathbb{C}^n$, is-it conjugate to a linear group?

References

- A. Ayadi. A and H. Marzougui, Dynamic of Abelian subgroups of GL(n, C): a structure Theorem, Geometria Dedicata, 116(2005) 111-127.
- Ayadi. A and Marzougui. H, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: World Scientific, Hackensack, NJ, (2006), 47-69.
- A.Ayadi, H.Marzougui and Y.Ndao, On the dynamic of abelian groups of affine maps on Cⁿ and Rⁿ, preprint, ictp. IC/2009/062.
- C.D.Aliprantis and K.C.Border, Infinite dimensional analysis: A Hitchhiker's Guide, 3^rd Edition, Springer-Verlag, Heidelberg and New York, 2006.
- F.Saponga, Localisation des points fixes communs pour des difféomorphismes commutants du plan, Bull Braz Math Soc, New seies 42 (3), (2010), 373-397.
- 6. H.H.Schaefer and M.P.Wolff, Topological vector spaces, Graduate texts in mathematics, 1999.
- J. FRANKS, M. HANDEL and K. PARWANI, Fixed points of abelian actions on S², Ergodic Theory and Dynamical Systems, 27, (2007), 1557-1581
- 8. M.Waldschmidt, *Topologie des points rationnels*, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
- 9. P.W.Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980c.
- S.Chihi, On the minimal orbits of an abelian linear action, Differential Geometry Dynamical Systems, Vol.12, (2010), 61-72.

11. V.Bergelson, M.Misiurewicz and S.Senti, Affine actions of a free semigroup on the real line, Ergod. Th. and Dynam. Sys. vol 26, (2006), 1285-1305.

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada

 $E ext{-}mail\ address: yahiandao@yahoo.fr}$

Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

 $E ext{-}mail\ address: adlenesoo@yahoo.com}$