# THE ACTION OF ABELIAN $C^{1}$-DIFFEOMORPHISMS GROUP FIXING A POINT, ON $\mathbb{C}^{n}$ 

YAHYA N'DAO AND ADLENE AYADI


#### Abstract

In this paper, we study the action of any abelian subgroup $G$ of Diff $f^{1}\left(\mathbb{C}^{n}\right)$ on $\mathbb{C}^{n}$ fixing 0 . Suppose that there is $x \in \mathbb{C}^{n}$, having an orbit which generates $\mathbb{C}^{n}$ and also $\widetilde{E}(x)=\mathbb{C}^{n}$, where $\widetilde{E}(x)$ is the vector space generated by $\left\{D f_{0} x, f \in G\right\}$. We prove the existence of a $G$-invariant open set $U$, dense in $\mathbb{C}^{n}$, in which every orbit is minimal. Moreover, if $G$ has a dense orbit in $\mathbb{C}^{n}$ then every orbit of $U$ is dense in $\mathbb{C}^{n}$.


## 1. Introduction

Denote by $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$ the group of all $C^{1}$-diffemorphisms of $\mathbb{C}^{n}$. Let $G$ be an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$ fixing 0 . There is a natural action $G \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$. $(f, x) \longmapsto f(x)$. For a point $x \in \mathbb{C}^{n}$, denote by $G(x)=\{f(x), f \in G\} \subset \mathbb{C}^{n}$ the orbit of $G$ through $x$. A subset $E \subset \mathbb{C}^{n}$ is called $G$-invariant if $f(E) \subset E$ for any $f \in G$; that is $E$ is a union of orbits. Denote by $\bar{E}$ (resp. $\stackrel{\circ}{E}$ ) the closure (resp. interior) of $E$.

A subset $E$ of $\mathbb{C}^{n}$ is called a minimal set of $G$ if $E$ is closed in $\mathbb{C}^{n}$, non empty, $G$-invariant and has no proper subset with these properties. It is equivalent to say that $E$ is a $G$-invariant set such that every orbit contained in $E$ is dense in it. If $\Omega$ is a $G$-invariant set in $\mathbb{C}^{n}$, we say that $E$ is a minimal set in $\Omega$ if it is a minimal set of the restriction $G_{/ \Omega}$ of $G$ to $\Omega$. An orbit $O \subset \Omega$ is called minimal in $\Omega$ if $\bar{O} \cap \Omega$ is a minimal set in $\Omega$. This means that for every $x \in \bar{O} \cap \Omega$ we have $\bar{O} \cap \Omega=\overline{G(x)} \cap \Omega$. For example, a closed orbit in $\Omega$ is minimal in $\Omega$. In particular, every point in $\operatorname{Fix}(G)$ is minimal in $\mathbb{C}^{n}$.

Many authors have studied the existence of commune fixed point of any abelian group of diffeomorphisms. In [5], S.Frimo proved that if $G$ is an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{R}^{2}\right)$ generated by any family of commuting diffeomorphisms of the plane wich are $C^{1}$-close to the identity and having a bounded orbit then $\operatorname{Fix}(G) \neq \emptyset$. In [7], J. Franks, M. Handel and K. Parwani proved that if $G$ is a finitely generated abelian subgroup of $D i f f_{+}^{1}\left(\mathbb{R}^{2}\right)$ and if there is a compact $G$-invariant set $C \subset \mathbb{R}^{2}$, then $\operatorname{Fix}(G)$ is non-empty.

This paper can be viewed as a generalization of the results given in [1] and [3]. We use a construction analogous to that given by S.Chihi in [10] for abelian linear group.

[^0]Denote by $L_{G}=\left\{D f_{0}, f \in G\right\}$, it is an abelian subgroup of $G L(n, \mathbb{C})$ (see Lemma 3.3) and $\operatorname{vect}\left(L_{G}\right)$ be the vector space generated by $L_{G}$. For every $u \in \mathbb{C}^{n}$, denote by:

- $L_{G}(u)=\left\{A u, A \in L_{G}\right\}$ the orbit of $u$ defined by the natural action of the linear group $L_{G}$ on $\mathbb{C}^{n}$.
- $\widetilde{E}(u)$ be the vector space generated by $L_{G}(u)$.
$-\mathcal{A}(G)$ be the algebra generated by $G$.
- $E(x)=\{f(x), \quad f \in \mathcal{A}(G)\}$.

The group $G$ is called dominant if there is a point $x \in \mathbb{C}^{n}$ such that each set $G(x)$ and $L_{G}(x)$ generates $\mathbb{C}^{n}$ (i.e. $G$ is dominant if $\widetilde{E}(x)=E(x)=\mathbb{C}^{n}$ for some $\left.x \in \mathbb{C}^{n}\right)$.

We generalize the result given in [1] for abelian subgroup of $G L(n, \mathbb{C})$ in the following Theorem:

Theorem 1.1. Let $G$ be an abelian dominant subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$. Then there exist a $G$-invariant connected open set $U$, dense in $\mathbb{C}^{n}$ in which every orbit is minimal.

We have the following corollaries.
Corollary 1.2. Let $G$ be an abelian dominant subgroup of Diff $f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$. If $G$ has a dense orbit then every orbit in $U$ is dense in $\mathbb{C}^{n}$.

This paper is organized as follows: In Section 2, we give some results for abelian linear group. The Section 3 is devoted to prove the main results. In the section 4, we give two examples for $n=2$.

## 2. Some results for abelian linear group

Let $M_{n}(\mathbb{C})$ be the set of complex square matrices of order $n \geq 1$, and let $G L(n, \mathbb{C})$ be the group of the invertible matrices of $M_{n}(\mathbb{C})$. Denote by

- $\mathbb{T}_{n}(\mathbb{C})$ the set of all lower-triangular matrices over $\mathbb{C}$, of order $n$ and with only one eigenvalue.
- $\mathbb{T}_{n}^{*}(\mathbb{C})=\mathbb{T}_{n}(\mathbb{C}) \cap G L(n, \mathbb{C})$ (i.e. the subset of matrix of $\mathbb{T}_{n}(\mathbb{C})$ having a non zero eigenvalue), it is a subgroup of $G L(n, \mathbb{C})$.
- $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $\mathbb{N}_{0}=\mathbb{N} \backslash\{0\}$.

Let $r \in \mathbb{N}^{*}$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}$ such that $\sum_{i=1}^{r} n_{i}=n$. Denote by:
$-\mathcal{K}_{\eta, r}(\mathbb{C})=\left\{M=\operatorname{diag}\left(T_{1}, \ldots, T_{r}\right) \in M_{n}(\mathbb{C}): T_{k} \in \mathbb{T}_{n_{k}}(\mathbb{C}), k=1, \ldots, r\right\}$.

- $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})=\mathcal{K}_{\eta, r}(\mathbb{C}) \cap G L(n, \mathbb{C})$, it is a subgroup of $G L(n, \mathbb{C})$.
- $v^{T}$ the transpose of a vector $v \in \mathbb{C}^{n}$.
- $\mathcal{E}_{n}=\left(e_{1}, \ldots, e_{n}\right)$ the standard basis of $\mathbb{C}^{n}$.
$-I_{n}$ the identity matrix on $\mathbb{C}^{n}$.
- $u_{0}=\left[e_{1,1}, \ldots, e_{r, 1}\right]^{T} \in \mathbb{C}^{n}$, where $e_{k, 1}=[1,0, \ldots, 0]^{T} \in \mathbb{C}^{n_{k}}, \quad 1 \leq k \leq r$.

For any subset $E$ of $\mathbb{C}^{n}\left(\right.$ resp. $\left.\quad M_{n}(\mathbb{C})\right)$, denote by $\operatorname{vect}(E)$ the vector space generated by $E$.

In [2], the authors proved the following Proposition:

Proposition 2.1. ([2], Proposition 6.1.) Let $L$ be an abelian subgroup of $G L(n, \mathbb{C})$, then there exists $P \in G L(n, \mathbb{C})$ such that $\widetilde{L}=P^{-1} L P$ is a subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$, for some $1 \leq r \leq n$ and $\eta \in \mathbb{N}_{0}^{r}$.

For such matrix $P$ define $v_{0}=P u_{0}$. Let $L$ be an abelian subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. denote by:

- $V=\prod_{k=1}^{r} \mathbb{C}^{*} \times \mathbb{C}^{n_{k}-1}$. One has $\mathbb{C}^{n} \backslash V=\bigcup_{k=1}^{r} H_{k}$, where

$$
H_{k}=\left\{u=\left[u_{1}, \ldots, u_{r}\right]^{T}, \quad u_{k} \in\{0\} \times \mathbb{C}^{n_{k}-1}, u_{j} \in \mathbb{C}^{n_{j}}, j \neq k\right\} .
$$

See that each $H_{k}$ is a $L$-invariant vector space of dimension $n-1$.
Lemma 2.2. ([10], Proposition 3.1) Let $L$ be an abelian subgroup of $G L(n, \mathbb{C})$ and $u \in \mathbb{C}^{n}$. Then for every $v \in \operatorname{vect}(L(u))$ there exist $B \in \operatorname{vect}(L)$ such that $B u=v$.

Proposition 2.3. Let $\widetilde{L}$ be an abelian linear subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ with $\eta=\left(n_{1}, \ldots, n_{r}\right)$. Then the following assertions are equivalent:
(i) $\widetilde{L}$ is dominant.
(ii) For every $u \in V$, we have vect $(\widetilde{L}(u))=\mathbb{C}^{n}$. In particular, vect $\left(\widetilde{L}\left(u_{0}\right)\right)=\mathbb{C}^{n}$.

Proof. Suppose that $\widetilde{L}$ is dominant, then there is $u \in \mathbb{C}^{n}$ such that $\operatorname{vect}(\widetilde{L}(v))=\mathbb{C}^{n}$. Remark that $u \in V$, since $\mathbb{C}^{n} \backslash V$ is a union of $r \widetilde{L}$-invariant vector spaces with dimensions $n-1$ and let $v \in V$. By applying lemma 2.2 on $\widetilde{L}$, there exist $B \in$ $\operatorname{vect}(\widetilde{L})$ such that $B u=v$. As $\mathcal{K}_{\eta, r}(\mathbb{C})$ is a vector space then $\operatorname{Vect}(L) \subset \mathcal{K}_{\eta, r}(\mathbb{C})$. Write $u=\left[u_{1}, \ldots, u_{r}\right]^{T}, v=\left[v_{1}, \ldots, v_{r}\right]^{T}$ with $u_{k}=\left[x_{k, 1}, \ldots, x_{k, n_{k}}\right]^{T}, v_{k}=$ $\left[y_{k, 1}, \ldots, y_{k, n_{k}}\right]^{T} \in \mathbb{C}^{*} \times \mathbb{C}^{n_{k}-1}$ and $B=\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ with

$$
B_{k}=\left[\begin{array}{cccc}
\mu_{B_{k}} & & & 0 \\
a_{2,1}^{(k)} & \ddots & & \\
\vdots & \ddots & \ddots & \\
a_{n_{k}, 1}^{(k)} & \ldots & a_{n_{k}, n_{k}-1}^{(k)} & \mu_{B_{k}}
\end{array}\right], 1 \leq k \leq r
$$

then $\mu_{B_{k}} x_{k, 1}=y_{k, 1}$, so $\mu_{B_{k}}=\frac{y_{k, 1}}{x_{k, 1}} \neq 0$, hence $B \in G L(n, \mathbb{C})$. Then $B(\widetilde{L}(u))=$ $\widetilde{L}(v)$. We conclude that $\operatorname{vect}(\widetilde{L}(v))=\mathbb{C}^{n}$. The converse is obvious.

Denote by:

- $\Psi_{x}: \operatorname{vect}\left(L_{G}\right) \longrightarrow \widetilde{E}(x) \subset \mathbb{C}^{n}$ the linear map given by $\Psi_{x}(A)=A x$.

Lemma 2.4. Let $G$ be an abelian subgroup of $\operatorname{Dif} f^{1}(\mathbb{C})$ such that $0 \in \operatorname{Fix}(G)$. Then $\widetilde{E}(x)$ is $L_{G}$-invariant and the linear map $\Psi_{x}: \operatorname{vect}\left(\left(L_{G}\right)_{/ \widetilde{E}(x)}\right) \longrightarrow \widetilde{E}(x)$ is an isomorphism, where $\left(L_{G}\right)_{/ \widetilde{E}(x)}$ is the restriction of $L_{G}$ on $\widetilde{E}(x)$.

Proof. By construction, $\widetilde{E}(x)$ is $L_{G}$-invariant and $\Psi_{x}$ is linear and surjective. Let $A \in \operatorname{Ker}\left(\Psi_{x}\right)$ and $y \in \operatorname{vect}\left(L_{G}(x)\right)$. Then there is $B \in \operatorname{vect}\left(\left(L_{G}\right)_{/ \widetilde{E}(x)}\right)$ such that $y=B x$. Now, $A y=A B x=B A x=0$, so $A=0$. Hence $\Psi_{x}$ is injective, so it is an isomorphism.

Corollary 2.5. Let $G$ be an abelian dominant subgroup of Diff ${ }^{1}(\mathbb{C})$ such that $0 \in \operatorname{Fix}(G)$. Then $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$.
Proof. Since $G$ is dominant, then there is $x \in \mathbb{C}^{n}$ such that $\widetilde{E}(x)=\mathbb{C}^{n}$. Then by lemma $2.4, \Psi_{x}: \operatorname{vect}\left(L_{G}\right) \longrightarrow \mathbb{C}^{n}$ is an isomorphism, so $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$.

Denote by:
$-\widetilde{\Omega}_{n}=\left\{x \in \mathbb{C}^{n}, \operatorname{dim}(\operatorname{vect}(\widetilde{L}(x)))=n\right\}$.
For an abelian subgroup $L$ of $L(n, \mathbb{C})$, it is called dominant if $\operatorname{vect}(L(x))=\mathbb{C}^{n}$ for some $x \in \mathbb{C}^{n}$, where $L(x)=\{A x, A \in G\}$.

Lemma 2.6. Let $\widetilde{L}$ be a dominant abelian subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. Then $\widetilde{\Omega}_{n}=V$.

Proof. Since $\widetilde{L}$ is dominant, then by Proposition 2.3, for every $u \in V, \operatorname{vect}(\widetilde{L}(u))=$ $\mathbb{C}^{n}$, hence $V \subset \widetilde{\Omega}_{n}$. For the converse, let $u \in \widetilde{\Omega}_{n}$, then $\operatorname{dim}(\operatorname{vect}(\widetilde{L}(u)))=n$. It follows that $u \in V$ because $\mathbb{C}^{n} \backslash V$ is a union of $r \widetilde{L}$-invariant vector spaces of dimension $n-1$. This completes the proof.

## 3. Proof of main results

Let $G$ be an abelian dominant subgroup of $C^{1}$-diffeomorphisms of $\mathbb{C}^{n}$ fixing 0 . Denote by:

- $C^{1}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$ the vector space of all $C^{1}$-differentiable maps of $\mathbb{C}^{n}$, it is well known that $C^{1}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$ is an algebra.
- $\mathcal{A}(G)$ be the algebra generated by $G$. (i.e. The smaller vector subspace of $C^{1}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$ containing $G$ and stable by compositions).
- For a fixed point $x \in \mathbb{C}^{n}$, we define the linear map $\Phi_{x}: \mathcal{A}(G) \longrightarrow \mathbb{C}^{n}$ given by $\Phi_{x}(f)=f(x), f \in \mathcal{A}(G)$.
- $E(x)=\Phi_{x}(\mathcal{A}(G))$.

Lemma 3.1. Let $G$ be an abelian subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$ and $x \in \mathbb{C}^{n}$. Then $E(x)$ is $G$-invariant.

Proof. Suppose that $E(x)$ is generated by $f_{1}(x), \ldots, f_{p}(x)$, with $f_{k} \in \mathcal{A}(G), k=$ $1, \ldots, p$. Let $y=\sum_{k=1}^{p} \alpha_{k} f_{k}(x) \in E(x)$ and $f \in G$, then $y=g(x)$, with $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \in$ $\mathcal{A}(G)$. Therefore $f(y)=f \circ g(x)=\Phi_{x}(f \circ g) \in E(x)$, since $f \circ g \in \mathcal{A}(G)$.

Lemma 3.2. Let $G$ be an abelian subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$, fixing 0 . Then $g(0)=0$ for every $g \in \mathcal{A}(G)$.

Proof. Let $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \subset \mathcal{A}(G)$ with $f_{k} \in G, \alpha_{k} \in \mathbb{C}$, so $g(0)=\sum_{k=1}^{p} \alpha_{k} f_{k}(0)=0$. Now, let $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{q} \in \mathcal{A}(G)$ such that $f_{k}(0)=g_{j}(0)=0,1 \leq k \leq m$, $1 \leq j \leq q$, so for every $\alpha_{1}, \ldots, \alpha_{q}, \beta_{1} \ldots, \beta_{m} \in \mathbb{C}$ we have

$$
\begin{aligned}
\left(\sum_{j=1}^{q} \beta_{j} g_{j}\right) \circ\left(\sum_{k=1}^{m} \alpha_{k} f_{k}\right)(0) & =\sum_{j=1}^{q} \beta_{j} g_{j}\left(\sum_{k=1}^{m} \alpha_{k} f_{k}(0)\right) \\
& =\sum_{j=1}^{q} \beta_{j} g_{j}(0) \\
& =0
\end{aligned}
$$

Since $\mathcal{A}(G)$ is the algebra generated by $G$, so it is stable by composition and by linear combinations, hence we obtain the results.

Denote by $\varphi: \mathcal{A}(G) \longrightarrow M_{n}(\mathbb{C})$ the linear map given by $\varphi(f)=D f_{0}$, for every $f \in \mathcal{A}(G)$. One observes that $L_{G}=\varphi(G)$.

Lemma 3.3. Let $G$ be an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$, fixing 0 . Then $L_{G}$ is an abelian subgroup of $G L(n, \mathbb{C})$.

Proof. Let $f, g \in G$, so $\varphi(f \circ g)=D(f \circ g)(0)=D f(g(0)) . D g(0)$. By Lemma 3.2, $g(0)=0$, so $\varphi(f \circ g)=D(f)(0) \cdot D g(0)=\varphi(f) \cdot \varphi(g)$. The proof is completed.

Denote by:

- $r(x)=\operatorname{dim}(E(x))$.
- $U_{k}=\left\{x \in \mathbb{C}^{n}, r(x) \geq k\right\}$, for every $k \in \mathbb{N}$.
- $r_{G}=\max \left\{r(x), \quad x \in \mathbb{C}^{n}\right\}$.

Proposition 3.4. Let $G$ be an abelian subgroup of Diff ${ }^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in$ Fix $(G)$. Then for every $0 \leq k \leq r_{G}, U_{k}$ is a $G$-invariant open subset of $\mathbb{C}^{n}$.

Proof. In the first, remark that the rank $r(y)$ is constant on any orbit $G(y), y \in$ $E(x)$. So $U_{k}$ is $G$-invariant for every $0 \leq k \leq r_{G}$. Let's show that $U_{t}$ is an open set: Let $y \in U_{t}$ and $r=r_{y}$, so $r \geq t$. Then there exist $f_{1}, \ldots, f_{r} \in G$ such that the $r$ vectors $f_{1}(y), \ldots, f_{r}(y)$ are linearly independent in $E(y)$. For all $z \in \mathbb{C}^{n}$, we consider the Gram's determinant

$$
\Delta(z)=\operatorname{det}\left(\left\langle f_{i}(z) \mid f_{j}(z)\right\rangle\right)_{1 \leq i, j \leq r}
$$

of the vectors $f_{1}(z), \ldots, f_{r}(z)$ where $\langle. \mid$.$\rangle denotes the scalar product in \mathbb{C}^{n}$. It is well known that these vectors are independent if and only if $\Delta(z) \neq 0$, in particular $\Delta(y) \neq 0$. Let

$$
V_{y}=\left\{z \in \mathbb{C}^{n}, \quad \Delta(z) \neq 0\right\}
$$

The set $V_{y}$ is open in $\mathbb{C}^{n}$, because the map $z \longmapsto \Delta(z)$ is continuous. Now $\Delta(y) \neq 0$, and so $y \in V_{y} \subset U_{k}$. The proof is completed.
3.1. Hamel basis and norm. [4] The main of this section is to justify the existence of a basis of every vector space. This result is trivial in the finite case, is in fact rather surprising when one thinks of infinite dimensionial vector spaces, and the definition of a basis. Recall that a Hamel basis or simply a basis of a vector space $E$ is a linearly independent set $\mathcal{B}$ (every finite subset of $\mathcal{B}$ is linearly independant) such that for each nonzero $x \in E$ there are $a_{1}, \ldots, a_{k} \in \mathcal{B}$ and nonzero scalars $\alpha_{1}, \ldots, \alpha_{k}$ (all uniquely determined) such that $x=\sum_{i=1}^{k} \alpha_{i} a_{i}$. The following theorem is equivalent to the axiom of choice family of axioms and theorems. In [4], C.D.Aliprantis and K.C.Border proved, in the following theorem, that Zorn's lemma implies that every vector space has a basis.

Theorem 3.5. ([4], Theorem 1.8) Every nontrivial vector space has a Hamel basis.
As a consequence, we found the important following results:
Theorem 3.6. Every nontrivial vector space has a norm called Hamel norm.

Proof. Let $E$ be a nontrivial vector space over $\mathbb{C}$. By Theorem 3.5, $E$ has a Hamel basis called $\mathcal{B}=\left(a_{i}\right)_{i \in I}$, for any set $I$ of indices (not necessary countable). In this basis, every vector $x \in E$ has the form $x=\sum_{i \in I_{x}} \alpha_{i} a_{i}$, where $\alpha_{i} \in \mathbb{C}$ and $I_{x} \subset I$ with finite cardinal. The family $\left(\alpha_{i}\right)_{i \in I}$ with $\alpha_{i}=0$ for every $i \in I \backslash I_{x}$, is called the coordinate of $x$. Now, define $\|x\|=\sum_{i \in I_{x}}\left|\alpha_{i}\right|$. It is easy to verify that $\|\cdot\|$ defines a norm on $E$ by using the coordinate in the Hamel basis. We say that $\|\cdot\|$ is the Hamel norm associated to the Hamel basis $\mathcal{B}$.

Remark that any vector for the Hamel basis is with norm 1.
3.2. Linear map and isomorphism. A subset $E \subset \mathbb{C}^{n}$ is called $G$-invariant if $f(E) \subset$ $E$ for any $f \in G$; that is $E$ is a union of orbits. For a fixed vector $x \in \mathbb{R}^{n} \backslash\{0\}$, denote by:

- $F_{x}$ is an algebraic supplement of $\operatorname{Ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$. It is easy to show that $p_{x}:=\operatorname{dim}\left(F_{x}\right)=\operatorname{dim}(E(x)) \leq n$ since $E(x)=\Phi_{x}(\mathcal{A}(G))$.
- $\mathcal{C}_{x}=\left(a_{1}, \ldots, a_{p_{x}}\right)$ is a basis of $F_{x}$.
- $\mathcal{B}_{x}=\left(b_{i}\right)_{i \in I}$ is a Hamel basis (Theorem 3.5) of $\operatorname{Ker}\left(\Phi_{x}\right)$.
- $\mathcal{E}_{x}=\left(\mathcal{C}_{x}, \mathcal{B}_{x}\right)$ is a Hamel basis of $\mathcal{A}(G)$. By Theorem 3.6, $\mathcal{A}(G)$ is provided with the Hamel norm associated to the basis $\mathcal{E}_{x}$.

Lemma 3.7. The linear map $\Phi_{x}: \mathcal{A}(G) \longrightarrow E(x)$ is continuous. In particular, $\operatorname{Ker}\left(\Phi_{x}\right)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since $\Phi_{x}$ is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of $\Phi_{x}$ on 0 . Let $f \in \mathcal{A}(G)$ and write $f=f_{1}+f_{2}$ with $f_{1} \in F_{x}$ and $f_{2} \in \operatorname{Ker}\left(\Phi_{x}\right)$. Set $\left(\alpha_{i}\right)_{1 \leq i \leq p_{x}}$ and $\left(\beta_{i}\right)_{i \in I}$ be respectively the coordinates of $f_{1}$ and $f_{2}$ in $\mathcal{C}_{x}$ and $\mathcal{B}_{x}$. Write $f=\sum_{i=1}^{p_{x}} \alpha_{i} a_{i}+\sum_{i \in I_{2}} \beta_{i} b_{i}$ where $I_{2} \subset I$ with finite cardinal.

We have $\|f\|=\sum_{i=1}^{p_{x}}\left|\alpha_{i}\right|+\sum_{i \in I_{2}}\left|\beta_{i}\right|$ and $b_{i}(x)=0$ for all $i \in I_{2}$. Therefore

$$
\begin{aligned}
\left\|\Phi_{x}(f)\right\|=\|f(x)\| & =\left\|\sum_{i=1}^{p_{x}} \alpha_{i} a_{i}(x)+\sum_{i \in I_{2}} \beta_{i} b_{i}(x)\right\| \\
& \leq \sum_{i=1}^{p_{x}}\left|\alpha_{i}\right|\left\|a_{i}(x)\right\| \\
& \leq\|f\| \sum_{i=1}^{p_{x}}\left\|a_{i}(x)\right\|
\end{aligned}
$$

Since $\sum_{i=1}^{p_{x}}\left\|a_{i}(x)\right\|$ is constant relative to $f$, then $\Phi_{x}$ is continuous.

Lemma 3.8. Suppose that $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. Then the linear map $\varphi: \mathcal{A}(G) \longrightarrow$ $\operatorname{vect}\left(L_{G}\right)$ is continuous. In particular, $\operatorname{Ker}(\varphi)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since $\varphi$ is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of $\varphi$ on 0 . Firstly, see that $\operatorname{cod}(\operatorname{Ker}(\varphi))=n$ is finite since $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. let $F$ be an algebraic supplement to $\operatorname{Ker}(\varphi)$ in $\mathcal{A}, \mathcal{C}^{\prime}=$ $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ and $\mathcal{B}^{\prime}=\left(b_{i}^{\prime}\right)_{i \in J}$ are respectively the Hamel basis of $F$ and $\operatorname{Ker}(\varphi)$ (Lemma 3.5). Let $f \in \mathcal{A}(G)$ and write $f=f_{1}+f_{2}$ with $f_{1} \in F$ and $f_{2} \in \operatorname{Ker}(\varphi)$. Set $\left(\alpha_{i}\right)_{1 \leq i \leq q}$ and $\left(\beta_{i}\right)_{i \in J}$ be respectively the coordinates of $f_{1}$ and $f_{2}$ in $\mathcal{C}^{\prime}$ and $\mathcal{B}^{\prime}$. Write $f=\sum_{i=1}^{n} \alpha_{i} a_{i}^{\prime}+\sum_{i \in I_{2}} \beta_{i} b_{i}^{\prime}$ where $I_{2} \subset j$ with finite cardinal. We have $\|f\|=\sum_{i=1}^{n}\left|\alpha_{i}\right|+\sum_{i \in I_{2}}\left|\beta_{i}\right|$ and $\varphi\left(b_{i}^{\prime}\right)=D b_{i}^{\prime}(0)=0$ for all $i \in I_{2}$. Therefore

$$
\begin{aligned}
\|\varphi(f)\|=\|D f(0)\| & =\left\|\sum_{i=1}^{n} \alpha_{i} D a_{i}^{\prime}(0)+\sum_{i \in I_{2}} \beta_{i} D b_{i}^{\prime}(0)\right\| \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|D a_{i}^{\prime}(0)\right\| \\
& \leq\|f\| \sum_{i=1}^{n}\left\|D a_{i}^{\prime}(0)\right\|
\end{aligned}
$$

Since $\sum_{i=1}^{n}\left\|D a_{i}^{\prime}(0)\right\|$ is constant relative to $f$, then $\varphi$ is continuous.

Lemma 3.9. ([6], 3.5) Let E be a topological vector space, and let $M$ be a closed subspace of finite codimension. Then $E=M \oplus N$ is a topological sum, for every algebraic complementary subspace $N$ of $M$.

Corollary 3.10. The algebraic sum $\mathcal{A}(G)=F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$ is topological. In particular, $F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$ and $\mathcal{A}(G)$ are topological isomorphic by the map: $\left(f_{1}, f_{2}\right) \longmapsto$ $f_{1}+f_{2}$.

Proof. By the Theorem 3.6, $\mathcal{A}(G)$ is a normed vector space so it is a topological vector space. By Lemma 3.7, $\Phi_{x}$ is continuous and so its kernel is closed vector space with finite codimension. The results follows directly by applying the Lemma 3.9 for $E=\mathcal{A}(G)$ and $M=\operatorname{Ker}\left(\Phi_{x}\right)$.

By Corollary 3.10, we can identify $\mathcal{A}(G)$ with $F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$, so every $f \in \mathcal{A}(G)$ is denoted by $f=\left(f_{1}, f_{2}\right)=f_{1}+f_{2}$ with $f_{1} \in F_{x}$ and $f_{2} \in \operatorname{Ker}\left(\Phi_{x}\right)$.

Lemma 3.11. Let $H$ and $K$ be two closed vector subspaces of $\mathcal{A}(G)$ such that $\operatorname{cod}(H)=\operatorname{cod}(K)=j \geq 1$. Let $\psi \in \mathcal{A}(G) \backslash(H \cup K)$. Then there exists a vector space $F$ of $\mathcal{A}(G)$, containing $\psi$ and satisfying $\mathcal{A}(G)=F \oplus H=F \oplus K$.

Proof. There are two cases;
Case 1: If $j=1$, then we take $F=\mathbb{C} \psi$.
Case 2: Suppose that $j \geq 2$. Denote by $H^{\prime}=H \oplus \mathbb{C} \psi$ and $K^{\prime}=K \oplus \mathbb{C} \psi$. Suppose that $H^{\prime} \neq K^{\prime}$ (otherwise, it is easy to take a comment supplement) and let $f_{1} \in H^{\prime} \backslash K^{\prime}$ and $g_{1} \in K^{\prime} \backslash H^{\prime}$, so $h_{1}=f_{1}+g_{1} \notin H^{\prime} \cup K^{\prime}$. Denote by $H_{1}=\mathbb{C} h_{1} \oplus H^{\prime}$ and $K_{1}=\mathbb{C} h_{1} \oplus K^{\prime}$. We establish two cases:

- If $H_{1}=K_{1}$, then any supplement $F$ of $H_{1}$ in $\mathcal{A}(G)$ is a supplement of $K_{1}$ in $\mathcal{A}(G)$, the proof follows then.
- If $H_{1} \neq K_{1}$, we take $f_{2} \in H_{1} \backslash K_{1}$ and $g_{2} \in K_{1} \backslash H_{1}$, so $h_{2}=f_{2}+g_{2} \notin H_{1} \cup K_{1}$. Denote by $H_{2}=\mathbb{C} h_{2} \oplus H_{1}$ and $K_{2}=\mathbb{C} h_{2} \oplus K_{1}$.

We repeat the same processes until $j-2$ times and we obtain:

- If $H_{j-2}=K_{j-2}$, then any supplement $F$ of $H_{j-2}$ in $\mathcal{A}(G)$ is a supplement of $K_{j-2}$ in $\mathcal{A}(G)$.
- If $H_{j-2} \neq K_{j-2}$, we take $f_{j-1} \in H_{j-2} \backslash K_{j-2}$ and $g_{j-1} \in K_{j-2} \backslash H_{j-2}$, so $h_{j-1}=$ $f_{j-1}+g_{j-1} \notin H_{j-2} \cup K_{j-2}$. Denote by $H_{j-1}=\mathbb{C} h_{j-1} \oplus H_{j-2}$ and $K_{j-1}=$ $\mathbb{C} h_{j-1} \oplus K_{j-2}$. We obtain then $H_{j-1}=K_{j-1}=\mathcal{A}(G)$. Hence the proof is completed by taking $F=\operatorname{vect}\left(\psi, h_{1}, \ldots, h_{j-1}\right)$.

Denote by $\widetilde{r}_{x}=\operatorname{dim}(\widetilde{E}(x))$.
Lemma 3.12. If $r(x)=\widetilde{r}_{x}$, then there exists a commune vector space $F_{x} \subset$ $\varphi^{-1}\left(L_{G}\right)$ supplement to $\operatorname{Ker}\left(\Phi_{x}\right)$ and to $\operatorname{ker}(\varphi)$ in $\mathcal{A}(G)$. (i.e $F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)=$ $\left.F_{x} \oplus \operatorname{Ker}(\varphi)=\mathcal{A}(G)\right)$.

Proof. Since $L_{G}$ is abelian so $\operatorname{vect}\left(L_{G}\right)$ is an abelian algebra and $\varphi$ is a morphism of algebra, then $\varphi^{-1}\left(L_{G}\right)$ is an algebra containing $G$. hence $\varphi^{-1}\left(L_{G}\right)=\mathcal{A}(G)$. Therefore any supplement of $\operatorname{Ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$ is contained in $\varphi^{-1}\left(L_{G}\right)$. Now by Lemma $3.8, \varphi$ is continuous. By Lemmas 3.7 and 3.8 both $\operatorname{Ker}\left(\Phi_{x}\right)$ and $\operatorname{Ker}(\varphi)$ are closed and since $\operatorname{cod}\left(\operatorname{Ker}\left(\Phi_{x}\right)\right)=\operatorname{cod}(\operatorname{Ker}(\varphi))=n$, then by lemma 3.11, there exists a commune supplement $F_{x}$ to $\operatorname{Ker}\left(\Phi_{x}\right)$ and to $\operatorname{ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$ containing $i d$ (identity map of $\mathbb{C}^{n}$ ), because $i d \in \mathcal{A}(G) \backslash \operatorname{Ker}\left(\Phi_{x}\right) \cup \operatorname{Ker}(\varphi)$.

Lemma 3.13. Then the linear map $\Phi_{x}: F_{x} \longrightarrow E(x)$ given by $\Phi_{x}(f)=f(x)$ is an isomorphism.

Proof. Here, $F_{x}$ is considered as a supplement to $\operatorname{Ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$. The proof follows directly from the fact that $\Phi_{x}$ is linear surjective and $\operatorname{dim}\left(F_{x}\right)=\operatorname{dim}(E(x))=$ $n$.

Lemma 3.14. If $r(x)=\widetilde{r}_{x}=n$, then the restriction $\varphi_{1}: F_{x} \longrightarrow \operatorname{vect}\left(L_{G}\right)$ of $\varphi$ from $F_{x}$ unto vect $\left(L_{G}\right)$ is an isomorphism.

Proof. Here, $F_{x}$ is considered as a supplement to $\operatorname{Ker}(\varphi)$ in $\mathcal{A}(G)$.The proof follows directly from the fact that $\varphi_{1}$ is linear surjective and $\operatorname{dim}\left(F_{x}\right)=\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$ (Corollary 2.5).

Lemma 3.15. If $r(x)=\widetilde{r}_{x}=n$, then the map $\varphi_{x}:=\widetilde{\Phi}_{x} \circ \varphi_{1} \circ \Phi_{x}^{-1}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ defined by $\varphi_{x}(f(x))=D f_{0}(x), f \in F_{x}$, is an isomorphism and satisfying:
(i) $\varphi_{x}(G(x))=L_{G}(x)$.
(ii) Let $y \in \mathbb{C}^{n}$ and $z=\varphi_{x}(y)$ then $\varphi_{x}(G(y))=L_{G}(z)$.
(iii) for every $y \in \overline{G(x)}$ we have $z=\varphi_{x}(y) \in \overline{L_{G}(x)}$.

Proof. By Lemma 3.12, we can assume that $F_{x}$ is a commune supplement to $\operatorname{Ker}\left(\Phi_{x}\right)$ and to $\operatorname{Ker}(\varphi)$ in $\mathcal{A}(G)$. Since $r(x)=\widetilde{r}_{x}=n$, then $E(x)=\widetilde{E}(x)=\mathbb{C}^{n}$.
(i) $\varphi_{x}$ is an isomorphisms, since $\varphi_{x}=\widetilde{\Phi}_{x} \circ \varphi_{1} \circ \Phi_{x}^{-1}$ and by Lemmas 3.14, 2.4 and 3.13 , it is composed by isomorphisms.

Let $f_{1}, \ldots, f_{r} \in \mathcal{A}(G)$ be the generator of $F_{x}$. So the restriction $\left(\Phi_{x}\right)_{/ F_{x}}$ (resp. $\left(\psi_{x}\right)_{/ F_{x}}$ ) of $\Phi_{x}$ (resp. $\psi_{x}$ ) on $F_{x}$ are bijective from $F_{x}$ to $\mathbb{C}^{n}$. Then $f_{1}(x), \ldots, f_{n}(x)$ generate $E(x)$ and $D f_{1}(0)(x), \ldots, D f_{n}(0)(x)$ generate $\mathbb{C}^{n}$. Now, let $f=\sum_{k=1}^{n} \alpha_{k} f_{k} \in F_{x}$, so $\varphi_{x}(f(x))=\sum_{k=1}^{n} \alpha_{k} D f_{k}(0)(x)=D f_{0}(x) \in L(x)$. It follows that $\varphi_{x}(G(x))=L_{G}(x)$.
(ii) Let $y \in E(x)$ and $z=\varphi_{x}(y)$. Let $f \in G$ and write $f=\sum_{k=1}^{n} \alpha_{k} f_{k}$, where $\left(f_{1}, \ldots, f_{n}\right)$ be a basis of $F_{x}$. Then by Lemma 3.2, $g(0)=0$ and so $\varphi_{x}(f(y))=$ $\varphi_{x}(f \circ g(x))=D f_{0} \cdot D g_{0}(x)=D f_{0}(z) \in L_{G}(z)$. It follows that $\varphi_{x}(G(y)) \subset L_{G}(z)$. Conversely, let $a \in L_{G}(z)$, so $a=D f_{0}(z)$ for some $f \in G$. Since $z=D g_{0}(x)$ and $g \in G$, so $a=D(f \circ g)_{0}(x)=\varphi_{x}(f \circ g)$. Hence $a \in \varphi_{x}(G(x))$.
(iii) Since $y \in \mathbb{C}^{n}$, there exists $g \in F_{x}$ such that $y=g(x)$, so $z=D g_{0}(x)$. By continuity of $\varphi_{x}$ and by (i), we have $z \in \varphi_{x}(\overline{G(x)}) \subset \overline{\varphi_{x}(G(x))}=\overline{L_{G}(x)}$.

Denote by:

- $\widetilde{\Omega}_{k}=\left\{y \in \mathbb{C}^{n}, \quad \widetilde{r}_{y} \geq k\right\}$, for every $0 \leq k \leq n$. By applying Lemma 3.11 given in [10] to the abelian linear group $L_{G}$, we found the following result:
Lemma 3.16. ([10], Lemma3.11) $\widetilde{\Omega}_{k}$ is a $L_{G}$-invariant dense open subset of $\mathbb{C}^{n}$.

Lemma 3.17. ( [10], Theorem 3.10) Let $x \in \widetilde{\Omega}_{n}$ then for every $y \in \overline{L_{G}(x)} \cap \widetilde{\Omega}_{n}$ we have $\overline{L_{G}(y)} \cap \widetilde{\Omega}_{n}=\overline{L_{G}(x)} \cap \widetilde{\Omega}_{n}$.

Lemma 3.18. (Under the above notations) Suppose that $r(x)=\widetilde{r}_{x}=n$. For every $x \in \Omega_{n}$, we have $\varphi_{x}\left(\Omega_{n}\right)=\widetilde{\Omega}_{n}$.

Proof. Let $y \in \Omega_{n}$ and $z=\varphi_{x}(y)$. By Lemma 3.15,(ii), $\varphi_{x}(G(y))=L_{G}(z)$. Since $\varphi_{x}$ is linear, then $\varphi_{x}(E(y))=\widetilde{E}(z)$, so $r(y)=\widetilde{r}_{z}=n$. It follows that $z \in \widetilde{\Omega}_{n}$. For the converse we use the same proof for $\varphi_{x}^{-1}$.

Proof of Theorem 1.1. Since $G$ is dominant, then there is $x \in \mathbb{C}^{n}$ such that $r(x)=$ $\widetilde{r}_{x}=n$. Let $y \in \overline{G(x)} \cap \Omega_{n}$. By Lemma 3.15, there exists an isomorphism $\varphi_{x}$ : $\mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ satisfying $\varphi_{x}(G(x))=L_{G}(x)$ and $\varphi_{x}(G(y))=L_{G}(z)$ with $z=\varphi_{x}(y)$. By Lemma 3.18, we have $\varphi_{x}\left(\Omega_{n}\right)=\widetilde{\Omega}_{n}$, so $z \in \varphi_{x}\left(\overline{G(x)} \cap_{n}\right)=\overline{L_{G}(x)} \cap \widetilde{\Omega}_{n}$. By Lemma 3.17, we have

$$
\begin{equation*}
\overline{L_{G}(z)} \cap \widetilde{\Omega}_{n}=\overline{L_{G}(x)} \cap \widetilde{\Omega}_{n} \tag{1}
\end{equation*}
$$

Therefore by (1) we obtain

$$
\begin{aligned}
\overline{G(x)} \cap \Omega_{n} & =\varphi_{x}^{-1}\left(\overline{L_{G}(x)}\right) \cap \varphi_{x}^{-1}\left(\widetilde{\Omega}_{n}\right) \\
& =\varphi_{x}^{-1}\left(\overline{L_{G}(x)} \cap \widetilde{\Omega}_{n}\right) \\
& \left.=\varphi_{x}^{-1}\left(\overline{L_{G}(z)}\right) \cap \widetilde{\Omega}_{n}\right) \\
& =\varphi_{x}^{-1}\left(\overline{L_{G}(z)}\right) \cap \varphi_{x}^{-1}\left(\widetilde{\Omega}_{n}\right) \\
& =\overline{G(y)} \cap \Omega_{n} .
\end{aligned}
$$

On the other hand, $U=\Omega_{n}=\varphi_{x}\left(\widetilde{\Omega}_{n}\right)$ and by Lemma $2.6, \widetilde{\Omega}_{n}=V$ which is connected and dense open set in $\mathbb{C}^{n}$, so is $U$ since $U=\varphi_{x}(V)$. This completes the proof.

Remark 3.19. As a consequence of the proof of Theorem 1.1, $U=\varphi_{x}(V)$, for a particular point $x \in \mathbb{C}^{n}$ satisfying $E(x)=\widetilde{E}(x)=\mathbb{C}^{n}$.

Proof of Corollary 1.2. Let $O$ be a dense orbit in $\mathbb{C}^{n}$ (i.e. $\bar{O}=\mathbb{C}^{n}$ ). Then for every $x \in O$, we have $r(x)=n$, so $O \subset U$ and $\bar{O} \cap U=U$. Since $O$ is minimal in $U$ (Theorem 1.1), then for every orbit $L \subset U$, we have $\bar{L} \cap U=\bar{O} \cap U$. Therefore $\bar{L}=\bar{O}=\mathbb{C}^{n}$.
3.3. The Theorem 1.1 in the dimension $n=1$. We can remove the condition $G$ is dominant in the Theorem 1.1, we obtain a global decomposition as follow:
Corollary 3.20. Let $G$ be an abelian subgroup of $\operatorname{Dif} f^{1}(\mathbb{C})$, such that $0 \in F i x(G)$. Then every orbit of $\mathbb{C} \backslash\{0\}$ is minimal in it.

Proof. Since $i d \in G$, then $i d \in L_{G}$ and so $\operatorname{dim}(E(1))=\operatorname{dim}(\widetilde{E}(1))=1$. On the other hand $V=\mathbb{C}^{*}$. The proof results directly from Theorem 1.1 and Remark 3.19, because $U=\varphi_{1}(V)=\mathbb{C}^{*}$.

## 4. Example in the dimension $\mathbf{n}=\mathbf{2}$

We give some examples of abelian subgroup of $\operatorname{Dif} f^{1}(\mathbb{C})$ which are near enough th linear group. Recall that $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.

Example 4.1. Let $\Gamma$ be the group abelian of all diffeomorphisms $f$ of $\mathbb{C}^{2}$ defined by $f(x, y)=(x, y+P(x)), P \in \mathbb{C}[X]$ and $G$ be a subgroup of $\Gamma$ generated by $f:(x, y) \longmapsto(x, y+P(x))$ and $g:(x, y) \longmapsto(x, y+Q(x))$ with $P, Q \in \mathbb{C}[X]$, $Q(0)=P(0)=0, P(1) \neq 0$ and $P^{\prime}(0) \neq 0$. Then every orbit is minimal in the open set $\mathbb{C}^{*} \times \mathbb{C}$.

Proof. We can easily verify that $G$ is abelian, $0 \in \operatorname{Fix}(G)$. In the begin, we have $f^{n} \circ g^{m}(x, y)=(x, y+n P(x)+m Q(x))$ for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$
\begin{equation*}
h(x, y)=(\alpha x, \beta y+R(x)) \quad \text { where } R \in \mathbb{C}[X] \tag{1}
\end{equation*}
$$

We have $D f_{0}=\left[\begin{array}{cc}1 & 0 \\ P^{\prime}(0) & 1\end{array}\right]$. Then $L_{G} \subset \mathbb{T}_{2}^{*}(\mathbb{C})$. Here $u_{0}=e_{1}=(1,0)$ then $\widetilde{E}\left(u_{0}\right)$ is generated by $e_{1}$ and $D f_{0}\left(u_{0}\right)=\left(1, P^{\prime}(0)\right)$, so $\operatorname{dim}\left(\widetilde{E}\left(u_{0}\right)\right)=2$, hence $\widetilde{E}\left(e_{1}\right)=\mathbb{C}^{2}$. On the other hand, $f\left(u_{0}\right)=[1, P(1)]^{T}$ and $i d\left(u_{0}\right)=[1,0]^{T}$, so $\operatorname{dim}\left(E\left(u_{0}\right)\right)=\operatorname{dim}\left(\widetilde{E}\left(u_{0}\right)\right)=2$ since $P(1) \neq 0$, so $G$ is dominant. By Lemma 2.6, $\widetilde{\Omega}_{2}=\mathbb{C}^{*} \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{e_{1}}\left(\Omega_{2}\right)=\widetilde{\Omega}_{2}$, then

$$
\begin{equation*}
\Omega_{2}=\varphi_{e_{1}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right) \tag{2}
\end{equation*}
$$

By Theorem 1.1, every orbit of $\Omega_{2}$ is minimal in it. Now let's prove that $\varphi_{e_{1}}^{-1}\left(\mathbb{C}^{*} \times\right.$ $\mathbb{C})=\mathbb{C}^{*} \times \mathbb{C}$ : Recall that $\varphi_{e_{1}}(x, y)=\widetilde{\Phi}_{e_{1}} \circ \varphi \circ \Phi_{e_{1}}^{-1}(x, y)$ (see Lemma 3.15). Let $(x, y) \in \mathbb{C}^{*} \times \mathbb{C}$. Then there exists $h \in \mathcal{A}(G)$ such that $(x, y)=D h_{0} e_{1}$. Using (2) and by integration, $h$ has the form $h:(s, t) \longrightarrow(x s, \beta t+y s+s R(s)+\gamma)$, with $R \in \mathbb{C}[X]$, then $h\left(e_{1}\right)=(x, y+R(1))$ and $D h_{0} e_{1}=(x, y)$. Therefore

$$
\begin{aligned}
\varphi_{e_{1}}^{-1}(x, y) & =\Phi_{e_{1}} \circ \varphi^{-1} \circ \widetilde{\Phi}_{e_{1}}^{-1}(x, y) \\
& =\Phi_{e_{1}} \circ \varphi^{-1}\left(D h_{0}\right) \\
& =\Phi_{e_{1}}(h) \\
& =h\left(e_{1}\right) \\
& =(x, y+R(1)+\gamma) \in \mathbb{C}^{*} \times \mathbb{C}
\end{aligned}
$$

Conversely, Let $(a, b) \in \mathbb{C}^{*} \times \mathbb{C}$ then there is $h \in \mathcal{A}(G)$ such that $h\left(e_{1}\right)=(a, b)$. By (2), $h$ has the form $h(s, t)=(a s, \beta t+b s+s R(s)+\gamma)$, then $D h_{0}\left(e_{1}\right)=(a, b+$ $\left.R(1)+R^{\prime}(1)\right)$. Therefore

$$
\begin{aligned}
\varphi_{e_{1}}(a, b) & =\widetilde{\Phi}_{e_{1}} \circ \varphi \circ \Phi_{e_{1}}^{-1}(a, b) \\
& =\widetilde{\Phi}_{e_{1}} \circ \varphi(h) \\
& =\Phi_{e_{1}}\left(D h_{0}\right) \\
& =h\left(e_{1}\right) \\
& =\left(a, b+R(1)+R^{\prime}(1)\right) \in \mathbb{C}^{*} \times \mathbb{C}
\end{aligned}
$$

It follows that $\varphi_{e_{1}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right)=\mathbb{C}^{*} \times \mathbb{C}$.

Example 4.2. Let $G$ be the abelian group generated by $f(x, y)=\left(x^{q}, y+x^{k}\right)$ and $g(x, y)=\left(x^{q^{\prime}}, y+x^{k^{\prime}}\right) q$ and $q^{\prime}$ are odd integers, $k, k^{\prime} \in \mathbb{N}$. Then every orbit of $\mathbb{C}^{*} \times \mathbb{C}$ is minimal in it.

Proof. We can easily verify that $G$ is abelian, $0 \in \operatorname{Fix}(G)$. In the begin, we have $\left.f^{n}(x, y)=\left(x^{n q}, y+x^{k}+\sum_{i=1}^{n} x^{i q k}\right)\right)$ and so

$$
f^{n} \circ g^{m}(x, y)=\left(x^{n q m q^{\prime}}, \quad y+x^{k}+\sum_{i=1}^{n} x^{i q k}+x^{n q k^{\prime}}+\sum_{j=1}^{m} x^{n q j q^{\prime} k^{\prime}}\right)
$$

for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$
\begin{equation*}
h(x, y)=(\alpha x, \beta y+R(x)) \quad \text { where } R \in \mathbb{C}[X] \tag{1}
\end{equation*}
$$

We have $D i d_{0}=i d$ and $D f_{0}=D g_{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $L_{G} \subset \mathbb{T}_{1}^{*}(\mathbb{C}) \oplus \mathbb{T}_{1}^{*}(\mathbb{C})$.
Here $u_{0}=e_{1}+e_{2}=(1,1)$ then $\widetilde{E}\left(u_{0}\right)$ is generated by $e_{1}$ and $D f_{0}\left(u_{0}\right)=(0,1)$, so $\operatorname{dim}\left(\widetilde{E}\left(u_{0}\right)\right)=2$, hence $\widetilde{E}\left(u_{0}\right)=\mathbb{C}^{2}$. By Lemma 2.6, $\widetilde{\Omega}_{2}=\mathbb{C}^{*} \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{u_{0}}\left(\Omega_{2}\right)=\widetilde{\Omega}_{2}$, then

$$
\begin{equation*}
\Omega_{2}=\varphi_{u_{0}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right) \tag{2}
\end{equation*}
$$

On the other hand, $f\left(u_{0}\right)=[1,2]^{T}$ and $i d\left(u_{0}\right)=[1,1]^{T}$, so $\operatorname{dim}\left(E\left(u_{0}\right)\right)=$ $\operatorname{dim}\left(\widetilde{E}\left(u_{0}\right)\right)=2$, so $G$ is dominant. By Theorem 1.1, every orbit of $\Omega_{2}$ is minimal in it. As in the proof of example 4.1 , we prove that $\varphi_{u_{0}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right)=\mathbb{C}^{*} \times \mathbb{C}$.

Question1 : Is there an abelian subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$ fixing some point having no minimal set in $\mathbb{C}^{n} \backslash \operatorname{Fix}(G)$ ?

Question2 : An abelian subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$ fixing some point and satiffying $r(x)=\widetilde{r}_{x}$ for every $x \in \mathbb{C}^{n}$, is-it conjugate to a linear group?

## References

1. A. Ayadi.A and H. Marzougui, Dynamic of Abelian subgroups of $G L(n, C)$ : a structure Theorem, Geometria Dedicata, 116(2005) 111-127.
2. Ayadi.A and Marzougui.H, Dense orbits for abelian subgroups of $G L(n, C)$, Foliations 2005: World Scientific,Hackensack,NJ, (2006), 47-69.
3. A.Ayadi, H.Marzougui and Y.Ndao, On the dynamic of abelian groups of affine maps on $\mathbb{C}^{n}$ and $\mathbb{R}^{n}$, preprint, ictp, IC/2009/062.
4. C.D.Aliprantis and K.C.Border, Infinite dimensional analysis:A Hitchhiker's Guide, $3^{r}$ d Edition, Springer-Verlag, Heidelberg and New York, 2006.
5. F.Saponga, Localisation des points fixes communs pour des difféomorphismes commutants du plan, Bull Braz Math Soc, New seies 42 (3), (2010), 373-397.
6. H.H.Schaefer and M.P.Wolff, Topological vector spaces, Graduate texts in mathematics, 1999.
7. J. FRANKS, M. HANDEL and K. PARWANI, Fixed points of abelian actions on $S^{2}$, Ergodic Theory and Dynamical Systems, 27, (2007) , 1557-1581
8. M.Waldschmidt, Topologie des points rationnels, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
9. P.W.Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980c.
10. S.Chihi, On the minimal orbits of an abelian linear action, Differential Geometry - Dynamical Systems, Vol.12, (2010), 61-72.

THE ACTION OF ABELIAN SUBGROUP OF Diff $f^{1}\left(\mathbb{C}^{n}\right)$ FIXING A POINT, ON $\mathbb{C}^{n} 13$
11. V.Bergelson, M.Misiurewicz and S.Senti, Affine actions of a free semigroup on the real line, Ergod. Th. and Dynam. Sys. vol 26, (2006), 1285-1305.

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada

E-mail address: yahiandao@yahoo.fr
Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com


[^0]:    2000 Mathematics Subject Classification. 37C85, 47A16, 37E30, 37C25.
    Key words and phrases. Diffeomorphisms, abelian, group, orbit, action.
    This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR1515.

