THE ACTION OF ABELIAN C^1 -DIFFEOMORPHISMS GROUP FIXING A POINT, ON \mathbb{C}^n

YAHYA N'DAO AND ADLENE AYADI

ABSTRACT. In this paper, we study the action of any abelian subgroup G of $Diff^1(\mathbb{C}^n)$ on \mathbb{C}^n . Suppose that $0 \in Fix(G)$ and $dim(vect(L_G)) = n$, where $vect(L_G)$ is the vector space generated by $L_G = \{Df_0, f \in G\}$. We prove the existence of a decreasing finite sequence F_0, F_1, \ldots, F_q of invariant closed sets such that $\Omega_j = F_j \setminus F_{j-1}$ is an open subset(for the relative topology) of F_j in which every orbit is minimal. Moreover, if G has a dense orbit in \mathbb{C}^n then every orbit of Ω_q is dense in \mathbb{C}^n .

1. Introduction

Denote by $Diff^1(\mathbb{C}^n)$ the group of all C^1 -diffemorphisms of \mathbb{C}^n . Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$, such that $0 \in Fix(G)$ and $dim(vect(L_G)) = n$, where $vect(L_G)$ is the vector space generated by $L_G = \{Df(0), f \in G\}$ and $Fix(G) = \{x \in \mathbb{C}^n : f(x) = x, \forall f \in G\}$ be the global fixed point set of G. There is a natural action $G \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$. $(f, x) \longmapsto f(x)$. For a point $x \in \mathbb{C}^n$, denote by $G(x) = \{f(x), f \in G\} \subset \mathbb{C}^n$ the orbit of G through x. A subset $E \subset \mathbb{C}^n$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. Denote by \overline{E} (resp. $\overset{\circ}{E}$) the closure (resp. interior) of E.

A subset E of \mathbb{C}^n is called a minimal set of G if E is closed in \mathbb{C}^n , non empty, G-invariant and has no proper subset with these properties. It is equivalent to say that E is a G-invariant set such that every orbit contained in E is dense in it. If Ω is a G-invariant set in \mathbb{C}^n , we say that E is a minimal set in Ω if it is a minimal set of the restriction $G_{/\Omega}$ of G to Ω . An orbit $O \subset \Omega$ is called minimal in Ω if $\overline{O} \cap \Omega$ is a minimal set in Ω . This means that for every $x \in \overline{O} \cap \Omega$ we have $\overline{O} \cap \Omega = \overline{G(x)} \cap \Omega$. For example, a closed orbit in Ω is minimal in Ω . In particular, every point in Fix(G) is minimal in \mathbb{C}^n .

Many authors have studied the existence of commune fixed point of any abelian group of diffeomorphisms. In [5], S.Frimo proved that if G is an abelian subgroup of $Diff^{1}(\mathbb{R}^{2})$ generated by any family of commuting diffeomorphisms of the plane wich are C^{1} -close to the identity and having a bounded orbit then $Fix(G) \neq \emptyset$. In [7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated abelian subgroup of $Diff_{+}^{1}(\mathbb{R}^{2})$ and if there is a compact G-invariant set $C \subset \mathbb{R}^{2}$, then Fix(G) is non-empty.

²⁰⁰⁰ Mathematics Subject Classification. 37C85, 47A16, 37E30, 37C25.

Key words and phrases. Diffeomorphisms, abelian, group, orbit, action.

This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-15.

This paper can be viewed as a generalization of the results given in [3] whose generalize the structure's theorem given in [1] and it uses a construction analogous to that given by S.Chihi in [10] for abelian linear group.

Our principal results can be stated as follows:

Denote by $L_G = \{Df_0, f \in\}$ and $vect(L_G)$ be the vector space generated by L_G . We generalize the result given in [1] for abelian subgroup of $GL(n, \mathbb{C})$:

Theorem 1.1 (Structure's Theorem1). Let G be an abelian subgroup of $Diff^{1}(\mathbb{C}^{n})$, such that $0 \in Fix(G)$ and $dim(vect(L_G)) = n$. Then there exist a finite increasing sequence of G-invariant closed subsets of \mathbb{C}^n , $F_0 \subset \cdots \subset F_q$, $1 \leq q \leq n$, with the following properties:

- (i) F₀ = Ø, F_q = Cⁿ\{0} and Cⁿ = ⋃_{j=1}^q Ω_j, where Ω_j = F_j\F_{j-1}.
 (ii) Every orbit of Ω_j is minimal in it.

Under the hypothesis of Theorem 1.1, denote by $U = \Omega_q = \mathbb{C}^n \setminus F_{q-1}$. We have the following corollaries.

Corollary 1.2. Let G be an abelian subgroup of $Diff^{1}(\mathbb{C}^{n})$, such that $0 \in Fix(G)$ and $dim(vect(L_G)) = n$. If G has a dense orbit then every orbit in U is dense in \mathbb{C}^n .

Corollary 1.3. If G has a locally dense orbit O in \mathbb{C}^n and C is a connected component of U meeting O then every orbit meeting C is dense in it.

For every $x \in \mathbb{C}^n$, denote by:

- $L_G(x) = \{Ax, A \in L_G\}$ the orbit of x defined by the natural action of the linear group L_G on \mathbb{C}^n .

- E(x) be the vector space generated by $L_G(x)$.

Another version of the Structure's theorem is given by:

Theorem 1.4 (Structure's Theorem2). Let G be an abelian subgroup of $Diff^{1}(\mathbb{C}^{n})$, such that $0 \in Fix(G)$. If there exists $x \in \mathbb{C}^n$ with $\widetilde{E}(x) = \mathbb{C}^n$, then there exist a finite increasing sequence of G-invariant closed subsets of \mathbb{C}^n , $F_0 \subset \cdots \subset F_q$, $1 \leq q \leq n$, with the following properties:

- (i) $F_0 = \emptyset$, $F_q = \mathbb{C}^n \setminus \{0\}$ and $\mathbb{C}^n = \bigcup_{j=1}^q \Omega_j$, where $\Omega_j = F_j \setminus F_{j-1}$.
- (ii) Every orbit of Ω_i is minimal in it.

In the second Theorem, we prove that the condition $dim(vect(L_G)) = n$ can be replaced by $E(x) = \mathbb{C}^n$ for some $x \in \mathbb{C}^n$ and so the Corllaries 1.2 and 1.3 remains valid.

This paper is organized as follows: In Section 2, we give some results for abelian linear group. The Section 3 is devoted to prove the main results. In the section 4, we give two examples for n = 2.

2. Some results for abelian linear group

Denote by $M_n(\mathbb{C})$ the set of complex square matrices of order $n \geq 1$, and $GL(n, \mathbb{C})$ the group of the invertible matrices of $M_n(\mathbb{C})$.

- $\mathbb{T}_n(\mathbb{C})$ the set of all lower-triangular matrices over \mathbb{C} , of order n and with only one eigenvalue.

- $\mathbb{T}_n^*(\mathbb{C}) = \mathbb{T}_n(\mathbb{C}) \cap GL(n,\mathbb{C})$ (*i.e.* the subset of matrix of $\mathbb{T}_n(\mathbb{C})$ having a non zero eigenvalue), it is a subgroup of $GL(n,\mathbb{C})$.

 $-\mathbb{D}_{n}(\mathbb{C}) \text{ the set of diagonal matrix of } M_{n}(\mathbb{C}).$ - $\mathbb{C}^{*} = \mathbb{C} \setminus \{0\} \text{ and } \mathbb{N}_{0} = \mathbb{N} \setminus \{0\}.$

Let $r \in \mathbb{N}^*$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$ such that $\sum_{i=1}^r n_i = n$. Denote by: - $\mathcal{K}_{\eta,r}(\mathbb{C}) = \{M = \operatorname{diag}(T_1, \ldots, T_r) \in M_n(\mathbb{C}) : T_k \in \mathbb{T}_{n_k}(\mathbb{C}), \ k = 1, \ldots, r\}.$ - $\mathcal{K}_{\eta,r}^*(\mathbb{C}) = \mathcal{K}_{\eta,r}(\mathbb{C}) \cap GL(n, \mathbb{C}), \text{ it is a subgroup of } GL(n, \mathbb{C}).$ - v^T the transpose of a vector $v \in \mathbb{C}^n$. - $\mathcal{E}_n = (e_1, \ldots, e_n)$ the standard basis of \mathbb{C}^n . - I_n the identity matrix on \mathbb{C}^n .

Denote by:

$$\begin{aligned} -u_0 &= [e_{1,1}, \dots, e_{r,1}]^T \in \mathbb{C}^n, \text{ where } e_{k,1} = [1, 0, \dots, 0]^T \in \mathbb{C}^{n_k}, \quad 1 \le k \le r. \\ -e^{(k)} &= [0_{\mathbb{C}^{n_1}}, \dots, 0_{\mathbb{C}^{n_{k-1}}}, e_{k,1}^T, 0_{\mathbb{C}^{n_{k+1}}}, \dots, 0_{\mathbb{C}^{n_r}}]^T, \quad 1 \le k \le r. \end{aligned}$$

For a vector $v \in \mathbb{C}^n$, we write $v = \Re(v) + i\Im(v)$, where $\Re(v)$ and $\Im(v) \in \mathbb{R}^n$.

In [2], the authors proved the following

Proposition 2.1. ([2], Proposition 6.1.) Let L be an abelian subgroup of $GL(n, \mathbb{C})$, then there exists $P \in GL(n, \mathbb{C})$ such that $\widetilde{L} = P^{-1}LP$ is a subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$, for some $1 \leq r \leq n$ and $\eta \in \mathbb{N}^r_0$.

For such matrix P define $v_0 = Pu_0$.

Let L be an abelian subgroup of $\mathcal{K}_{\eta,r}^*(\mathbb{C})$. denote by: - $(e_{k,1}, \ldots, e_{k,n_k})$ be the canonical basis of \mathbb{C}^{n_k} , for every $k = 1, \ldots, r$. - $L_k = \{A_k, \ A = diag(A_1, \ldots, A_r) \in L\}$. - If $L \subset \mathbb{T}_n(\mathbb{C})$ denote by $F_L = vect\{(A - \mu_A I_n)e_i, \ A \in L, \ 1 \le i \le n-1\}$. - In general, if $L \subset \mathcal{K}_{\eta,r}^*(\mathbb{C})$, denote by $F_{L_k} = vect\{(A_k - \mu_{A_k} I_{n_k})e_{k,i}, \ A_k \in L_k, \ 1 \le i \le n_k - 1\}$.

Lemma 2.2. ([2], Theorem 5.2) Let L be an abelian subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$. Assume that $\dim(F_{L_k}) = n_k - 1$, $k = 1, \ldots, r$. Then there exists a linear injective map $\rho : \mathbb{C}^n \longrightarrow \mathcal{K}_{\eta,r}(\mathbb{C})$ such that: i) $L \subset \rho(\mathbb{C}^n)$. ii) For every $v \in \mathbb{C}^n$, $\rho(v)u_0 = v$. **Lemma 2.3.** Let \widetilde{L} be an abelian linear subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$ with $\eta = (n_1, \ldots, n_r)$. If $\dim(\operatorname{vect}(\widetilde{L})) = n$, then $\dim(F_{\widetilde{L}_k}) = n_k - 1$ for every $k = 1, \ldots, r$.

Proof. Since $dim(vect(\widetilde{L})) = n$ then $dim(vect(\widetilde{L}_k)) = n_k$, k = 1, ..., r. To show the Lemma for each \widetilde{L}_k , we suppose that \widetilde{L} is an abelian subgroup of $\mathbb{T}_n^*(\mathbb{C})$. We proceed by induction on the dimension $n \geq 1$:

- For n = 1, $L \subset \mathbb{C}^*$ and $F_1 = \{0\}$, so $dim(F_1) = n - 1 = 0$.

- Suppose the property is true until dimension n-1 and let \widetilde{L} be an abelian subgroup of $\mathbb{T}_n^*(\mathbb{C})$. Every $A \in \widetilde{L}$ is written in the form:

$$A = \begin{bmatrix} A_1 & 0 \\ T_A & \mu_A \end{bmatrix}, \quad with \ A_1 \in \mathbb{T}^*_{n-1}(\mathbb{C}), \ T_A \in M_{1,n-1}(\mathbb{C})$$

and μ_A be the only eigenvalue of A. Consider the set $\widetilde{L}^1 = \{A^1, A \in \widetilde{L}\}$. It is clear that \widetilde{L}^1 is an abelian subgroup of $\mathbb{T}_{n-1}^*(\mathbb{C})$. We can verify that $dim(vect(\widetilde{L}^1)) =$ n-1, since $dim(vect(\widetilde{L})) = n$. By applying the induction property on \widetilde{L}^1 , we obtain $dim(F_{\widetilde{L}^1}) = n-2$, where $F_{\widetilde{L}^1} = vect((A^1 - \mu_A I_{n-1})e_i^1, A \in \widetilde{L}, k = 1, \ldots, n-2\}$ and $(e_1^1, \ldots, e_{n-1}^1)$ be the canonical basis of \mathbb{C}^{n-1} . Now,if $dim(F_{\widetilde{L}}) < n-1$, then $dim(F_{\widetilde{L}}) = n-2$. Let $(v_1^1, \ldots, v_{n-2}^1)$ be a basis of $F_{\widetilde{L}^1}$ and denote by $v_k = (v_k^1, 0)$ for each k. We can assume that for any matrix $A \in \widetilde{L}$, $T_A = 0$ leaving to change the canonical basis of \mathbb{C}^n by the basis $(v_1, \ldots, v_{n-2}, e_{n-1}, e_n)$, because $F_{\widetilde{L}^1}$ is \widetilde{L}^1 invariant. Let $\theta : \mathbb{T}_{n-1}(\mathbb{C}) \longrightarrow \mathbb{T}_n(\mathbb{C})$ given by $\theta(A_1) = \begin{bmatrix} A_1 & 0 \\ 0 & \mu_{A_1} \end{bmatrix}$ is linear injective map such that $\widetilde{L} = \theta(\widetilde{L}^1)$, so $vect(\widetilde{L}) = \theta(vect(\widetilde{L}^1))$. It follows that $dim(vect(\widetilde{L})) = n-1 \neq n$, a contradiction. \square

Lemma 2.4. Let L be an abelian linear subgroup of $GL(n, \mathbb{C})$. Then dim(vect(L)) = n if and only if $dim(vect(L(v_0))) = n$.

Proof. Firstly, by Proposition 2.1, suppose that $L \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$ and so $v_0 = u_0$. Since dim(vect(L)) = n then $dim(vect(L_k)) = n_k, \ k = 1, \ldots, r$.

Suppose that dim(vect(L)) = n, then by Lemma 2.3, $dim(F_{L_k}) = n_k - 1$, $k = 1, \ldots, r$. By Lemma 2.2, there exists a linear injective map $\rho : \mathbb{C}^n \longrightarrow \mathcal{K}_{\eta,r}(\mathbb{C})$ such that:

i) $L \subset \rho(\mathbb{C}^n)$.

ii) For every $v \in \mathbb{C}^n$, $\rho(v)u_0 = v$.

Let $M^{(1)}, \ldots, M^{(n)} \in L$ be the generators of vect(L). By (i), there exist $v_1, \ldots, v_n \in \mathbb{C}^n$ such that $\rho(v_i) = M^{(i)}$ for each *i*. By (ii), $v_i = \rho(v_i)u_0 = M^{(i)}u_0 \in L(u_0)$. It follows that v_1, \ldots, v_n generate $vect(L(u_0))$. Since ρ is injective and $M^{(1)}, \ldots, M^{(n)}$ are free, then (v_1, \ldots, v_n) is a basis of $vect(L(u_0))$ and so $vect(L(u_0)) = \mathbb{C}^n$.

Conversely, suppose that $\dim(vect(L_G(u_0))) = n$, so $\dim(vect(L_k(e_{k,1})) = n_k)$, where $e_{k,1} = [1, 0, \ldots, 0]^T \in \mathbb{C}^{n_k}$ and $L_k := (L_G)_k$ for every $k = 1, \ldots, r$. It follows that $\dim(F_{L_k}) = n_{k-1}$. We repeat the same proof, as in above, by using the Lemma 2.2. Denote by:

- $\Psi_x : vect(L_G) \longrightarrow \widetilde{E}(x) \subset \mathbb{C}^n$ the linear map given by $\Psi_x(A) = Ax$.

Lemma 2.5. Let G be an abelian subgroup of $Diff^1(\mathbb{C})$ such that $0 \in Fix(G)$ and $dim(vect(L_G)) = n$. Then $\widetilde{E}(x)$ is L_G -invariant and the linear map Ψ_x : $vect((L_G)_{/\widetilde{E}(x)}) \longrightarrow \widetilde{E}(x)$ is an isomorphism., where $(L_G)_{/\widetilde{E}(x)}$ is the restriction of L_G on $\widetilde{E}(x)$.

Proof. By construction, $\widetilde{E}(x)$ is L_G -invariant and Ψ_x is linear and surjective. Let $A \in Ker(\Psi_x)$ and $y \in vect(L_G(x))$. Then there is $B \in vect((L_G)_{/\widetilde{E}(x)})$ such that y = Bx. Now, Ay = ABx = BAx = 0, so A = 0.

Let \widetilde{L} be an abelian subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$. Denote by: - $\widetilde{\Omega}_n = \{x \in \mathbb{C}^n, \ dim(vect(\widetilde{L}(x))) = n\}.$ - $\widetilde{V} = \prod_{k=1}^r \mathbb{C}^* \times \mathbb{C}^{n_k - 1}.$

Lemma 2.6. For every $x \in \widetilde{V}$ there is $P \in \mathcal{K}^*_{n,r}(\mathbb{C})$ such that $x = Pu_0$.

 $\begin{array}{l} Proof. \text{ Write } x = (x_1, \dots, x_r) \text{ with } x_k = (x_{k,1}, \dots, x_{k,n_k}) \text{ for each } k. \text{ Let } P = \\ \\ diag(P_1, \dots, P_r) \text{ such that } P_k = \begin{bmatrix} x_{k,1} & & \\ x_{k,2} & \ddots & 0 & \\ \vdots & 0 & \ddots & \\ \vdots & \vdots & \ddots & \ddots & \\ x_{k,n_k} & 0 & \dots & 0 & x_{k,1} \end{bmatrix} \in \mathbb{T}_{n_k}^*(\mathbb{C}), \text{ since } \\ \\ x \in \widetilde{V}, \text{ so } x_{k,1} \neq 0 \text{ for all } k. \text{ It follows that } x = Pu_0, \text{ since } P_k e_{k,1} = x_k. \end{array}$

Lemma 2.7. Let \widetilde{L} be an abelian subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$ such that $\dim(\operatorname{vect}(\widetilde{L})) = n$. Then $\widetilde{\Omega}_n = \widetilde{V}$.

Proof. Firstly, remark that $u_0 \in \widetilde{\Omega}_n$ since $dim(vect(\widetilde{L}) = n$ and by Lemma 2.4, $dim(vect(\widetilde{L}(u_0)) = n$. Let $x \in \widetilde{V}$. By Lemma 2.6, there is $P \in \mathcal{K}^*_{\eta,r}(\mathbb{C})$ such that $x = Pu_0$. Denote by $L = P^{-1}\widetilde{L}P$, so $L \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$ and dim(vect(L)) = n, hence by applying Lemma 2.4 on L, we have $dim(vect(L(u_0)) = n$. Now, $\widetilde{L}(x) = PLP^{-1}(x) = PL(u_0)$, then $vect(\widetilde{L}(x)) = P(vect(L(u_0)))$, so $dim(vect(\widetilde{L}(x)) = n$, hence $x \in \widetilde{\Omega}_n$.

Conversely, let $x \in \widetilde{\Omega}_n$, so $dim(vect(\widetilde{L}(x)) = n$. Since $\mathbb{C}^n \setminus \widetilde{V} = \bigcup_{k=1}^r \widetilde{H}_k$, where $\widetilde{H}_k = \{y = (y_1, \dots, y_r), y_k \in \{0\} \times \mathbb{C}^{n_k - 1}, y_i \in \mathbb{C}^{n_i}, \text{ for every } i \neq k\}.$ By the form of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$, we can verify, that each \widetilde{H}_k is \widetilde{L} -invariant, so $x \notin H_k$ because $\dim(H_k) = n - 1$. It follows that $x \in \widetilde{V}$.

3. Proof of main results

Lemma 3.1. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$ and $x \in \mathbb{C}^n$. Then E(x) is G-invariant.

Proof. Suppose that E(x) is generated by $f_1(x), \ldots, f_p(x)$, with $f_k \in \mathcal{A}(G)$, $k = 1, \ldots, p$. Let $y = \sum_{k=1}^p \alpha_k f_k(x) \in E(x)$ and $f \in G$, then y = g(x), with $g = \sum_{k=1}^p \alpha_k f_k \in \mathcal{A}(G)$. Therefore $f(y) = f \circ g(x) = \Phi_x(f \circ g) \in E(x)$, since $f \circ g \in \mathcal{A}(G)$. \Box

Lemma 3.2. Let G be an abelian subgroup of $Diff^{1}(\mathbb{C}^{n})$, $r \geq 1$ such that $0 \in Fix(G)$. Then g(0) = 0 for every $g \in \mathcal{A}(G)$.

Proof. Let $g = \sum_{k=1}^{p} \alpha_k f_k \subset \mathcal{A}(G)$ with $f_k \in G$, $\alpha_k \in \mathbb{C}$, so $g(0) = \sum_{k=1}^{p} \alpha_k f_k(0) = 0$. Now, let $f_1, \ldots, f_m, g_1, \ldots, g_q \in \mathcal{A}(G)$ such that $f_k(0) = g_j(0) = 0$, $1 \le k \le m$, $1 \le j \le q$, so for every $\alpha_1, \ldots, \alpha_q, \beta_1 \ldots, \beta_m \in \mathbb{C}$ we have

$$\left(\sum_{j=1}^{q} \beta_j g_j\right) \circ \left(\sum_{k=1}^{m} \alpha_k f_k\right) (0) = \sum_{j=1}^{q} \beta_j g_j \left(\sum_{k=1}^{m} \alpha_k f_k(0)\right)$$
$$= \sum_{j=1}^{q} \beta_j g_j(0)$$
$$= 0$$

Since $\mathcal{A}(G)$ is the algebra generated by G, so it is stable by composition and by linear combinations, hence we obtain the results.

Denote by $\varphi : \mathcal{A}(G) \longrightarrow M_n(\mathbb{C})$ the linear map given by $\varphi(f) = Df_0$, for every $f \in \mathcal{A}(G)$. Then $L_G = \varphi(G)$.

Lemma 3.3. Let G be an abelian subgroup of $Diff^{1}(\mathbb{C}^{n})$, such that $0 \in Fix(G)$. Then L_{G} is an abelian subgroup of $GL(n,\mathbb{C})$.

Proof. Let $f, g \in G$, so $\varphi(f \circ g) = D(f \circ g)(0) = Df(g(0)).Dg(0)$. By Lemma 3.2, g(0) = 0, so $\varphi(f \circ g) = D(f)(0).Dg(0) = \varphi(f).\varphi(g)$. The proof is completed. \Box

Denote by: - $U_t = \{x \in \mathbb{C}^n, r(x) \ge t\}$, for every $t \in \mathbb{N}$. - $r_G = max\{r(x), x \in \mathbb{C}^n\}$.

Proposition 3.4. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$, $r \ge 1$ such that $0 \in Fix(G)$. Then for every $0 \le t \le r_G$, U_t is a G-invariant open subset of \mathbb{C}^n .

Proof of Proposition 3.4. In the first, remark that the rank r(y) is constant on any orbit $G(y), y \in E(x)$. So U_t is G-invariant for every $0 \le t \le r_G$. Let's show that U_t is an open set: Let $y \in U_t$ and $r = r_y$, so $r \ge t$. Then there exist $f_1, \ldots, f_r \in F(y)$ such that the r vectors $f_1(y), \ldots, f_r(y)$ are linearly independent in E(y). For all $z \in \mathbb{C}^n$, we consider the Gram's determinant

$$\Delta(z) = det \left(\langle f_i(z) \mid f_j(z) \rangle \right)_{1 \le i, j \le r}$$

of the vectors $f_1(z), \ldots, f_r(z)$ where $\langle . | . \rangle$ denotes the scalar product in \mathbb{C}^n . It is well known that these vectors are independent if and only if $\Delta(z) \neq 0$, in particular $\Delta(y) \neq 0$. Let

$$V_y = \{ z \in \mathbb{C}^n, \ \Delta(z) \neq 0 \}$$

The set V_y is open in \mathbb{C}^n , because the map $z \mapsto \Delta(z)$ is continuous. Now $\Delta(y) \neq 0$, and so $y \in V_y \subset U_t$. The proof is completed. \Box

3.1. Hamel basis and norm. The main of this section is to justify the existence of a basis of every vector space. This result is trivial in the finite case, is in fact rather surprising when one thinks of infinite dimensionial vector spaces, and the definition of a basis. Recall that a *Hamel basis* or simply a basis of a vector space E is a linearly independent set \mathcal{B} (every finite subset of \mathcal{B} is linearly independant) such that for each nonzero $x \in E$ there are $a_1, \ldots, a_k \in \mathcal{B}$ and nonzero scalars $\alpha_1, \ldots, \alpha_k$ (all uniquely determined) such that $x = \sum_{i=1}^k \alpha_i a_i$. The following theorem is equivalent to the axiom of choice family of axioms and theorems. In [4], C.D.Aliprantis and K.C.Border proved, in the following theorem, that Zorn's lemma implies that every vector space has a basis.

Theorem 3.5. ([4], Theorem 1.8) Every nontrivial vector space has a Hamel basis.

As a consequence, we found the important following results:

Theorem 3.6. Every nontrivial vector space has a norm called Hamel norm.

Proof. Let E be a nontrivial vector space over \mathbb{R} . By Theorem 3.5, E has a Hamel basis called $\mathcal{B} = (a_i)_{i \in I}$, for any set I of indices (not necessary countable). In this basis, every vector $x \in E$ has the form $x = \sum_{i \in I_x} \alpha_i a_i$, where $\alpha_i \in \mathbb{K}$ and $I_x \subset I$ with finite cardinal. The family $(\alpha_i)_{i \in I}$ with $\alpha_i = 0$ for every $i \in I \setminus I_x$, is called the coordinate of x. Now, define $||x|| = \sum_{i \in I_x} |\alpha_i|$. It is easy to verify that ||.|| defines a norm on E by the coordinate in the Hamel basis.

Remark that any vector for the Hamel basis is with norm 1.

3.2. Linear map and isomorphism. A subset $E \subset \mathbb{R}^n$ is called *G*-invariant if $f(E) \subset E$ for any $f \in G$; that is *E* is a union of orbits. Set $\mathcal{A}(G)$ be the algebra generated by *G*. For a fixed vector $x \in \mathbb{R}^n \setminus \{0\}$, denote by:

- $\Phi_x : \mathcal{A}(G) \longrightarrow \Phi_x(\mathcal{A}(G)) \subset \mathbb{R}^n$ the linear map given by $\Phi_x(f) = f(x)$.

- $E(x) = \Phi_x(\mathcal{A}(G)).$

- F_x is an algebraic supplement of $Ker(\Phi_x)$ in $\mathcal{A}(G)$. It is easy to show that $p_x := dim(F_x) = dim(\Phi_x(\mathcal{A}(G)) \le n.$

- $C_x = (a_1, \ldots, a_{p_x})$ is a basis of F_x .

- $\mathcal{B}_x = (b_i)_{i \in I}$ is a Hamel basis (Theorem 3.5) of $Ker(\Phi_x)$.

- $\mathcal{E}_x = (\mathcal{C}_x, \mathcal{B}_x)$ is a Hamel basis of $\mathcal{A}(G)$. By theorem 3.6, $\mathcal{A}(G)$ is provided with the Hamel norm defined in the Theorem 3.6 associated to the basis \mathcal{E}_x .

Lemma 3.7. The linear map $\Phi_x : \mathcal{A}(G) \longrightarrow E(x)$ is continuous. In particular, $Ker(\Phi_x)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since Φ_x is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of Φ_x on 0. Let $f \in \mathcal{A}(G)$ and write $f = f_1 + f_2$ with $f_1 \in F_x$ and $f_2 \in Ker(\Phi_x)$. Set $(\alpha_i)_{1 \leq i \leq p_x}$ and $(\beta_i)_{i \in I}$ be respectively the coordinates of f_1 and f_2 in \mathcal{C}_x and \mathcal{B}_x . Write $f = \sum_{i=1}^{p_x} \alpha_i a_i + \sum_{i \in I_2} \beta_i b_i$ where $I_2 \subset I$ with finite cardinal.

We have $||f|| = \sum_{i=1}^{p_x} |\alpha_i| + \sum_{i \in I_2} |\beta_i|$ and $b_i(x) = 0$ for all $i \in I_2$. Therefore

$$\|\Phi_{x}(f)\| = \|f(x)\| = \left\|\sum_{i=1}^{p_{x}} \alpha_{i} a_{i}(x) + \sum_{i \in I_{2}} \beta_{i} b_{i}(x)\right\|$$
$$\leq \sum_{i=1}^{p} |\alpha_{i}| \|a_{i}(x)\|$$
$$\leq \|f\| \sum_{i=1}^{p_{x}} \|a_{i}(x)\|$$

Since $\sum_{i=1}^{p_x} ||a_i(x)||$ is constant relative to f, then Φ_x is continuous.

Lemma 3.8. Suppose that $dim(vect(L_G)) = n$. The linear map $\varphi : \mathcal{A}(G) \longrightarrow vect(L_G)$ is continuous. In particular, $Ker(\varphi)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since φ is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of φ on 0. Firstly, see that $cod(Ker(\varphi)) = n$ is finite since $dim(vect(L_G)) = n$. let F be an algebraic supplement to $Ker(\varphi)$ in $\mathcal{A}, \mathcal{C}' = (a'_1, \ldots, a'_n)$ and $\mathcal{B}' = (b'_i)_{i \in J}$ are respectively the Hamel basis of F and $Ker(\varphi)$ (Lemma 3.5). Let $f \in \mathcal{A}(G)$ and write $f = f_1 + f_2$ with $f_1 \in F$ and $f_2 \in Ker(\varphi)$. Set $(\alpha_i)_{1 \leq i \leq q}$ and $(\beta_i)_{i \in J}$ be respectively the coordinates of f_1 and f_2 in \mathcal{C}' and \mathcal{B}' . Write $f = \sum_{i=1}^n \alpha_i a'_i + \sum_{i \in I_2} \beta_i b'_i$ where $I_2 \subset j$ with finite cardinal. We have

$$\|f\| = \sum_{i=1}^{n} |\alpha_i| + \sum_{i \in I_2} |\beta_i| \text{ and } \varphi(b_i) = Db_i(0) = 0 \text{ for all } i \in I_2. \text{ Therefore}$$
$$\|\varphi(f)\| = \|Df(0)\| = \left\|\sum_{i=1}^{n} \alpha_i Da_i(0) + \sum_{i \in I_2} \beta_i Db_i(0)\right\|$$
$$\leq \sum_{i=1}^{n} |\alpha_i| \|Da_i(0)\|$$
$$\leq \|f\| \sum_{i=1}^{n} \|Da_i(0)\|$$

Since $\sum_{i=1}^{n} \|Da_i(0)\|$ is constant relative to f, then φ is continuous.

Lemma 3.9. ([6], 3.5) Let E be a topological vector space over \mathbb{R} , and let M be a closed subspace of finite codimension. Then $E = M \oplus N$ is a topological sum, for every algebraic complementary subspace N of M.

Corollary 3.10. The algebraic sum $\mathcal{A}(G) = F_x \oplus Ker(\Phi_x)$ is topological. In particular, $F_x \oplus Ker(\Phi_x)$ and $\mathcal{A}(G)$ are topological isomorphic by the map: $(f_1, f_2) \mapsto f_1 + f_2$.

Proof. By the Theorem 3.6, $\mathcal{A}(G)$ is a normed vector space so it is a topological vector space. By Lemma 3.7, Φ_x is continuous and so its kernel is closed vector space with finite codimension. The results follows directly by applying the Lemma 3.9 for $E = \mathcal{A}(G)$ and $M = Ker(\Phi_x)$.

By Corollary 3.10, we can identify $\mathcal{A}(G)$ with $F_x \oplus Ker(\Phi_x)$, so every $f \in \mathcal{A}(G)$ is denoted by $f = (f_1, f_2) = f_1 + f_2$ with $f_1 \in F_x$ and $f_2 \in Ker(\Phi_x)$.

Recall that $\widetilde{E}(x) = \psi_x(\mathcal{A}(G)).$

Lemma 3.11. Let H and K be two closed vector subspaces of $\mathcal{A}(G)$ such that $cod(H) = cod(K) = j \ge 1$. Let $\psi \in \mathcal{A}(G) \setminus (H \cup K)$. Then there exists a vector space F of $\mathcal{A}(G)$, containing ψ and satisfying $\mathcal{A}(G) = F \oplus H = F \oplus K$.

Proof. There are two cases;

Case 1: If j = 1, then we take $F = \mathbb{K}\psi$.

Case 2: Suppose that $j \geq 2$. Denote by $H' = H \oplus \mathbb{K}\psi$ and $K' = K \oplus \mathbb{K}\psi$. Suppose that $H' \neq K'$ (otherwise, it is easy to take a comment supplement) and let $f_1 \in H' \setminus K'$ and $g_1 \in K' \setminus H'$, so $h_1 = f_1 + g_1 \notin H' \cup K'$. Denote by $H_1 = \mathbb{K}h_1 \oplus H'$ and $K_1 = \mathbb{K}h_1 \oplus K'$. We establish two cases:

- If $H_1 = K_1$, then any supplement F of H_1 in $\mathcal{A}(G)$ is a supplement of K_1 in $\mathcal{A}(G)$, the proof follows then.

- If $H_1 \neq K_1$, we take $f_2 \in H_1 \setminus K_1$ and $g_2 \in K_1 \setminus H_1$, so $h_2 = f_2 + g_2 \notin H_1 \cup K_1$. Denote by $H_2 = \mathbb{K}h_2 \oplus H_1$ and $K_2 = \mathbb{K}h_2 \oplus K_1$.

We repeat the same processes until j - 2 times and we obtain:

- If $H_{j-1} = K_{j-1}$, then any supplement F of H_{j-2} in $\mathcal{A}(G)$ is a supplement of K_{j-2} in $\mathcal{A}(G)$.

- If $H_{j-2} \neq K_{j-2}$, we take $f_j \in H_{j-2} \setminus K_{j-2}$ and $g_j \in H_{j-2} \setminus K_{j-2}$, so $h_j = f_j + g_j \notin H_{j-2} \cup K_{j-2}$. Denote by $H_{j-1} = \mathbb{K}h_{j-1} \oplus H_{j-2}$ and $K_{j-1} = \mathbb{K}h_{j-1} \oplus K_{j-2}$. We obtain then $H_{j-1} = K_{j-1} = \mathcal{A}(G)$, hence the proof is completed by taking $F = vect(\psi, h_1, \dots, h_j)$.

Denote by:

- $\widetilde{E}(x) = vect(L_G(x)).$ - $\widetilde{r}_x = dim(\widetilde{E}(x)).$ Since $vect(L_G(x)) = n$ then by Lemma 2.4, $dim(\widetilde{E}(v_0)) = n$, so $\widetilde{r}_G := \sup_{x \in \mathbb{C}^n} \{\widetilde{r}_x\} = n.$

Lemma 3.12. If $r(x) = \tilde{r}_x = n$, then there exists a commune vector space $F_x \subset \varphi^{-1}(L_G)$ supplement to $Ker(\Phi_x)$ and to $ker(\varphi)$ in $\mathcal{A}(G)$. (i.e $F_x \oplus Ker(\Phi_x) = F_x \oplus Ker(\varphi) = \mathcal{A}(G)$).

Proof. Since L_G is abelian so $vect(L_G)$ is an abelian algebra and φ is a morphism of ring, then $\varphi^{-1}(L_G)$ is an algebra containing G. hence $\varphi^{-1}(L_G) = \mathcal{A}(G)$. Then any supplement of $Ker(\Phi_x)$ in $\mathcal{A}(G)$ is contained in $\varphi^{-1}(L_G)$. Now by Lemma 3.8, φ is continuous. By Lemmas 3.7 and 3.8 both $Ker(\Phi_x)$) and $Ker(\varphi)$ are closed and since $cod(Ker(\Phi_x)) = cod(Ker(\varphi))$, then by lemma 3.11, there exists a commune supplement F_x to $Ker(\Phi_x)$ and to $ker(\Phi_x)$ in $\mathcal{A}(G)$ containing I_d (because $Id \in \mathcal{A}(G) \setminus Ker(\Phi_x) \cup Ker(\varphi)$).

Lemma 3.13. The linear map $\Phi_x : F_x \longrightarrow E(x)$ given by $\Phi_x(f) = f(x)$ is an isomorphism.

Proof. The proof follows directly from the fact that Φ_x is linear surjective and $\dim(F_x) = \dim(E(x)) = n$.

Lemma 3.14. If $r(x) = \tilde{r}_x = n$, then the restriction $\varphi_1 : F_x \longrightarrow vect(L_G)$ of φ from F_x unto $vect(L_G)$ is an isomorphism.

Proof. The proof follows directly from the fact that φ_1 is linear surjective and $dim(F_x) = dim(vect(L_G)) = n.$

Lemma 3.15. If $r(x) = \tilde{r}_x = n$, then the map $\varphi_x := \tilde{\Phi}_x \circ \varphi_1 \circ \Phi_x^{-1} : E(x) \longrightarrow \tilde{E}(x)$ defined by $\varphi_x(f(x)) = Df_0(x)$, $f \in H$, is an isomorphism and satisfying: (i) $\varphi_x(G(x)) = L_G(x)$. (ii) Let $y \in E(x)$ and $z = \varphi_x(y)$ then $\varphi_x(G(y)) = L_G(z)$. (iii) for every $y \in \overline{G(x)}$ we have $z = \varphi_x(y) \in \overline{L_G(x)}$.

Proof. (i) φ_x is an isomorphisms, since $\varphi_x = \widetilde{\Phi}_x \circ \varphi_1 \circ \Phi_x^{-1}$ and by Lemmas 3.14, 2.5 and 3.13, it is composed by isomorphisms.

By Lemma 3.12, we can assume that F_x is a commune supplement to $Ker(\Phi_x)$ and to $Ker(\varphi)$ in $\mathcal{A}(G)$. Let $f_1, \ldots, f_r \in \mathcal{A}(G)$ be the generator of F_x . So the restriction $(\Phi_x)_{/F_x}$ (resp. $(\psi_x)_{/F_x}$) of Φ_x (resp. ψ_x) on F_x are bijective from F_x to E(x) (resp. $\tilde{E}(x)$). Then $f_1(x), \ldots, f_r(x)$ generate E(x) and $Df_1(0)(x), \ldots, Df_r(0)(x)$ generate $\tilde{E}(x)$. Now, let $f = \sum_{k=1}^r \alpha_k f_k \in F_x$, so $\varphi_x(f(x)) = \sum_{k=1}^r \alpha_k Df_k(0)(x) =$ $Df_0(x) \in L(x)$. It follows that $\varphi_x(G(x)) = L_G(x)$.

(ii) Let $y \in E(x)$ and $z = \varphi_x(y)$. Let $f \in G$ and write $f = \sum_{k=1}^r \alpha_k f_k$, where (f_1, \ldots, f_r) be a basis of F_x . Then by Lemma 3.2, g(0) = 0 and so $\varphi_x(f(y)) = \varphi_x(f \circ g(x)) = Df_0 Dg_0(x) = Df_0(z) \in L_G(z)$. It follows that $\varphi_x(G(y)) \subset L_G(z)$. Conversely, let $a \in L_G(z)$, so $a = Df_0(z)$ for some $f \in G$. Since $z = Dg_0(x)$ and $g \in G$, so $a = D(f \circ g)_0(x) = \varphi_x(f \circ g)$. Hence $a \in \varphi_x(G(x))$.

(iii) Since $y \in E(x)$, there exists $g \in F_x$ such that y = g(x), so $z = Dg_0(x)$. By continuity of φ_x and by (i), we have $z \in \varphi_x(\overline{G(x)}) \subset \overline{\varphi_x(G(x))} = \overline{L_G(x)}$. \Box

Denote by:

- $\widetilde{U}_t = \{ y \in \mathbb{C}^n, \ \widetilde{r}_y \ge t \}$, for every $0 \le t \le n$.

By applying Lemma 3.11 given in [10] to the abelian linear group L_G , we found the following result:

Lemma 3.16. ([10], Lemma 3.11) \widetilde{U}_t is a L_G -invariant dense open subset of \mathbb{C}^n .

Consider the distinct values $\tilde{r}_0 = 0 < \tilde{r}_1 < \cdots < \tilde{r}_p = n$ taken by the map $\tilde{r} : \mathbb{C}^n \longrightarrow \mathbb{N}$ given by $x \longmapsto \tilde{r}_x, x \in \mathbb{C}^n$ and let $\tilde{F}_j = \{x \in \mathbb{C}^n / \tilde{r}_x \leq \tilde{r}_j\}, j = 0, 1, \ldots, p$. Evidently $\tilde{F}_j (0 \leq j \leq q)$ is the complementary of the *L*-invariant open set $\tilde{U}_{\tilde{r}_{j-1}}$ (Lemma 3.16) and so the sequence $\tilde{F}_0, \ldots, \tilde{F}_p$ is a increasing sequence of closed subsets of \mathbb{C}^n and $\tilde{\Omega}_j = \tilde{F}_j \setminus \tilde{F}_{j-1} = \tilde{F}_j \cap \tilde{U}_{\tilde{r}_{j-1}}$. By Lemma 3.3, *L* is an abelian subgroup of $GL(n, \mathbb{C})$. We set the same construction of the open sets $\tilde{\Omega}_j$ which is given by S.Chihi in the proof of Theorem 3.10, for using the following result: medskip

Lemma 3.17. ([10], Theorem 3.10) Let $1 \leq j \leq p$ and $x \in \widetilde{\Omega}_j$ then for every $y \in \overline{L_G(x)} \cap \widetilde{\Omega}_j$ we have $\overline{L_G(y)} \cap \widetilde{\Omega}_j = \overline{L_G(x)} \cap \widetilde{\Omega}_j$.

Lemma 3.18. (Under the above notations) For every $x \in \Omega_j$, we have $\varphi_x(\Omega_j \cap E(x)) = \widetilde{\Omega}_j \cap \widetilde{E}(x)$ for every $1 \leq j \leq p$.

Proof. Let $y \in \Omega_j \cap E(x)$ and $z = \varphi_x(y)$. By Lemma 3.15,(ii), $\varphi_x(G(y)) = L_G(z)$. Since φ_x is linear, then $\varphi_x(E(y)) = \widetilde{E}(z)$, so $r(y) = \widetilde{r}_z = j$. It follows that $z \in \widetilde{\Omega}_j \cap \widetilde{E}(x)$. For the converse we use the same proof for φ_x^{-1} . Proof of Structure's Theorem1. By Proposition 3.4, U_t is a *G*-invariant open set of \mathbb{C}^n for every $0 \leq t \leq r_G$ and it is dense in \mathbb{C}^n for every $0 \leq t \leq \tilde{r}_G$. Consider the distinct values $r_0 = 0 < r_1 < \cdots < r_q = r_G$ taken by the map $r : \mathbb{C}^n \longrightarrow \mathbb{N}$ given by $x \longmapsto r(x), x \in \mathbb{C}^n$ and let $F_j = \{x \in \mathbb{C}^n/r(x) \leq r_j\}, j = 0, 1, \ldots, q$. Evidently F_j $(0 \leq j \leq q)$ is the complementary of the *G*-invariant open set $U_{r_{j-1}}$ and so the sequence F_0, \ldots, F_q is a increasing sequence of closed subsets of \mathbb{C}^n and $\Omega_j = F_j \setminus F_{j-1} = F_j \cap U_{r_{j-1}}$ for every $1 \leq j \leq q$. Yet, by Proposition 3.4, $U_{r_{j-1}}$ is a *G*-invariant open set of \mathbb{C}^n . This proves (i).

The proof of (ii): Let $x \in \Omega_j$ and $y \in \overline{G(x)} \cap \Omega_j$. By Lemma 3.15, there exists an isomorphism $\varphi_x : E(x) \longrightarrow \widetilde{E}(x)$ satisfying $\varphi_x(G(x)) = L(x)$ and $\varphi_x(G(y)) = L_G(z)$ with $z = \varphi_x(y)$. By Lemma 3.17, we have

$$\overline{L_G(z)} \cap \widetilde{\Omega}_j = \overline{L_G(x)} \cap \widetilde{\Omega}_j \qquad (1).$$

By Lemma 3.15, we have φ_x is an isomorphism satisfying $\varphi_x(E(x)) = \tilde{E}_x$ and $\varphi_x(G(x)) = L_G(x)$. By Lemma 3.18, we have $\varphi_x(\Omega_j \cap E(x)) = \tilde{\Omega}_j \cap \tilde{E}(x)$, therefore by (1) we obtain

$$\overline{G(x)} \cap \Omega_j = \overline{G(x)} \cap \Omega_j \cap E(x)$$

= $\varphi_x^{-1}(\overline{L_G(x)}) \cap \varphi_x^{-1}(\widetilde{\Omega}_j \cap \widetilde{E}(x))$
= $\overline{\varphi_x^{-1}(L_G(z))} \cap \Omega_j \cap E(x)$
= $\overline{G(y)} \cap \Omega_j.$

This completes the proof.

Denote by $\widetilde{r}_G = max\{\widetilde{r}_x, x \in \mathbb{C}^n\}.$

Proof of Corollary 1.2. Let O be a dense orbit in \mathbb{C}^n (i.e. $\overline{O} = \mathbb{C}^n$). Then for every $x \in O$, we have r(x) = n, so $O \subset U$ and $\overline{O} \cap U = U$. Since O is minimal in U (Theorem 1.1), then for every orbit $L \subset U$, we have $\overline{L} \cap U = \overline{O} \cap U$. Therefore $\overline{L} = \overline{O} = \mathbb{C}^n$.

Proof of Corollay 1.3. If O is a locally dense orbit in \mathbb{C}^n (i.e. $\overline{O} \neq \emptyset$) then $O \subset U$ (because, as above, for any $x \in O$, r(x) = n). Let C be a connected component of U meeting O. Then $\overline{O} \cap C$ is a nonempty closed subset in C. Lets show that $\overline{O} \cap C$ is open in C. Let $y \in \overline{O} \cap C$. Since O is minimal in U (Theorem 1.1) then $\overline{O} \cap U = \overline{G(y)} \cap U$. So, $\overline{G(y)} = \overline{O} \neq \emptyset$. Then $y \in \overline{G(y)} \cap C \subset \overline{O} \cap C$. Lets show that every orbit meeting C is dense in C: if O' is an orbit meeting C then $O' \subset U$. Since O is dense in C then $O' \subset \overline{O}$ and then $O' \cap C = O \cap C = C$. This completes the proof. \Box

Proof of Structure's Theorem 2. Suppose that $\widetilde{E}(x) = \mathbb{C}^n$, for some $x \in \mathbb{C}^n$. Firstly, by Proposition 2.1, we can assume that $L_G \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$ and so $v_0 = u_0$. Secondly,

we verify that
$$x \in V := \prod_{k=1} \mathbb{C}^* \times \mathbb{C}^{n_k - 1}$$
: We have $\mathbb{C}^n \setminus V = \bigcup_{k=1} H_k$, where
$$H_k = \{ y = (y_1, \dots, y_r), \ y_k \in \{0\} \times \mathbb{C}^{n_k - 1}, \ y_i \in \mathbb{C}^{n_i} \text{ for } i \neq k \}.$$

By construction of $\mathcal{K}_{\eta,r}(\mathbb{C})$, each H_k is L_G -invariant vector space with dimension n-1, so $x \in V$.

Thirdly, we can take $x = u_0$, leaving to replace L_G by PL_GP^{-1} for any passage matrix P from the canonical basis to (x, e_2, \ldots, e_n) .

Finally, the proof of Theorem 1.4 follows directly from Theorem 1.1 and Lemma 2.4. $\hfill \square$

3.3. Locally results. We can remove the condition $dim(vect(L_G) = n$ in the Theorem 1.1, we obtain a locally decomposition as follow:

Corollary 3.19. Let G be an abelian subgroup of $Diff^1(\mathbb{C}^n)$, such that $0 \in Fix(G)$. Let $x \in \mathbb{C}^n$. If $r(x) = \tilde{r}_x$, there exist a finite increasing sequence of G-invariant closed subsets of E(x), $F_0 \subset \cdots \subset F_q$, $1 \leq q \leq n$, with the following properties:

(i)
$$F_0 = \emptyset$$
, $F_q = \mathbb{C}^n \setminus \{0\}$ and $\mathbb{C}^n = \bigcup_{j=1}^q \Omega_j$, where $\Omega_j = F_j \setminus F_{j-1}$.

(ii) Every orbit of Ω_j is minimal in it.

Proof. By Lemma 3.1, E(x) is *G*-invariant. Then the proof results directly by applying Theorem ?? on the restriction $G_{/E(x)}$ of *G* on E(x).

3.4. Some results for the dimension n = 1. We can remove the condition $dim(vect(L_G) = 1 \text{ in the Theorem 1.1}, we obtain a global decomposition as follow:$

Corollary 3.20. Let G be an abelian subgroup of $Diff^1(\mathbb{C})$, such that $0 \in Fix(G)$. Then every orbit of $\mathbb{C}\setminus\{0\}$ is minimal in it.

Proof. Since $id \in G$, then $id \in L_G$ and so $dim(L_G) = 1$. The prof results from Theorem 1.1, for $F_0 = \emptyset$, $F_1 = \{0\}$ and $F_2 = \mathbb{C}$.

Remark 3.21. Remark that $dim(L_G) \ge 1$, since $I_n \in L_G$, where I_n is the identity matrix with order n.

4. Example in the dimension n=2

We give some examples of abelian subgroup of $Diff^1(\mathbb{C})$ which are near enough th linear group. Recall that $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

Example 4.1. Let Γ be the group abelian of all diffeomorphisms f of \mathbb{C}^2 defined by $f(x,y) = (x, y + P(x)), P \in \mathbb{C}[X]$ and G be a subgroup of Γ generated by $f: (x,y) \mapsto (x, y + P(x))$ and $g: (x,y) \mapsto (x, y + Q(x))$ with $P, Q \in \mathbb{C}[X]$, Q(0) = P(0) = 0 and $P'(0) \neq 0$. Then every orbit is minimal in the open set $\mathbb{C}^* \times \mathbb{C}$.

Proof. We can easily verify that G is abelian, $0 \in Fix(G)$. In the begin, we have $f^n \circ g^m(x,y) = (x, y + nP(x) + mQ(x))$ for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$h(x,y) = (\alpha x, \ \beta y + R(x)) \text{ where } R \in \mathbb{C}[X]$$
 (1)

We have $Df_0 = \begin{bmatrix} 1 & 0 \\ P'(0) & 1 \end{bmatrix}$. Then $L_G \subset \mathbb{T}^*_2(\mathbb{C})$. Here $u_0 = e_1 = (1,0)$ then $\widetilde{E}(u_0)$ is generated by e_1 and $Df_0(u_0) = (1, P'(0))$, so $dim(\widetilde{E}(u_0)) = 2$, hence $\widetilde{E}(e_1) = \mathbb{C}^2$. By Lemma 2.7, $\widetilde{\Omega}_2 = \mathbb{C}^* \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{e_1}(\Omega_2) = \widetilde{\Omega}_2$, then

$$\Omega_2 = \varphi_{e_1}^{-1}(\mathbb{C}^* \times \mathbb{C}) \qquad (2)$$

By Theorem 1.4, every orbit of Ω_2 is minimal in it. Now let's prove that $\varphi_{e_1}^{-1}(\mathbb{C}^* \times \mathbb{C}) = \mathbb{C}^* \times \mathbb{C}$: Recall that $\varphi_{e_1}(x, y) = \widetilde{\Phi}_{e_1} \circ \varphi \circ \Phi_{e_1}^{-1}(x, y)$ (see Lemma 3.15). Let $(x, y) \in \mathbb{C}^* \times \mathbb{C}$. Then there exists $h \in \mathcal{A}(G)$ such that $(x, y) = Dh_0e_1$. Using (2) and by integration, h has the form $h : (s, t) \longrightarrow (xs, \ \beta t + ys + sR(s) + \gamma)$, with $R \in \mathbb{C}[X]$, then $h(e_1) = (x, y + R(1))$ and $Dh_0e_1 = (x, y)$. Therefore

$$\varphi_{e_1}^{-1}(x,y) = \Phi_{e_1} \circ \varphi^{-1} \circ \Phi_{e_1}^{-1}(x,y)$$
$$= \Phi_{e_1} \circ \varphi^{-1}(Dh_0)$$
$$= \Phi_{e_1}(h)$$
$$= h(e_1)$$
$$= (x, y + R(1) + \gamma) \in \mathbb{C}^* \times \mathbb{C}$$

Conversely, Let $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ then there is $h \in \mathcal{A}(G)$ such that $h(e_1) = (a, b)$. By (2), h has the form $h(s, t) = (as, \beta t + bs + sR(s) + \gamma)$, then $Dh_0(e_1) = (a, b + R(1) + R'(1))$. Therefore

$$\varphi_{e_1}(a,b) = \widetilde{\Phi}_{e_1} \circ \varphi \circ \Phi_{e_1}^{-1}(a,b)$$

= $\widetilde{\Phi}_{e_1} \circ \varphi(h)$
= $\Phi_{e_1}(Dh_0)$
= $h(e_1)$
= $(a,b+R(1)+R'(1)) \in \mathbb{C}^* \times \mathbb{C}$

It follows that $\varphi_{e_1}^{-1}(\mathbb{C}^* \times \mathbb{C}) = \mathbb{C}^* \times \mathbb{C}$.

Example 4.2. Let G be the abelian group generated by $f(x, y) = (x^q, y + x^k)$ and $g(x, y) = (x^{q'}, y + x^{k'}) q$ and q' are odd integers, $k, k' \in \mathbb{N}$. Then every orbit of $\mathbb{C}^* \times \mathbb{C}$ is minimal in it.

Proof. We can easily verify that G is abelian, $0 \in Fix(G)$. In the begin, we have $f^n(x,y) = (x^{nq}, y + x^k + \sum_{i=1}^n x^{iqk}))$ and so

$$f^{n} \circ g^{m}(x, y) = \left(x^{nqmq'}, \quad y + x^{k} + \sum_{i=1}^{n} x^{iqk} + x^{nqk'} + \sum_{j=1}^{m} x^{nqjq'k'}\right)$$

for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

h

$$(x,y) = (\alpha x, \ \beta y + R(x)) \text{ where } R \in \mathbb{C}[X]$$
 (1)

We have $Did_0 = id$ and $Df_0 = Dg_0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then $L_G \subset \mathbb{T}_1^*(\mathbb{C}) \oplus \mathbb{T}_1^*(\mathbb{C})$.

Here $u_0 = e_1 + e_2 = (1, 1)$ then $\widetilde{E}(u_0)$ is generated by e_1 and $Df_0(u_0) = (0, 1)$, so $dim(\widetilde{E}(u_0)) = 2$, hence $\widetilde{E}(u_0) = \mathbb{C}^2$. By Lemma 2.7, $\widetilde{\Omega}_2 = \mathbb{C}^* \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{u_0}(\Omega_2) = \widetilde{\Omega}_2$, then

$$\Omega_2 = \varphi_{u_0}^{-1}(\mathbb{C}^* \times \mathbb{C}) \qquad (2)$$

By Theorem 1.4, every orbit of Ω_2 is minimal in it. As in the proof of example 4.1, we prove that $\varphi_{u_0}^{-1}(\mathbb{C}^* \times \mathbb{C}) = \mathbb{C}^* \times \mathbb{C}$.

Question1: Is there an abelian subgroup of $Diff^1(\mathbb{C}^n)$ fixing some point having no minimal set in $\mathbb{C}^n \setminus Fix(G)$?

Question2: An abelian subgroup of $Diff^1(\mathbb{C}^n)$ fixing some point and satiffying $r(x) = \tilde{r}_x$ for every $x \in \mathbb{C}^n$, is-it conjugate to a linear group?

References

- A. Ayadi.A and H. Marzougui, Dynamic of Abelian subgroups of GL(n, C): a structure Theorem, Geometria Dedicata, 116(2005) 111-127.
- Ayadi.A and Marzougui.H, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: World Scientific, Hackensack, NJ, (2006), 47-69.
- A.Ayadi, H.Marzougui and Y.Ndao, On the dynamic of abelian groups of affine maps on Cⁿ and Rⁿ, preprint, ictp, IC/2009/062.
- C.D.Aliprantis and K.C.Border, Infinite dimensional analysis: A Hitchhiker's Guide, 3^rd Edition, Springer-Verlag, Heidelberg and New York, 2006.
- F.Saponga, Localisation des points fixes communs pour des difféomorphismes commutants du plan, Bull Braz Math Soc, New seies 42 (3), (2010), 373-397.
- 6. H.H.Schaefer and M.P.Wolff, Topological vector spaces, Graduate texts in mathematics, 1999.
- J. FRANKS, M. HANDEL and K. PARWANI, Fixed points of abelian actions on S², Ergodic Theory and Dynamical Systems, 27, (2007), 1557-1581
- M.Waldschmidt, *Topologie des points rationnels*, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
- 9. P.W.Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980c.
- S.Chihi, On the minimal orbits of an abelian linear action, Differential Geometry Dynamical Systems, Vol.12, (2010), 61-72.
- V.Bergelson, M.Misiurewicz and S.Senti, Affine actions of a free semigroup on the real line, Ergod. Th. and Dynam. Sys. vol 26, (2006), 1285-1305.

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada

 $E\text{-}mail\ address: \texttt{yahiandao@yahoo.fr}$

Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com