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Abstract. In this paper, we study the action of any abelian subgroup G of
Diff1(Cn) on Cn fixing 0. Suppose that there is x ∈ Cn, having an orbit which

generates Cn and also Ẽ(x) = Cn, where Ẽ(x) is the vector space generated
by {Df0x, f ∈ G}. We prove the existence of a G-invariant open set U , dense
in Cn, in which every orbit is minimal. Moreover, if G has a dense orbit in Cn

then every orbit of U is dense in Cn.

1. Introduction

Denote by Diff1(Cn) the group of all C1-diffemorphisms of Cn. Let G be an
abelian subgroup of Diff1(Cn) fixing 0. There is a natural action G×Cn −→ Cn.
(f, x) 7−→ f(x). For a point x ∈ Cn, denote by G(x) = {f(x), f ∈ G} ⊂ Cn the
orbit of G through x. A subset E ⊂ Cn is called G-invariant if f(E) ⊂ E for any

f ∈ G; that is E is a union of orbits. Denote by E (resp.
◦

E ) the closure (resp.
interior) of E.

A subset E of Cn is called a minimal set of G if E is closed in Cn, non empty,
G-invariant and has no proper subset with these properties. It is equivalent to say
that E is a G-invariant set such that every orbit contained in E is dense in it. If Ω
is a G-invariant set in C

n, we say that E is a minimal set in Ω if it is a minimal set
of the restriction G/Ω of G to Ω. An orbit O ⊂ Ω is called minimal in Ω if O∩Ω is

a minimal set in Ω. This means that for every x ∈ O∩Ω we have O∩Ω = G(x)∩Ω.
For example, a closed orbit in Ω is minimal in Ω. In particular, every point in
Fix(G) is minimal in Cn.

Many authors have studied the existence of commune fixed point of any abelian
group of diffeomorphisms. In [5], S.Frimo proved that if G is an abelian subgroup
of Diff1(R2) generated by any family of commuting diffeomorphisms of the plane
wich are C1-close to the identity and having a bounded orbit then Fix(G) 6= ∅. In
[7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated
abelian subgroup of Diff1

+(R
2) and if there is a compact G-invariant set C ⊂ R

2,
then Fix(G) is non-empty.

This paper can be viewed as a generalization of the results given in [1] and [3].
We use a construction analogous to that given by S.Chihi in [10] for abelian linear
group.
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Denote by LG = {Df0, f ∈ G}, it is an abelian subgroup of GL(n,C) (see
Lemma 3.3) and vect(LG) be the vector space generated by LG. For every u ∈ Cn,
denote by:
- LG(u) = {Au, A ∈ LG} the orbit of u defined by the natural action of the linear
group LG on C

n.

- Ẽ(u) be the vector space generated by LG(u).
-A(G) be the algebra generated by G.
- E(x) = {f(x), f ∈ A(G)}.

The group G is called dominant if there is a point x ∈ Cn such that each set

G(x) and LG(x) generates Cn (i.e. G is dominant if Ẽ(x) = E(x) = Cn for some
x ∈ Cn).

We generalize the result given in [1] for abelian subgroup of GL(n,C) in the
following Theorem:

Theorem 1.1. Let G be an abelian dominant subgroup of Diff1(Cn), such that
0 ∈ Fix(G). Then there exist a G-invariant connected open set U , dense in Cn in
which every orbit is minimal.

We have the following corollaries.

Corollary 1.2. Let G be an abelian dominant subgroup of Diff1(Cn), such that
0 ∈ Fix(G). If G has a dense orbit then every orbit in U is dense in Cn.

This paper is organized as follows: In Section 2, we give some results for abelian
linear group. The Section 3 is devoted to prove the main results. In the section 4,
we give two examples for n = 2.

2. Some results for abelian linear group

LetMn(C) be the set of complex square matrices of order n ≥ 1, and letGL(n,C)
be the group of the invertible matrices of Mn(C). Denote by
- Tn(C) the set of all lower-triangular matrices over C, of order n and with only
one eigenvalue.
- T∗

n(C) = Tn(C)∩GL(n,C) (i.e. the subset of matrix of Tn(C) having a non zero
eigenvalue), it is a subgroup of GL(n,C).
- C∗ = C\{0} and N0 = N\{0}.

Let r ∈ N∗ and η = (n1, . . . , nr) ∈ Nr
0 such that

r∑
i=1

ni = n. Denote by:

- Kη,r(C) = {M = diag(T1, . . . , Tr) ∈Mn(C) : Tk ∈ Tnk
(C), k = 1, . . . , r} .

- K∗
η,r(C) = Kη,r(C) ∩GL(n,C), it is a subgroup of GL(n,C).

- vT the transpose of a vector v ∈ Cn.
- En = (e1, . . . , en) the standard basis of Cn.
-In the identity matrix on C

n.
- u0 = [e1,1, . . . , er,1]

T ∈ Cn, where ek,1 = [1, 0, . . . , 0]T ∈ Cnk , 1 ≤ k ≤ r.
For any subset E of Cn (resp. Mn(C)), denote by vect(E) the vector space

generated by E.

In [2], the authors proved the following Proposition:
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Proposition 2.1. ([2], Proposition 6.1.) Let L be an abelian subgroup of GL(n,C),

then there exists P ∈ GL(n,C) such that L̃ = P−1LP is a subgroup of K∗
η,r(C), for

some 1 ≤ r ≤ n and η ∈ Nr
0.

For such matrix P define v0 = Pu0. Let L be an abelian subgroup of K∗
η,r(C).

denote by:

- V =
r∏

k=1

C∗ × Cnk−1. One has Cn\V =
r⋃

k=1

Hk, where

Hk =
{
u = [u1, . . . , ur]

T , uk ∈ {0} × C
nk−1, uj ∈ C

nj , j 6= k
}
.

See that each Hk is a L-invariant vector space of dimension n− 1.

Lemma 2.2. ([10], Proposition 3.1) Let L be an abelian subgroup of GL(n,C) and
u ∈ Cn. Then for every v ∈ vect(L(u)) there exist B ∈ vect(L) such that Bu = v.

Proposition 2.3. Let L̃ be an abelian linear subgroup of K∗
η,r(C) with η = (n1, . . . , nr).

Then the following assertions are equivalent:

(i) L̃ is dominant.

(ii) For every u ∈ V , we have vect(L̃(u)) = Cn. In particular, vect(L̃(u0)) = Cn.

Proof. Suppose that L̃ is dominant, then there is u ∈ Cn such that vect(L̃(v)) = Cn.

Remark that u ∈ V , since Cn\V is a union of r L̃-invariant vector spaces with di-

mensions n − 1 and let v ∈ V . By applying lemma 2.2 on L̃, there exist B ∈
vect(L̃) such that Bu = v. As Kη,r(C) is a vector space then V ect(L) ⊂ Kη,r(C).
Write u = [u1, . . . , ur]

T , v = [v1, . . . , vr]
T with uk = [xk,1, . . . , xk,nk

]T , vk =
[yk,1, . . . , yk,nk

]T ∈ C∗ × Cnk−1 and B = diag(B1, . . . , Br) with

Bk =




µBk
0

a
(k)
2,1

. . .
...

. . .
. . .

a
(k)
nk,1

. . . a
(k)
nk,nk−1 µBk



, 1 ≤ k ≤ r

then µBk
xk,1 = yk,1, so µBk

=
yk,1

xk,1
6= 0, hence B ∈ GL(n,C). Then B(L̃(u)) =

L̃(v). We conclude that vect(L̃(v)) = Cn. The converse is obvious. �

Denote by:

- Ψx : vect(LG) −→ Ẽ(x) ⊂ Cn the linear map given by Ψx(A) = Ax.

Lemma 2.4. Let G be an abelian subgroup of Diff1(C) such that 0 ∈ Fix(G).

Then Ẽ(x) is LG-invariant and the linear map Ψx : vect((LG)/Ẽ(x)) −→ Ẽ(x) is

an isomorphism, where (LG)/Ẽ(x) is the restriction of LG on Ẽ(x).
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Proof. By construction, Ẽ(x) is LG-invariant and Ψx is linear and surjective. Let
A ∈ Ker(Ψx) and y ∈ vect(LG(x)). Then there is B ∈ vect((LG)/Ẽ(x)) such that

y = Bx. Now, Ay = ABx = BAx = 0, so A = 0. Hence Ψx is injective, so it is an
isomorphism. �

Corollary 2.5. Let G be an abelian dominant subgroup of Diff1(C) such that
0 ∈ Fix(G). Then dim(vect(LG)) = n.

Proof. Since G is dominant, then there is x ∈ Cn such that Ẽ(x) = Cn. Then by
lemma 2.4, Ψx : vect(LG) −→ C

n is an isomorphism, so dim(vect(LG)) = n. �

Denote by:

- Ω̃n = {x ∈ Cn, dim(vect(L̃(x))) = n}.
For an abelian subgroup L of L(n,C), it is called dominant if vect(L(x)) = Cn

for some x ∈ C
n, where L(x) = {Ax, A ∈ G}.

Lemma 2.6. Let L̃ be a dominant abelian subgroup of K∗
η,r(C). Then Ω̃n = V .

Proof. Since L̃ is dominant, then by Proposition 2.3, for every u ∈ V , vect(L̃(u)) =

Cn, hence V ⊂ Ω̃n. For the converse, let u ∈ Ω̃n, then dim(vect(L̃(u))) = n.

It follows that u ∈ V because Cn\V is a union of r L̃-invariant vector spaces of
dimension n− 1. This completes the proof. �

3. Proof of main results

Let G be an abelian dominant subgroup of C1-diffeomorphisms of Cn fixing 0.
Denote by:
- C1(Cn,Cn) the vector space of all C1-differentiable maps of Cn, it is well known
that C1(Cn,Cn) is an algebra.
- A(G) be the algebra generated by G. (i.e. The smaller vector subspace of
C1(Cn,Cn) containing G and stable by compositions).
- For a fixed point x ∈ Cn, we define the linear map Φx : A(G) −→ Cn given by
Φx(f) = f(x), f ∈ A(G).
- E(x) = Φx(A(G)).

Lemma 3.1. Let G be an abelian subgroup of Diff1(Cn) and x ∈ C
n. Then E(x)

is G-invariant.

Proof. Suppose that E(x) is generated by f1(x), . . . , fp(x), with fk ∈ A(G), k =

1, . . . , p. Let y =
p∑

k=1

αkfk(x) ∈ E(x) and f ∈ G, then y = g(x), with g =
p∑

k=1

αkfk ∈

A(G). Therefore f(y) = f ◦ g(x) = Φx(f ◦ g) ∈ E(x), since f ◦ g ∈ A(G). �

Lemma 3.2. Let G be an abelian subgroup of Diff1(Cn), fixing 0. Then g(0) = 0
for every g ∈ A(G).
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Proof. Let g =
p∑

k=1

αkfk ⊂ A(G) with fk ∈ G, αk ∈ C, so g(0) =
p∑

k=1

αkfk(0) = 0.

Now, let f1, . . . , fm, g1, . . . , gq ∈ A(G) such that fk(0) = gj(0) = 0, 1 ≤ k ≤ m,
1 ≤ j ≤ q, so for every α1, . . . , αq, β1 . . . , βm ∈ C we have




q∑

j=1

βjgj


 ◦

(
m∑

k=1

αkfk

)
(0) =

q∑

j=1

βjgj

(
m∑

k=1

αkfk(0)

)

=

q∑

j=1

βjgj(0)

= 0

Since A(G) is the algebra generated by G, so it is stable by composition and by
linear combinations, hence we obtain the results. �

Denote by ϕ : A(G) −→ Mn(C) the linear map given by ϕ(f) = Df0, for every
f ∈ A(G). One observes that LG = ϕ(G).

Lemma 3.3. Let G be an abelian subgroup of Diff1(Cn), fixing 0. Then LG is an
abelian subgroup of GL(n,C).

Proof. Let f, g ∈ G, so ϕ(f ◦ g) = D(f ◦ g)(0) = Df(g(0)).Dg(0). By Lemma 3.2,
g(0) = 0, so ϕ(f ◦ g) = D(f)(0).Dg(0) = ϕ(f).ϕ(g). The proof is completed. �

Denote by:
- r(x) = dim(E(x)).
- Uk = {x ∈ Cn, r(x) ≥ k}, for every k ∈ N.
- rG = max{r(x), x ∈ Cn}.

Proposition 3.4. Let G be an abelian subgroup of Diff1(Cn), such that 0 ∈
Fix(G). Then for every 0 ≤ k ≤ rG, Uk is a G-invariant open subset of Cn.

Proof. In the first, remark that the rank r(y) is constant on any orbit G(y), y ∈
E(x). So Uk is G-invariant for every 0 ≤ k ≤ rG. Let’s show that Ut is an open
set: Let y ∈ Ut and r = ry, so r ≥ t. Then there exist f1, . . . , fr ∈ G such that
the r vectors f1(y), . . . , fr(y) are linearly independent in E(y). For all z ∈ C

n, we
consider the Gram’s determinant

∆(z) = det (〈fi(z) | fj(z)〉)1≤i,j≤r

of the vectors f1(z), . . . , fr(z) where 〈.|.〉 denotes the scalar product in Cn. It is
well known that these vectors are independent if and only if ∆(z) 6= 0, in particular
∆(y) 6= 0. Let

Vy = {z ∈ C
n, ∆(z) 6= 0}

The set Vy is open in C
n, because the map z 7−→ ∆(z) is continuous. Now ∆(y) 6= 0,

and so y ∈ Vy ⊂ Uk. The proof is completed. �
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3.1. Hamel basis and norm. [4] The main of this section is to justify the exis-
tence of a basis of every vector space. This result is trivial in the finite case, is in
fact rather surprising when one thinks of infinite dimensionial vector spaces, and
the definition of a basis. Recall that a Hamel basis or simply a basis of a vector
space E is a linearly independent set B (every finite subset of B is linearly inde-
pendant) such that for each nonzero x ∈ E there are a1, . . . , ak ∈ B and nonzero

scalars α1, . . . , αk (all uniquely determined) such that x =
k∑

i=1

αiai. The following

theorem is equivalent to the axiom of choice family of axioms and theorems. In
[4], C.D.Aliprantis and K.C.Border proved, in the following theorem, that Zorn’s
lemma implies that every vector space has a basis.

Theorem 3.5. ([4], Theorem 1.8) Every nontrivial vector space has a Hamel basis.

As a consequence, we found the important following results:

Theorem 3.6. Every nontrivial vector space has a norm called Hamel norm.

Proof. Let E be a nontrivial vector space over C. By Theorem 3.5, E has a Hamel
basis called B = (ai)i∈I , for any set I of indices (not necessary countable). In this
basis, every vector x ∈ E has the form x =

∑
i∈Ix

αiai, where αi ∈ C and Ix ⊂ I

with finite cardinal. The family (αi)i∈I with αi = 0 for every i ∈ I\Ix, is called
the coordinate of x. Now, define ‖x‖ =

∑
i∈Ix

|αi|. It is easy to verify that ‖.‖ defines

a norm on E by using the coordinate in the Hamel basis. We say that ‖.‖ is the
Hamel norm associated to the Hamel basis B. �

Remark that any vector for the Hamel basis is with norm 1.

3.2. Linear map and isomorphism. A subset E ⊂ Cn is called G-invariant if f(E) ⊂
E for any f ∈ G; that is E is a union of orbits. For a fixed vector x ∈ Rn\{0},
denote by:
- Fx is an algebraic supplement of Ker(Φx) in A(G). It is easy to show that
px := dim(Fx) = dim(E(x)) ≤ n since E(x) = Φx(A(G)).
- Cx = (a1, . . . , apx

) is a basis of Fx.
- Bx = (bi)i∈I is a Hamel basis (Theorem 3.5) of Ker(Φx).
- Ex = (Cx,Bx) is a Hamel basis of A(G). By Theorem 3.6, A(G) is provided with
the Hamel norm associated to the basis Ex.

Lemma 3.7. The linear map Φx : A(G) −→ E(x) is continuous. In particular,
Ker(Φx) is a closed subspace of A(G).

Proof. Since Φx is linear and A(G) is a normed vector space (Lemma 3.6), we will
verify the continuity of Φx on 0. Let f ∈ A(G) and write f = f1 + f2 with f1 ∈ Fx

and f2 ∈ Ker(Φx). Set (αi)1≤i≤px
and (βi)i∈I be respectively the coordinates of f1

and f2 in Cx and Bx. Write f =
px∑
i=1

αiai+
∑
i∈I2

βibi where I2 ⊂ I with finite cardinal.
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We have ‖f‖ =
px∑
i=1

|αi|+
∑
i∈I2

|βi| and bi(x) = 0 for all i ∈ I2. Therefore

‖Φx(f)‖ = ‖f(x)‖ =

∥∥∥∥∥

px∑

i=1

αiai(x) +
∑

i∈I2

βibi(x)

∥∥∥∥∥

≤

px∑

i=1

|αi|‖ai(x)‖

≤ ‖f‖

px∑

i=1

‖ai(x)‖

Since
px∑
i=1

‖ai(x)‖ is constant relative to f , then Φx is continuous. �

Lemma 3.8. Suppose that dim(vect(LG)) = n. Then the linear map ϕ : A(G) −→
vect(LG) is continuous. In particular, Ker(ϕ) is a closed subspace of A(G).

Proof. Since ϕ is linear and A(G) is a normed vector space (Lemma 3.6), we will
verify the continuity of ϕ on 0. Firstly, see that cod(Ker(ϕ)) = n is finite since
dim(vect(LG)) = n. let F be an algebraic supplement to Ker(ϕ) in A, C′ =
(a′1, . . . , a

′
n) and B′ = (b′i)i∈J are respectively the Hamel basis of F and Ker(ϕ)

(Lemma 3.5). Let f ∈ A(G) and write f = f1 + f2 with f1 ∈ F and f2 ∈ Ker(ϕ).
Set (αi)1≤i≤q and (βi)i∈J be respectively the coordinates of f1 and f2 in C′ and

B′. Write f =
n∑

i=1

αia
′
i +

∑
i∈I2

βib
′
i where I2 ⊂ j with finite cardinal. We have

‖f‖ =
n∑

i=1

|αi|+
∑
i∈I2

|βi| and ϕ(b′i) = Db′i(0) = 0 for all i ∈ I2. Therefore

‖ϕ(f)‖ = ‖Df(0)‖ =

∥∥∥∥∥

n∑

i=1

αiDa
′
i(0) +

∑

i∈I2

βiDb
′
i(0)

∥∥∥∥∥

≤
n∑

i=1

|αi|‖Da
′
i(0)‖

≤ ‖f‖
n∑

i=1

‖Da′i(0)‖

Since
n∑

i=1

‖Da′i(0)‖ is constant relative to f , then ϕ is continuous. �

Lemma 3.9. ([6], 3.5) Let E be a topological vector space, and let M be a closed
subspace of finite codimension. Then E = M ⊕ N is a topological sum, for every
algebraic complementary subspace N of M .

Corollary 3.10. The algebraic sum A(G) = Fx ⊕Ker(Φx) is topological. In par-
ticular, Fx⊕Ker(Φx) and A(G) are topological isomorphic by the map: (f1, f2) 7−→
f1 + f2.
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Proof. By the Theorem 3.6, A(G) is a normed vector space so it is a topological
vector space. By Lemma 3.7, Φx is continuous and so its kernel is closed vector space
with finite codimension. The results follows directly by applying the Lemma 3.9
for E = A(G) and M = Ker(Φx). �

By Corollary 3.10, we can identify A(G) with Fx ⊕Ker(Φx), so every f ∈ A(G) is
denoted by f = (f1, f2) = f1 + f2 with f1 ∈ Fx and f2 ∈ Ker(Φx).

Lemma 3.11. Let H and K be two closed vector subspaces of A(G) such that
cod(H) = cod(K) = j ≥ 1. Let ψ ∈ A(G)\(H ∪ K). Then there exists a vector
space F of A(G), containing ψ and satisfying A(G) = F ⊕H = F ⊕K.

Proof. There are two cases;
Case 1: If j = 1, then we take F = Cψ.
Case 2: Suppose that j ≥ 2. Denote by H ′ = H ⊕ Cψ and K ′ = K ⊕ Cψ.
Suppose that H ′ 6= K ′ (otherwise, it is easy to take a comment supplement) and let
f1 ∈ H ′\K ′ and g1 ∈ K ′\H ′, so h1 = f1+ g1 /∈ H ′∪K ′. Denote by H1 = Ch1⊕H ′

and K1 = Ch1 ⊕K ′. We establish two cases:
- If H1 = K1, then any supplement F of H1 in A(G) is a supplement of K1 in
A(G), the proof follows then.
- If H1 6= K1, we take f2 ∈ H1\K1 and g2 ∈ K1\H1, so h2 = f2 + g2 /∈ H1 ∪K1.
Denote by H2 = Ch2 ⊕H1 and K2 = Ch2 ⊕K1.

We repeat the same processes until j − 2 times and we obtain:
- If Hj−2 = Kj−2, then any supplement F of Hj−2 in A(G) is a supplement of
Kj−2 in A(G).
- If Hj−2 6= Kj−2, we take fj−1 ∈ Hj−2\Kj−2 and gj−1 ∈ Kj−2\Hj−2, so hj−1 =
fj−1 + gj−1 /∈ Hj−2 ∪ Kj−2. Denote by Hj−1 = Chj−1 ⊕ Hj−2 and Kj−1 =
Chj−1⊕Kj−2. We obtain thenHj−1 = Kj−1 = A(G). Hence the proof is completed
by taking F = vect(ψ, h1, . . . , hj−1). �

Denote by r̃x = dim(Ẽ(x)).

Lemma 3.12. If r(x) = r̃x, then there exists a commune vector space Fx ⊂
ϕ−1(LG) supplement to Ker(Φx) and to ker(ϕ) in A(G). (i.e Fx ⊕ Ker(Φx) =
Fx ⊕Ker(ϕ) = A(G)).

Proof. Since LG is abelian so vect(LG) is an abelian algebra and ϕ is a morphism
of algebra, then ϕ−1(LG) is an algebra containing G. hence ϕ−1(LG) = A(G).
Therefore any supplement of Ker(Φx) in A(G) is contained in ϕ−1(LG). Now by
Lemma 3.8, ϕ is continuous. By Lemmas 3.7 and 3.8 both Ker(Φx) and Ker(ϕ)
are closed and since cod(Ker(Φx)) = cod(Ker(ϕ)) = n, then by lemma 3.11, there
exists a commune supplement Fx to Ker(Φx) and to ker(Φx) in A(G) containing
id (identity map of Cn), because id ∈ A(G)\Ker(Φx) ∪Ker(ϕ). �

Lemma 3.13. Then the linear map Φx : Fx −→ E(x) given by Φx(f) = f(x) is
an isomorphism.
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Proof. Here, Fx is considered as a supplement to Ker(Φx) in A(G). The proof fol-
lows directly from the fact that Φx is linear surjective and dim(Fx) = dim(E(x)) =
n. �

Lemma 3.14. If r(x) = r̃x = n, then the restriction ϕ1 : Fx −→ vect(LG) of ϕ
from Fx unto vect(LG) is an isomorphism.

Proof. Here, Fx is considered as a supplement to Ker(ϕ) in A(G).The proof follows
directly from the fact that ϕ1 is linear surjective and dim(Fx) = dim(vect(LG)) = n
(Corollary 2.5). �

Lemma 3.15. If r(x) = r̃x = n, then the map ϕx := Φ̃x ◦ ϕ1 ◦ Φ−1
x : Cn −→ Cn

defined by ϕx(f(x)) = Df0(x), f ∈ Fx, is an isomorphism and satisfying:
(i) ϕx(G(x)) = LG(x).
(ii) Let y ∈ Cn and z = ϕx(y) then ϕx(G(y)) = LG(z).

(iii) for every y ∈ G(x) we have z = ϕx(y) ∈ LG(x).

Proof. By Lemma 3.12, we can assume that Fx is a commune supplement to

Ker(Φx) and to Ker(ϕ) in A(G). Since r(x) = r̃x = n, then E(x) = Ẽ(x) = Cn.

(i) ϕx is an isomorphisms, since ϕx = Φ̃x ◦ ϕ1 ◦ Φ−1
x and by Lemmas 3.14, 2.4

and 3.13, it is composed by isomorphisms.
Let f1, . . . , fr ∈ A(G) be the generator of Fx. So the restriction (Φx)/Fx

(resp. (ψx)/Fx
) of Φx (resp. ψx) on Fx are bijective from Fx to Cn. Then

f1(x), . . . , fn(x) generate E(x) and Df1(0)(x), . . . , Dfn(0)(x) generate Cn. Now,

let f =
n∑

k=1

αkfk ∈ Fx, so ϕx(f(x)) =
n∑

k=1

αkDfk(0)(x) = Df0(x) ∈ L(x). It follows

that ϕx(G(x)) = LG(x).

(ii) Let y ∈ E(x) and z = ϕx(y). Let f ∈ G and write f =
n∑

k=1

αkfk, where

(f1, . . . , fn) be a basis of Fx. Then by Lemma 3.2, g(0) = 0 and so ϕx(f(y)) =
ϕx(f ◦ g(x)) = Df0.Dg0(x) = Df0(z) ∈ LG(z). It follows that ϕx(G(y)) ⊂ LG(z).
Conversely, let a ∈ LG(z), so a = Df0(z) for some f ∈ G. Since z = Dg0(x) and
g ∈ G, so a = D(f ◦ g)0(x) = ϕx(f ◦ g). Hence a ∈ ϕx(G(x)).

(iii) Since y ∈ C
n, there exists g ∈ Fx such that y = g(x), so z = Dg0(x). By

continuity of ϕx and by (i) , we have z ∈ ϕx(G(x)) ⊂ ϕx(G(x)) = LG(x). �

Denote by:

- Ω̃k = {y ∈ Cn, r̃y ≥ k}, for every 0 ≤ k ≤ n. By applying Lemma 3.11 given in
[10] to the abelian linear group LG, we found the following result:

Lemma 3.16. ([10], Lemma3.11) Ω̃k is a LG-invariant dense open subset of Cn.

Lemma 3.17. ( [10], Theorem 3.10) Let x ∈ Ω̃n then for every y ∈ LG(x) ∩ Ω̃n

we have LG(y) ∩ Ω̃n = LG(x) ∩ Ω̃n.
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Lemma 3.18. (Under the above notations) Suppose that r(x) = r̃x = n. For every

x ∈ Ωn, we have ϕx(Ωn) = Ω̃n.

Proof. Let y ∈ Ωn and z = ϕx(y). By Lemma 3.15,(ii), ϕx(G(y)) = LG(z). Since

ϕx is linear, then ϕx(E(y)) = Ẽ(z), so r(y) = r̃z = n. It follows that z ∈ Ω̃n. For
the converse we use the same proof for ϕ−1

x . �

Proof of Theorem 1.1. Since G is dominant, then there is x ∈ Cn such that r(x) =

r̃x = n. Let y ∈ G(x) ∩ Ωn. By Lemma 3.15, there exists an isomorphism ϕx :
Cn −→ Cn satisfying ϕx(G(x)) = LG(x) and ϕx(G(y)) = LG(z) with z = ϕx(y).

By Lemma 3.18, we have ϕx(Ωn) = Ω̃n, so z ∈ ϕx(G(x)∩n) = LG(x) ∩ Ω̃n. By
Lemma 3.17, we have

LG(z) ∩ Ω̃n = LG(x) ∩ Ω̃n (1).

Therefore by (1) we obtain

G(x) ∩ Ωn = ϕ−1
x (LG(x)) ∩ ϕ

−1
x (Ω̃n)

= ϕ−1
x (LG(x) ∩ Ω̃n)

= ϕ−1
x (LG(z)) ∩ Ω̃n)

= ϕ−1
x (LG(z)) ∩ ϕ

−1
x (Ω̃n)

= G(y) ∩ Ωn.

On the other hand, U = Ωn = ϕx(Ω̃n) and by Lemma 2.6, Ω̃n = V which is
connected and dense open set in Cn , so is U since U = ϕx(V ). This completes the
proof. �

Remark 3.19. As a consequence of the proof of Theorem 1.1, U = ϕx(V ), for a

particular point x ∈ C
n satisfying E(x) = Ẽ(x) = C

n.

Proof of Corollary 1.2. Let O be a dense orbit in Cn (i.e. O = Cn). Then for every
x ∈ O, we have r(x) = n, so O ⊂ U and O ∩ U = U . Since O is minimal in U
(Theorem 1.1), then for every orbit L ⊂ U ,we have L ∩ U = O ∩ U . Therefore
L = O = Cn. �

3.3. The Theorem 1.1 in the dimension n = 1. We can remove the condition
G is dominant in the Theorem 1.1, we obtain a global decomposition as follow:

Corollary 3.20. Let G be an abelian subgroup of Diff1(C), such that 0 ∈ Fix(G).
Then every orbit of C\{0} is minimal in it.

Proof. Since id ∈ G, then id ∈ LG and so dim(E(1)) = dim(Ẽ(1)) = 1. On the
other hand V = C∗. The proof results directly from Theorem 1.1 and Remark 3.19,
because U = ϕ1(V ) = C∗. �
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4. Example in the dimension n=2

We give some examples of abelian subgroup of Diff1(C) which are near enough
th linear group. Recall that C∗ = C\{0}.

Example 4.1. Let Γ be the group abelian of all diffeomorphisms f of C2 defined
by f(x, y) = (x, y + P (x)), P ∈ C[X ] and G be a subgroup of Γ generated by
f : (x, y) 7−→ (x, y + P (x)) and g : (x, y) 7−→ (x, y + Q(x)) with P,Q ∈ C[X ],
Q(0) = P (0) = 0, P (1) 6= 0 and P ′(0) 6= 0. Then every orbit is minimal in the
open set C∗ × C.

Proof. We can easily verify that G is abelian, 0 ∈ Fix(G). In the begin, we have
fn ◦ gm(x, y) = (x, y + nP (x) +mQ(x)) for every n,m ∈ Z. Then every h ∈ A(G)
has the form:

h(x, y) = (αx, βy +R(x)) where R ∈ C[X ] (1)

We have Df0 =

[
1 0

P ′(0) 1

]
. Then LG ⊂ T

∗
2(C). Here u0 = e1 = (1, 0) then

Ẽ(u0) is generated by e1 and Df0(u0) = (1, P ′(0)), so dim(Ẽ(u0)) = 2, hence

Ẽ(e1) = C2. On the other hand, f(u0) = [1, P (1)]T and id(u0) = [1, 0]T , so

dim(E(u0)) = dim(Ẽ(u0)) = 2 since P (1) 6= 0, so G is dominant. By Lemma 2.6,

Ω̃2 = C∗ × C and by Lemma 3.18, we have ϕe1(Ω2) = Ω̃2, then

Ω2 = ϕ−1
e1 (C∗ × C) (2)

By Theorem 1.1, every orbit of Ω2 is minimal in it. Now let’s prove that ϕ−1
e1 (C∗×

C) = C
∗ × C: Recall that ϕe1(x, y) = Φ̃e1 ◦ ϕ ◦ Φ−1

e1 (x, y) (see Lemma 3.15). Let
(x, y) ∈ C∗ × C. Then there exists h ∈ A(G) such that (x, y) = Dh0e1. Using (2)
and by integration, h has the form h : (s, t) −→ (xs, βt + ys + sR(s) + γ), with
R ∈ C[X ], then h(e1) = (x, y +R(1)) and Dh0e1 = (x, y). Therefore

ϕ−1
e1 (x, y) = Φe1 ◦ ϕ

−1 ◦ Φ̃−1
e1 (x, y)

= Φe1 ◦ ϕ
−1(Dh0)

= Φe1(h)

= h(e1)

= (x, y +R(1) + γ) ∈ C
∗ × C

Conversely, Let (a, b) ∈ C∗ × C then there is h ∈ A(G) such that h(e1) = (a, b).
By (2), h has the form h(s, t) = (as, βt+ bs+ sR(s) + γ), then Dh0(e1) = (a, b+
R(1) +R′(1)). Therefore

ϕe1(a, b) = Φ̃e1 ◦ ϕ ◦ Φ−1
e1 (a, b)

= Φ̃e1 ◦ ϕ(h)

= Φe1(Dh0)

= h(e1)

= (a, b+R(1) +R′(1)) ∈ C
∗ × C

It follows that ϕ−1
e1 (C∗ × C) = C

∗ × C. �
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Example 4.2. Let G be the abelian group generated by f(x, y) = (xq, y+xk) and

g(x, y) = (xq
′

, y + xk
′

) q and q′ are odd integers, k, k′ ∈ N. Then every orbit of
C∗ × C is minimal in it.

Proof. We can easily verify that G is abelian, 0 ∈ Fix(G). In the begin, we have

fn(x, y) = (xnq, y + xk +
n∑

i=1

xiqk)) and so

fn ◦ gm(x, y) =


xnqmq′ , y + xk +

n∑

i=1

xiqk + xnqk
′

+

m∑

j=1

xnqjq
′k′




for every n,m ∈ Z. Then every h ∈ A(G) has the form:

h(x, y) = (αx, βy +R(x)) where R ∈ C[X ] (1)

We have Did0 = id and Df0 = Dg0 =

[
0 0
0 1

]
. Then LG ⊂ T∗

1(C) ⊕ T∗
1(C).

Here u0 = e1 + e2 = (1, 1) then Ẽ(u0) is generated by e1 and Df0(u0) = (0, 1),

so dim(Ẽ(u0)) = 2, hence Ẽ(u0) = C2. By Lemma 2.6, Ω̃2 = C∗ × C and by

Lemma 3.18, we have ϕu0
(Ω2) = Ω̃2, then

Ω2 = ϕ−1
u0

(C∗ × C) (2)

On the other hand, f(u0) = [1, 2]T and id(u0) = [1, 1]T , so dim(E(u0)) =

dim(Ẽ(u0)) = 2, so G is dominant. By Theorem 1.1, every orbit of Ω2 is minimal
in it. As in the proof of example 4.1, we prove that ϕ−1

u0
(C∗ × C) = C∗ × C. �

Question1 : Is there an abelian subgroup of Diff1(Cn) fixing some point having
no minimal set in Cn\Fix(G)?

Question2 : An abelian subgroup of Diff1(Cn) fixing some point and satiffying
r(x) = r̃x for every x ∈ Cn, is-it conjugate to a linear group?
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