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Abstract. In this paper, we study the action of any abelian subgroup G of
Diff1(Cn) on Cn. Suppose that 0 ∈ F ix(G) and dim(vect(LG)) = n, where
vect(LG) is the vector space generated by LG = {Df0, f ∈ G}. We prove the
existence of a decreasing finite sequence F0, F1, . . . , Fq of invariant closed sets
such that Ωj = Fj\Fj−1 is an open subset(for the relative topology) of Fj in
which every orbit is minimal. Moreover, if G has a dense orbit in Cn then
every orbit of Ωq is dense in Cn.

1. Introduction

Denote by Diff1(Cn) the group of all C1-diffemorphisms of Cn. Let G be an
abelian subgroup of Diff1(Cn), such that 0 ∈ Fix(G) and dim(vect(LG)) = n,
where vect(LG) is the vector space generated by LG = {Df(0), f ∈ G} and
Fix(G) = {x ∈ Cn : f(x) = x, ∀f ∈ G} be the global fixed point set of G. There
is a natural action G×Cn −→ Cn. (f, x) 7−→ f(x). For a point x ∈ Cn, denote by
G(x) = {f(x), f ∈ G} ⊂ Cn the orbit of G through x. A subset E ⊂ Cn is called
G-invariant if f(E) ⊂ E for any f ∈ G; that is E is a union of orbits. Denote by E

(resp.
◦

E ) the closure (resp. interior) of E.

A subset E of Cn is called a minimal set of G if E is closed in Cn, non empty,
G-invariant and has no proper subset with these properties. It is equivalent to say
that E is a G-invariant set such that every orbit contained in E is dense in it. If Ω
is a G-invariant set in Cn, we say that E is a minimal set in Ω if it is a minimal set
of the restriction G/Ω of G to Ω. An orbit O ⊂ Ω is called minimal in Ω if O∩Ω is

a minimal set in Ω. This means that for every x ∈ O∩Ω we have O∩Ω = G(x)∩Ω.
For example, a closed orbit in Ω is minimal in Ω. In particular, every point in
Fix(G) is minimal in Cn.

Many authors have studied the existence of commune fixed point of any abelian
group of diffeomorphisms. In [5], S.Frimo proved that if G is an abelian subgroup
of Diff1(R2) generated by any family of commuting diffeomorphisms of the plane
wich are C1-close to the identity and having a bounded orbit then Fix(G) 6= ∅. In
[7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated
abelian subgroup of Diff1

+(R
2) and if there is a compact G-invariant set C ⊂ R2,

then Fix(G) is non-empty.
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15.

1



2 YAHYA N’DAO AND ADLENE AYADI

This paper can be viewed as a generalization of the results given in [3] whose
generalize the structure’s theorem given in [1] and it uses a construction analogous
to that given by S.Chihi in [10] for abelian linear group.

Our principal results can be stated as follows:

Denote by LG = {Df0, f ∈} and vect(LG) be the vector space generated by
LG. We generalize the result given in [1] for abelian subgroup of GL(n,C):

Theorem 1.1 (Structure’s Theorem1). Let G be an abelian subgroup of Diff1(Cn),
such that 0 ∈ Fix(G) and dim(vect(LG)) = n. Then there exist a finite increasing
sequence of G-invariant closed subsets of Cn, F0 ⊂ · · · ⊂ Fq, 1 ≤ q ≤ n, with the
following properties:

(i) F0 = ∅, Fq = C
n\{0} and C

n =
q⋃

j=1

Ωj, where Ωj = Fj\Fj−1.

(ii) Every orbit of Ωj is minimal in it.

Under the hypothesis of Theorem 1.1, denote by U = Ωq = Cn\Fq−1. We have
the following corollaries.

Corollary 1.2. Let G be an abelian subgroup of Diff1(Cn), such that 0 ∈ Fix(G)
and dim(vect(LG)) = n. If G has a dense orbit then every orbit in U is dense in
Cn.

Corollary 1.3. If G has a locally dense orbit O in Cn and C is a connected
component of U meeting O then every orbit meeting C is dense in it.

For every x ∈ Cn, denote by:
- LG(x) = {Ax, A ∈ LG} the orbit of x defined by the natural action of the linear
group LG on Cn.

- Ẽ(x) be the vector space generated by LG(x).
Another version of the Structure’s theorem is given by:

Theorem 1.4 (Structure’s Theorem2). Let G be an abelian subgroup of Diff1(Cn),

such that 0 ∈ Fix(G). If there exists x ∈ Cn with Ẽ(x) = Cn, then there exist a
finite increasing sequence of G-invariant closed subsets of Cn, F0 ⊂ · · · ⊂ Fq,
1 ≤ q ≤ n, with the following properties:

(i) F0 = ∅, Fq = Cn\{0} and Cn =
q⋃

j=1

Ωj, where Ωj = Fj\Fj−1.

(ii) Every orbit of Ωj is minimal in it.

In the second Theorem, we prove that the condition dim(vect(LG)) = n can be

replaced by Ẽ(x) = C
n for some x ∈ C

n and so the Corllaries 1.2 and 1.3 remains
valid.

This paper is organized as follows: In Section 2, we give some results for abelian
linear group. The Section 3 is devoted to prove the main results. In the section 4,
we give two examples for n = 2.
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2. Some results for abelian linear group

Denote by Mn(C) the set of complex square matrices of order n ≥ 1, and
GL(n,C) the group of the invertible matrices of Mn(C).
- Tn(C) the set of all lower-triangular matrices over C, of order n and with only
one eigenvalue.
- T∗

n(C) = Tn(C)∩GL(n,C) (i.e. the subset of matrix of Tn(C) having a non zero
eigenvalue), it is a subgroup of GL(n,C).
-Dn(C) the set of diagonal matrix of Mn(C).
- C∗ = C\{0} and N0 = N\{0}.

Let r ∈ N∗ and η = (n1, . . . , nr) ∈ Nr
0 such that

r∑
i=1

ni = n. Denote by:

- Kη,r(C) = {M = diag(T1, . . . , Tr) ∈Mn(C) : Tk ∈ Tnk
(C), k = 1, . . . , r} .

- K∗
η,r(C) = Kη,r(C) ∩GL(n,C), it is a subgroup of GL(n,C).

- vT the transpose of a vector v ∈ C
n.

- En = (e1, . . . , en) the standard basis of Cn.
-In the identity matrix on Cn.

Denote by:
- u0 = [e1,1, . . . , er,1]

T ∈ Cn, where ek,1 = [1, 0, . . . , 0]T ∈ Cnk , 1 ≤ k ≤ r.

- e(k) = [0Cn1 , . . . , 0Cnk−1 , eTk,1, 0Cnk+1 , . . . , 0Cnr ]T , 1 ≤ k ≤ r.

For a vector v ∈ Cn, we write v = ℜ(v) + iℑ(v), where ℜ(v) and ℑ(v) ∈ Rn.

In [2], the authors proved the following

Proposition 2.1. ([2], Proposition 6.1.) Let L be an abelian subgroup of GL(n,C),

then there exists P ∈ GL(n,C) such that L̃ = P−1LP is a subgroup of K∗
η,r(C), for

some 1 ≤ r ≤ n and η ∈ Nr
0.

For such matrix P define v0 = Pu0.

Let L be an abelian subgroup of K∗
η,r(C). denote by:

- (ek,1, . . . , ek,nk
) be the canonical basis of Cnk , for every k = 1, . . . , r.

- Lk = {Ak, A = diag(A1, . . . , Ar) ∈ L}.
- If L ⊂ Tn(C) denote by FL = vect{(A− µAIn)ei, A ∈ L, 1 ≤ i ≤ n− 1}.
- In general, if L ⊂ K∗

η,r(C), denote by FLk
= vect{(Ak−µAk

Ink
)ek,i, Ak ∈ Lk, 1 ≤

i ≤ nk − 1}.

Lemma 2.2. ([2],Theorem 5.2) Let L be an abelian subgroup of K∗
η,r(C). Assume

that dim(FLk
) = nk − 1, k = 1, . . . , r. Then there exists a linear injective map

ρ : Cn −→ Kη,r(C) such that:
i) L ⊂ ρ(Cn).
ii) For every v ∈ Cn, ρ(v)u0 = v.
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Lemma 2.3. Let L̃ be an abelian linear subgroup of K∗
η,r(C) with η = (n1, . . . , nr).

If dim(vect(L̃)) = n, then dim(FL̃k
) = nk − 1 for every k = 1, . . . , r.

Proof. Since dim(vect(L̃)) = n then dim(vect(L̃k)) = nk, k = 1, . . . , r. To show

the Lemma for each L̃k, we suppose that L̃ is an abelian subgroup of T∗
n(C).We

proceed by induction on the dimension n ≥ 1:

- For n = 1, L̃ ⊂ C∗ and F1 = {0}, so dim(F1) = n− 1 = 0.

- Suppose the property is true until dimension n−1 and let L̃ be an abelian subgroup

of T∗
n(C). Every A ∈ L̃ is written in the form:

A =

[
A1 0
TA µA

]
, with A1 ∈ T

∗
n−1(C), TA ∈M1,n−1(C)

and µA be the only eigenvalue of A. Consider the set L̃1 = {A1, A ∈ L̃}. It is clear

that L̃1 is an abelian subgroup of T∗
n−1(C). We can verify that dim(vect(L̃1)) =

n−1, since dim(vect(L̃)) = n. By applying the induction property on L̃1, we obtain

dim(FL̃1) = n − 2, where FL̃1 = vect((A1 − µAIn−1)e
1
i , A ∈ L̃, k = 1, . . . , n − 2}

and (e11, . . . , e
1
n−1) be the canonical basis of Cn−1. Now,if dim(FL̃) < n − 1, then

dim(FL̃) = n− 2. Let (v11 , . . . , v
1
n−2) be a basis of FL̃1 and denote by vk = (v1k, 0)

for each k. We can assume that for any matrix A ∈ L̃, TA = 0 leaving to change

the canonical basis of Cn by the basis (v1, . . . , vn−2, en−1, en), because FL̃1 is L̃1-

invariant. Let θ : Tn−1(C) −→ Tn(C) given by θ(A1) =

[
A1 0
0 µA1

]
is linear

injective map such that L̃ = θ(L̃1), so vect(L̃) = θ(vect(L̃1)). It follows that

dim(vect(L̃)) = n− 1 6= n, a contradiction. �

Lemma 2.4. Let L be an abelian linear subgroup of GL(n,C). Then dim(vect(L)) =
n if and only if dim(vect(L(v0))) = n.

Proof. Firstly, by Proposition 2.1, suppose that L ⊂ K∗
η,r(C) and so v0 = u0. Since

dim(vect(L)) = n then dim(vect(Lk)) = nk, k = 1, . . . , r.
Suppose that dim(vect(L)) = n, then by Lemma 2.3, dim(FLk

) = nk − 1, k =
1, . . . , r. By Lemma 2.2, there exists a linear injective map ρ : Cn −→ Kη,r(C) such
that:
i) L ⊂ ρ(Cn).
ii) For every v ∈ Cn, ρ(v)u0 = v.

LetM (1), . . . ,M (n) ∈ L be the generators of vect(L). By (i), there exist v1, . . . , vn ∈
Cn such that ρ(vi) = M (i) for each i. By (ii), vi = ρ(vi)u0 = M (i)u0 ∈ L(u0). It
follows that v1, . . . , vn generate vect(L(u0)). Since ρ is injective andM

(1), . . . ,M (n)

are free, then (v1, . . . , vn) is a basis of vect(L(u0)) and so vect(L(u0)) = Cn.

Conversely, suppose that dim(vect(LG(u0))) = n, so dim(vect(Lk(ek,1)) = nk,
where ek,1 = [1, 0, . . . , 0]T ∈ Cnk and Lk := (LG)k for every k = 1, . . . , r. It fol-
lows that dim(FLk

) = nk−1. We repeat the same proof, as in above, by using the
Lemma 2.2. �
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Denote by:

- Ψx : vect(LG) −→ Ẽ(x) ⊂ Cn the linear map given by Ψx(A) = Ax.

Lemma 2.5. Let G be an abelian subgroup of Diff1(C) such that 0 ∈∈ Fix(G)

and dim(vect(LG)) = n. Then Ẽ(x) is LG-invariant and the linear map Ψx :

vect((LG)/Ẽ(x)) −→ Ẽ(x) is an isomorphism., where (LG)/Ẽ(x) is the restriction of

LG on Ẽ(x).

Proof. By construction, Ẽ(x) is LG-invariant and Ψx is linear and surjective. Let
A ∈ Ker(Ψx) and y ∈ vect(LG(x)). Then there is B ∈ vect((LG)/Ẽ(x)) such that

y = Bx. Now, Ay = ABx = BAx = 0, so A = 0. �

Let L̃ be an abelian subgroup of K∗
η,r(C). Denote by:

- Ω̃n = {x ∈ Cn, dim(vect(L̃(x))) = n}.

- Ṽ =
r∏

k=1

C∗ × Cnk−1.

Lemma 2.6. For every x ∈ Ṽ there is P ∈ K∗
η,r(C) such that x = Pu0.

Proof. Write x = (x1, . . . , xr) with xk = (xk,1, . . . , xk,nk
) for each k. Let P =

diag(P1, . . . , Pr) such that Pk =




xk,1

xk,2
. . . 0

... 0
. . .

...
...

. . .
. . .

xk,nk
0 . . . 0 xk,1




∈ T∗
nk
(C), since

x ∈ Ṽ , so xk,1 6= 0 for all k. It follows that x = Pu0, since Pkek,1 = xk. �

Lemma 2.7. Let L̃ be an abelian subgroup of K∗
η,r(C) such that dim(vect(L̃)) = n.

Then Ω̃n = Ṽ .

Proof. Firstly, remark that u0 ∈ Ω̃n since dim(vect(L̃) = n and by Lemma 2.4,

dim(vect(L̃(u0)) = n. Let x ∈ Ṽ . By Lemma 2.6, there is P ∈ K∗
η,r(C) such

that x = Pu0. Denote by L = P−1L̃P , so L ⊂ K∗
η,r(C) and dim(vect(L)) = n,

hence by applying Lemma 2.4 on L, we have dim(vect(L(u0)) = n. Now, L̃(x) =

PLP−1(x) = PL(u0), then vect(L̃(x)) = P (vect(L(u0)), so dim(vect(L̃(x)) = n,

hence x ∈ Ω̃n.

Conversely, let x ∈ Ω̃n, so dim(vect(L̃(x)) = n. Since Cn\Ṽ =
r⋃

k=1

H̃k, where

H̃k = {y = (y1, . . . , yr), yk ∈ {0} × C
nk−1, yi ∈ C

ni , for every i 6= k}.
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By the form of K∗
η,r(C), we can verify, that each H̃k is L̃-invariant, so x /∈ Hk

because dim(Hk) = n− 1. It follows that x ∈ Ṽ . �

3. Proof of main results

Lemma 3.1. Let G be an abelian subgroup of Diff1(Cn) and x ∈ C
n. Then E(x)

is G-invariant.

Proof. Suppose that E(x) is generated by f1(x), . . . , fp(x), with fk ∈ A(G), k =

1, . . . , p. Let y =
p∑

k=1

αkfk(x) ∈ E(x) and f ∈ G, then y = g(x), with g =
p∑

k=1

αkfk ∈

A(G). Therefore f(y) = f ◦ g(x) = Φx(f ◦ g) ∈ E(x), since f ◦ g ∈ A(G). �

Lemma 3.2. Let G be an abelian subgroup of Diff1(Cn), r ≥ 1 such that 0 ∈
Fix(G). Then g(0) = 0 for every g ∈ A(G).

Proof. Let g =
p∑

k=1

αkfk ⊂ A(G) with fk ∈ G, αk ∈ C, so g(0) =
p∑

k=1

αkfk(0) = 0.

Now, let f1, . . . , fm, g1, . . . , gq ∈ A(G) such that fk(0) = gj(0) = 0, 1 ≤ k ≤ m,
1 ≤ j ≤ q, so for every α1, . . . , αq, β1 . . . , βm ∈ C we have




q∑

j=1

βjgj


 ◦

(
m∑

k=1

αkfk

)
(0) =

q∑

j=1

βjgj

(
m∑

k=1

αkfk(0)

)

=

q∑

j=1

βjgj(0)

= 0

Since A(G) is the algebra generated by G, so it is stable by composition and by
linear combinations, hence we obtain the results. �

Denote by ϕ : A(G) −→ Mn(C) the linear map given by ϕ(f) = Df0, for every
f ∈ A(G). Then LG = ϕ(G).

Lemma 3.3. Let G be an abelian subgroup of Diff1(Cn), such that 0 ∈ Fix(G).
Then LG is an abelian subgroup of GL(n,C).

Proof. Let f, g ∈ G, so ϕ(f ◦ g) = D(f ◦ g)(0) = Df(g(0)).Dg(0). By Lemma 3.2,
g(0) = 0, so ϕ(f ◦ g) = D(f)(0).Dg(0) = ϕ(f).ϕ(g). The proof is completed. �

Denote by:
- Ut = {x ∈ C

n, r(x) ≥ t}, for every t ∈ N.
- rG = max{r(x), x ∈ Cn}.

Proposition 3.4. Let G be an abelian subgroup of Diff1(Cn), r ≥ 1 such that
0 ∈ Fix(G). Then for every 0 ≤ t ≤ rG, Ut is a G-invariant open subset of Cn.
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Proof of Proposition 3.4. In the first, remark that the rank r(y) is constant on any
orbit G(y), y ∈ E(x). So Ut is G-invariant for every 0 ≤ t ≤ rG. Let’s show that Ut

is an open set: Let y ∈ Ut and r = ry, so r ≥ t. Then there exist f1, . . . , fr ∈ F (y)
such that the r vectors f1(y), . . . , fr(y) are linearly independent in E(y). For all
z ∈ Cn, we consider the Gram’s determinant

∆(z) = det (〈fi(z) | fj(z)〉)1≤i,j≤r

of the vectors f1(z), . . . , fr(z) where 〈.|.〉 denotes the scalar product in Cn. It is
well known that these vectors are independent if and only if ∆(z) 6= 0, in particular
∆(y) 6= 0. Let

Vy = {z ∈ C
n, ∆(z) 6= 0}

The set Vy is open in C
n, because the map z 7−→ ∆(z) is continuous. Now ∆(y) 6= 0,

and so y ∈ Vy ⊂ Ut. The proof is completed. �

3.1. Hamel basis and norm. The main of this section is to justify the existence of
a basis of every vector space. This result is trivial in the finite case, is in fact rather
surprising when one thinks of infinite dimensionial vector spaces, and the definition
of a basis. Recall that a Hamel basis or simply a basis of a vector space E is a
linearly independent set B (every finite subset of B is linearly independant) such that
for each nonzero x ∈ E there are a1, . . . , ak ∈ B and nonzero scalars α1, . . . , αk (all

uniquely determined) such that x =
k∑

i=1

αiai. The following theorem is equivalent

to the axiom of choice family of axioms and theorems. In [4], C.D.Aliprantis and
K.C.Border proved, in the following theorem, that Zorn’s lemma implies that every
vector space has a basis.

Theorem 3.5. ([4], Theorem 1.8) Every nontrivial vector space has a Hamel basis.

As a consequence, we found the important following results:

Theorem 3.6. Every nontrivial vector space has a norm called Hamel norm.

Proof. Let E be a nontrivial vector space over R. By Theorem 3.5, E has a Hamel
basis called B = (ai)i∈I , for any set I of indices (not necessary countable). In this
basis, every vector x ∈ E has the form x =

∑
i∈Ix

αiai, where αi ∈ K and Ix ⊂ I

with finite cardinal. The family (αi)i∈I with αi = 0 for every i ∈ I\Ix, is called
the coordinate of x. Now, define ‖x‖ =

∑
i∈Ix

|αi|. It is easy to verify that ‖.‖ defines

a norm on E by the coordinate in the Hamel basis. �

Remark that any vector for the Hamel basis is with norm 1.
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3.2. Linear map and isomorphism. A subset E ⊂ Rn is called G-invariant if f(E) ⊂
E for any f ∈ G; that is E is a union of orbits. Set A(G) be the algebra generated
by G. For a fixed vector x ∈ Rn\{0}, denote by:
- Φx : A(G) −→ Φx(A(G)) ⊂ Rn the linear map given by Φx(f) = f(x).
- E(x) = Φx(A(G)).
- Fx is an algebraic supplement of Ker(Φx) in A(G). It is easy to show that
px := dim(Fx) = dim(Φx(A(G)) ≤ n.
- Cx = (a1, . . . , apx

) is a basis of Fx.
- Bx = (bi)i∈I is a Hamel basis (Theorem 3.5) of Ker(Φx).
- Ex = (Cx,Bx) is a Hamel basis of A(G). By theorem 3.6, A(G) is provided with
the Hamel norm defined in the Theorem 3.6 associated to the basis Ex.

Lemma 3.7. The linear map Φx : A(G) −→ E(x) is continuous. In particular,
Ker(Φx) is a closed subspace of A(G).

Proof. Since Φx is linear and A(G) is a normed vector space (Lemma 3.6), we will
verify the continuity of Φx on 0. Let f ∈ A(G) and write f = f1 + f2 with f1 ∈ Fx

and f2 ∈ Ker(Φx). Set (αi)1≤i≤px
and (βi)i∈I be respectively the coordinates of f1

and f2 in Cx and Bx. Write f =
px∑
i=1

αiai+
∑
i∈I2

βibi where I2 ⊂ I with finite cardinal.

We have ‖f‖ =
px∑
i=1

|αi|+
∑
i∈I2

|βi| and bi(x) = 0 for all i ∈ I2. Therefore

‖Φx(f)‖ = ‖f(x)‖ =

∥∥∥∥∥

px∑

i=1

αiai(x) +
∑

i∈I2

βibi(x)

∥∥∥∥∥

≤

p∑

i=1

|αi|‖ai(x)‖

≤ ‖f‖

px∑

i=1

‖ai(x)‖

Since
px∑
i=1

‖ai(x)‖ is constant relative to f , then Φx is continuous. �

Lemma 3.8. Suppose that dim(vect(LG)) = n. The linear map ϕ : A(G) −→
vect(LG) is continuous. In particular, Ker(ϕ) is a closed subspace of A(G).

Proof. Since ϕ is linear and A(G) is a normed vector space (Lemma 3.6), we will
verify the continuity of ϕ on 0. Firstly, see that cod(Ker(ϕ)) = n is finite since
dim(vect(LG)) = n. let F be an algebraic supplement to Ker(ϕ) in A, C′ =
(a′1, . . . , a

′
n) and B′ = (b′i)i∈J are respectively the Hamel basis of F and Ker(ϕ)

(Lemma 3.5). Let f ∈ A(G) and write f = f1 + f2 with f1 ∈ F and f2 ∈ Ker(ϕ).
Set (αi)1≤i≤q and (βi)i∈J be respectively the coordinates of f1 and f2 in C′ and

B′. Write f =
n∑

i=1

αia
′
i +

∑
i∈I2

βib
′
i where I2 ⊂ j with finite cardinal. We have
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‖f‖ =
n∑

i=1

|αi|+
∑
i∈I2

|βi| and ϕ(bi) = Dbi(0) = 0 for all i ∈ I2. Therefore

‖ϕ(f)‖ = ‖Df(0)‖ =

∥∥∥∥∥

n∑

i=1

αiDai(0) +
∑

i∈I2

βiDbi(0)

∥∥∥∥∥

≤
n∑

i=1

|αi|‖Dai(0)‖

≤ ‖f‖
n∑

i=1

‖Dai(0)‖

Since
n∑

i=1

‖Dai(0)‖ is constant relative to f , then ϕ is continuous. �

Lemma 3.9. ([6], 3.5) Let E be a topological vector space over R, and let M be a
closed subspace of finite codimension. Then E = M ⊕ N is a topological sum, for
every algebraic complementary subspace N of M .

Corollary 3.10. The algebraic sum A(G) = Fx ⊕Ker(Φx) is topological. In par-
ticular, Fx⊕Ker(Φx) and A(G) are topological isomorphic by the map: (f1, f2) 7−→
f1 + f2.

Proof. By the Theorem 3.6, A(G) is a normed vector space so it is a topological
vector space. By Lemma 3.7, Φx is continuous and so its kernel is closed vector space
with finite codimension. The results follows directly by applying the Lemma 3.9
for E = A(G) and M = Ker(Φx). �

By Corollary 3.10, we can identify A(G) with Fx ⊕Ker(Φx), so every f ∈ A(G) is
denoted by f = (f1, f2) = f1 + f2 with f1 ∈ Fx and f2 ∈ Ker(Φx).

Recall that Ẽ(x) = ψx(A(G)).

Lemma 3.11. Let H and K be two closed vector subspaces of A(G) such that
cod(H) = cod(K) = j ≥ 1. Let ψ ∈ A(G)\(H ∪ K). Then there exists a vector
space F of A(G), containing ψ and satisfying A(G) = F ⊕H = F ⊕K.

Proof. There are two cases;
Case 1: If j = 1, then we take F = Kψ.
Case 2: Suppose that j ≥ 2. Denote by H ′ = H ⊕ Kψ and K ′ = K ⊕ Kψ.
Suppose that H ′ 6= K ′ (otherwise, it is easy to take a comment supplement) and let
f1 ∈ H ′\K ′ and g1 ∈ K ′\H ′, so h1 = f1+ g1 /∈ H ′∪K ′. Denote by H1 = Kh1⊕H ′

and K1 = Kh1 ⊕K ′. We establish two cases:
- If H1 = K1, then any supplement F of H1 in A(G) is a supplement of K1 in
A(G), the proof follows then.
- If H1 6= K1, we take f2 ∈ H1\K1 and g2 ∈ K1\H1, so h2 = f2 + g2 /∈ H1 ∪K1.
Denote by H2 = Kh2 ⊕H1 and K2 = Kh2 ⊕K1.
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We repeat the same processes until j − 2 times and we obtain:
- If Hj−1 = Kj−1, then any supplement F of Hj−2 in A(G) is a supplement of
Kj−2 in A(G).
- If Hj−2 6= Kj−2, we take fj ∈ Hj−2\Kj−2 and gj ∈ Hj−2\Kj−2, so hj = fj+gj /∈
Hj−2 ∪ Kj−2. Denote by Hj−1 = Khj−1 ⊕ Hj−2 and Kj−1 = Khj−1 ⊕ Kj−2.
We obtain then Hj−1 = Kj−1 = A(G), hence the proof is completed by taking
F = vect(ψ, h1, . . . , hj). �

Denote by:

- Ẽ(x) = vect(LG(x)).

- r̃x = dim(Ẽ(x)). Since vect(LG(x)) = n then by Lemma 2.4, dim(Ẽ(v0)) = n, so
r̃G := sup

x∈Cn

{r̃x} = n.

Lemma 3.12. If r(x) = r̃x = n, then there exists a commune vector space Fx ⊂
ϕ−1(LG) supplement to Ker(Φx) and to ker(ϕ) in A(G). (i.e Fx ⊕ Ker(Φx) =
Fx ⊕Ker(ϕ) = A(G)).

Proof. Since LG is abelian so vect(LG) is an abelian algebra and ϕ is a morphism
of ring, then ϕ−1(LG) is an algebra containing G. hence ϕ−1(LG) = A(G). Then
any supplement of Ker(Φx) in A(G) is contained in ϕ−1(LG). Now by Lemma 3.8,
ϕ is continuous. By Lemmas 3.7 and 3.8 both Ker(Φx)) and Ker(ϕ) are closed and
since cod(Ker(Φx)) = cod(Ker(ϕ)), then by lemma 3.11, there exists a commune
supplement Fx to Ker(Φx) and to ker(Φx) in A(G) containing Id (because Id ∈
A(G)\Ker(Φx) ∪Ker(ϕ)). �

Lemma 3.13. The linear map Φx : Fx −→ E(x) given by Φx(f) = f(x) is an
isomorphism.

Proof. The proof follows directly from the fact that Φx is linear surjective and
dim(Fx) = dim(E(x)) = n. �

Lemma 3.14. If r(x) = r̃x = n, then the restriction ϕ1 : Fx −→ vect(LG) of ϕ
from Fx unto vect(LG) is an isomorphism.

Proof. The proof follows directly from the fact that ϕ1 is linear surjective and
dim(Fx) = dim(vect(LG)) = n. �

Lemma 3.15. If r(x) = r̃x = n, then the map ϕx := Φ̃x ◦ϕ1◦Φ−1
x : E(x) −→ Ẽ(x)

defined by ϕx(f(x)) = Df0(x), f ∈ H, is an isomorphism and satisfying:
(i) ϕx(G(x)) = LG(x).
(ii) Let y ∈ E(x) and z = ϕx(y) then ϕx(G(y)) = LG(z).

(iii) for every y ∈ G(x) we have z = ϕx(y) ∈ LG(x).
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Proof. (i) ϕx is an isomorphisms, since ϕx = Φ̃x◦ϕ1◦Φ−1
x and by Lemmas 3.14, 2.5

and 3.13, it is composed by isomorphisms.
By Lemma 3.12, we can assume that Fx is a commune supplement to Ker(Φx)

and to Ker(ϕ) in A(G). Let f1, . . . , fr ∈ A(G) be the generator of Fx. So the
restriction (Φx)/Fx

(resp. (ψx)/Fx
) of Φx (resp. ψx) on Fx are bijective from Fx to

E(x) (resp. Ẽ(x)). Then f1(x), . . . , fr(x) generateE(x) andDf1(0)(x), . . . , Dfr(0)(x)

generate Ẽ(x). Now, let f =
r∑

k=1

αkfk ∈ Fx, so ϕx(f(x)) =
r∑

k=1

αkDfk(0)(x) =

Df0(x) ∈ L(x). It follows that ϕx(G(x)) = LG(x).

(ii) Let y ∈ E(x) and z = ϕx(y). Let f ∈ G and write f =
r∑

k=1

αkfk, where

(f1, . . . , fr) be a basis of Fx. Then by Lemma 3.2, g(0) = 0 and so ϕx(f(y)) =
ϕx(f ◦ g(x)) = Df0.Dg0(x) = Df0(z) ∈ LG(z). It follows that ϕx(G(y)) ⊂ LG(z).
Conversely, let a ∈ LG(z), so a = Df0(z) for some f ∈ G. Since z = Dg0(x) and
g ∈ G, so a = D(f ◦ g)0(x) = ϕx(f ◦ g). Hence a ∈ ϕx(G(x)).

(iii) Since y ∈ E(x), there exists g ∈ Fx such that y = g(x), so z = Dg0(x).

By continuity of ϕx and by (i) , we have z ∈ ϕx(G(x)) ⊂ ϕx(G(x)) = LG(x). �

Denote by:

- Ũt = {y ∈ Cn, r̃y ≥ t}, for every 0 ≤ t ≤ n.
By applying Lemma 3.11 given in [10] to the abelian linear group LG, we found

the following result:

Lemma 3.16. ([10], Lemma3.11) Ũt is a LG-invariant dense open subset of Cn.

Consider the distinct values r̃0 = 0 < r̃1 < · · · < r̃p = n taken by the map

r̃ : Cn −→ N given by x 7−→ r̃x, x ∈ Cn and let F̃j = {x ∈ Cn/r̃x ≤ r̃j},

j = 0, 1, . . . , p. Evidently F̃j (0 ≤ j ≤ q) is the complementary of the L-invariant

open set Ũr̃j−1
(Lemma 3.16) and so the sequence F̃0, . . . , F̃p is a increasing sequence

of closed subsets of Cn and Ω̃j = F̃j\F̃j−1 = F̃j ∩ Ũr̃j−1
. By Lemma 3.3, L is an

abelian subgroup of GL(n,C). We set the same construction of the open sets Ω̃j

which is given by S.Chihi in the proof of Theorem 3.10, for using the following
result:
medskip

Lemma 3.17. ( [10], Theorem 3.10) Let 1 ≤ j ≤ p and x ∈ Ω̃j then for every

y ∈ LG(x) ∩ Ω̃j we have LG(y) ∩ Ω̃j = LG(x) ∩ Ω̃j.

Lemma 3.18. (Under the above notations) For every x ∈ Ωj, we have ϕx(Ωj ∩

E(x)) = Ω̃j ∩ Ẽ(x) for every 1 ≤ j ≤ p.

Proof. Let y ∈ Ωj ∩ E(x) and z = ϕx(y). By Lemma 3.15,(ii), ϕx(G(y)) = LG(z).

Since ϕx is linear, then ϕx(E(y)) = Ẽ(z), so r(y) = r̃z = j. It follows that

z ∈ Ω̃j ∩ Ẽ(x). For the converse we use the same proof for ϕ−1
x . �
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Proof of Structure’s Theorem1. By Proposition 3.4, Ut is a G-invariant open set of
Cn for every 0 ≤ t ≤ rG and it is dense in Cn for every 0 ≤ t ≤ r̃G. Consider
the distinct values r0 = 0 < r1 < · · · < rq = rG taken by the map r : Cn −→ N

given by x 7−→ r(x), x ∈ Cn and let Fj = {x ∈ Cn/r(x) ≤ rj}, j = 0, 1, . . . , q.
Evidently Fj (0 ≤ j ≤ q) is the complementary of the G-invariant open set Urj−1

and so the sequence F0, . . . , Fq is a increasing sequence of closed subsets of Cn and
Ωj = Fj\Fj−1 = Fj ∩ Urj−1

for every 1 ≤ j ≤ q. Yet, by Proposition 3.4, Urj−1
is

a G-invariant open set of Cn. This proves (i).

The proof of (ii): Let x ∈ Ωj and y ∈ G(x)∩Ωj . By Lemma 3.15, there exists an iso-

morphism ϕx : E(x) −→ Ẽ(x) satisfying ϕx(G(x)) = L(x) and ϕx(G(y)) = LG(z)
with z = ϕx(y). By Lemma 3.17, we have

LG(z) ∩ Ω̃j = LG(x) ∩ Ω̃j (1).

By Lemma 3.15, we have ϕx is an isomorphism satisfying ϕx(E(x)) = Ẽx and

ϕx(G(x)) = LG(x). By Lemma 3.18, we have ϕx(Ωj ∩E(x)) = Ω̃j ∩ Ẽ(x), therefore
by (1) we obtain

G(x) ∩ Ωj = G(x) ∩ Ωj ∩E(x)

= ϕ−1
x (LG(x)) ∩ ϕ

−1
x (Ω̃j ∩ Ẽ(x))

= ϕ−1
x (LG(z)) ∩ Ωj ∩ E(x)

= G(y) ∩Ωj .

This completes the proof. �

Denote by r̃G = max{r̃x, x ∈ Cn}.

Proof of Corollary 1.2. Let O be a dense orbit in Cn (i.e. O = Cn). Then for every
x ∈ O, we have r(x) = n, so O ⊂ U and O ∩ U = U . Since O is minimal in U
(Theorem 1.1), then for every orbit L ⊂ U ,we have L ∩ U = O ∩ U . Therefore
L = O = C

n. �

Proof of Corollay 1.3. If O is a locally dense orbit in Cn (i.e.
◦

O 6= ∅) then O ⊂ U
(because, as above, for any x ∈ O, r(x) = n). Let C be a connected component
of U meeting O. Then O ∩ C is a nonempty closed subset in C. Lets show that
O ∩ C is open in C. Let y ∈ O ∩ C. Since O is minimal in U (Theorem 1.1) then

O ∩ U = G(y) ∩ U . So,
◦

G(y) =
◦

O 6= ∅. Then y ∈
◦

G(y) ∩ C ⊂
◦

O ∩ C. Lets show
that every orbit meeting C is dense in C: if O′ is an orbit meeting C then O′ ⊂ U .
Since O is dense in C then O′ ⊂ O and then O′ ∩C = O ∩C = C. This completes
the proof. �
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Proof of Structure’s Theorem2. Suppose that Ẽ(x) = Cn, for some x ∈ Cn. Firstly,
by Proposition 2.1, we can assume that LG ⊂ K∗

η,r(C) and so v0 = u0. Secondly,

we verify that x ∈ V :=
r∏

k=1

C∗ × Cnk−1: We have Cn\V =
r⋃

k=1

Hk, where

Hk = {y = (y1, . . . , yr), yk ∈ {0} × C
nk−1, yi ∈ C

ni for i 6= k}.

By construction of Kη,r(C), each Hk is LG-invariant vector space with dimension
n− 1, so x ∈ V .
Thirdly, we can take x = u0, leaving to replace LG by PLGP

−1 for any passage
matrix P from the canonical basis to (x, e2, . . . , en).
Finally, the proof of Theorem 1.4 follows directly from Theorem 1.1 and Lemma 2.4.

�

3.3. Locally results. We can remove the condition dim(vect(LG) = n in the
Theorem 1.1, we obtain a locally decomposition as follow:

Corollary 3.19. Let G be an abelian subgroup of Diff1(Cn), such that 0 ∈
Fix(G). Let x ∈ Cn. If r(x) = r̃x, there exist a finite increasing sequence of
G-invariant closed subsets of E(x), F0 ⊂ · · · ⊂ Fq, 1 ≤ q ≤ n, with the following
properties:

(i) F0 = ∅, Fq = Cn\{0} and Cn =
q⋃

j=1

Ωj, where Ωj = Fj\Fj−1.

(ii) Every orbit of Ωj is minimal in it.

Proof. By Lemma 3.1, E(x) is G-invariant. Then the proof results directly by
applying Theorem ?? on the restriction G/E(x) of G on E(x). �

3.4. Some results for the dimension n = 1. We can remove the condition
dim(vect(LG) = 1 in the Theorem 1.1, we obtain a global decomposition as follow:

Corollary 3.20. Let G be an abelian subgroup of Diff1(C), such that 0 ∈ Fix(G).
Then every orbit of C\{0} is minimal in it.

Proof. Since id ∈ G, then id ∈ LG and so dim(LG) = 1. The prof results from
Theorem 1.1, for F0 = ∅, F1 = {0} and F2 = C. �

Remark 3.21. Remark that dim(LG) ≥ 1, since In ∈ LG, where In is the identity
matrix with order n.
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4. Example in the dimension n=2

We give some examples of abelian subgroup of Diff1(C) which are near enough
th linear group. Recall that C∗ = C\{0}.

Example 4.1. Let Γ be the group abelian of all diffeomorphisms f of C2 defined
by f(x, y) = (x, y + P (x)), P ∈ C[X ] and G be a subgroup of Γ generated by
f : (x, y) 7−→ (x, y + P (x)) and g : (x, y) 7−→ (x, y + Q(x)) with P,Q ∈ C[X ],
Q(0) = P (0) = 0 and P ′(0) 6= 0. Then every orbit is minimal in the open set
C∗ × C.

Proof. We can easily verify that G is abelian, 0 ∈ Fix(G). In the begin, we have
fn ◦ gm(x, y) = (x, y + nP (x) +mQ(x)) for every n,m ∈ Z. Then every h ∈ A(G)
has the form:

h(x, y) = (αx, βy +R(x)) where R ∈ C[X ] (1)

We have Df0 =

[
1 0

P ′(0) 1

]
. Then LG ⊂ T∗

2(C). Here u0 = e1 = (1, 0)

then Ẽ(u0) is generated by e1 and Df0(u0) = (1, P ′(0)), so dim(Ẽ(u0)) = 2,

hence Ẽ(e1) = C2. By Lemma 2.7, Ω̃2 = C∗ × C and by Lemma 3.18, we have

ϕe1(Ω2) = Ω̃2, then

Ω2 = ϕ−1
e1 (C∗ × C) (2)

By Theorem 1.4, every orbit of Ω2 is minimal in it. Now let’s prove that ϕ−1
e1 (C∗×

C) = C∗ × C: Recall that ϕe1(x, y) = Φ̃e1 ◦ ϕ ◦ Φ−1
e1 (x, y) (see Lemma 3.15). Let

(x, y) ∈ C∗ × C. Then there exists h ∈ A(G) such that (x, y) = Dh0e1. Using (2)
and by integration, h has the form h : (s, t) −→ (xs, βt + ys + sR(s) + γ), with
R ∈ C[X ], then h(e1) = (x, y +R(1)) and Dh0e1 = (x, y). Therefore

ϕ−1
e1 (x, y) = Φe1 ◦ ϕ

−1 ◦ Φ̃−1
e1 (x, y)

= Φe1 ◦ ϕ
−1(Dh0)

= Φe1(h)

= h(e1)

= (x, y +R(1) + γ) ∈ C
∗ × C

Conversely, Let (a, b) ∈ C∗ × C then there is h ∈ A(G) such that h(e1) = (a, b).
By (2), h has the form h(s, t) = (as, βt+ bs+ sR(s) + γ), then Dh0(e1) = (a, b+
R(1) +R′(1)). Therefore

ϕe1(a, b) = Φ̃e1 ◦ ϕ ◦ Φ−1
e1 (a, b)

= Φ̃e1 ◦ ϕ(h)

= Φe1(Dh0)

= h(e1)

= (a, b+R(1) +R′(1)) ∈ C
∗ × C

It follows that ϕ−1
e1 (C∗ × C) = C∗ × C. �
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Example 4.2. Let G be the abelian group generated by f(x, y) = (xq, y+xk) and

g(x, y) = (xq
′

, y + xk
′

) q and q′ are odd integers, k, k′ ∈ N. Then every orbit of
C∗ × C is minimal in it.

Proof. We can easily verify that G is abelian, 0 ∈ Fix(G). In the begin, we have

fn(x, y) = (xnq, y + xk +
n∑

i=1

xiqk)) and so

fn ◦ gm(x, y) =



xnqmq′ , y + xk +

n∑

i=1

xiqk + xnqk
′

+

m∑

j=1

xnqjq
′k′





for every n,m ∈ Z. Then every h ∈ A(G) has the form:

h(x, y) = (αx, βy +R(x)) where R ∈ C[X ] (1)

We have Did0 = id and Df0 = Dg0 =

[
0 0
0 1

]
. Then LG ⊂ T∗

1(C) ⊕ T∗
1(C).

Here u0 = e1 + e2 = (1, 1) then Ẽ(u0) is generated by e1 and Df0(u0) = (0, 1),

so dim(Ẽ(u0)) = 2, hence Ẽ(u0) = C2. By Lemma 2.7, Ω̃2 = C∗ × C and by

Lemma 3.18, we have ϕu0
(Ω2) = Ω̃2, then

Ω2 = ϕ−1
u0

(C∗ × C) (2)

By Theorem 1.4, every orbit of Ω2 is minimal in it. As in the proof of example 4.1,
we prove that ϕ−1

u0
(C∗ × C) = C∗ × C. �

Question1 : Is there an abelian subgroup of Diff1(Cn) fixing some point having
no minimal set in Cn\Fix(G)?

Question2 : An abelian subgroup of Diff1(Cn) fixing some point and satiffying
r(x) = r̃x for every x ∈ Cn, is-it conjugate to a linear group?
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