THE ACTION OF ABELIAN C^{1}-DIFFEOMORPHISMS GROUP FIXING A POINT, ON \mathbb{C}^{n}

YAHYA N'DAO AND ADLENE AYADI

Abstract

In this paper, we study the action of any abelian subgroup G of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$ on \mathbb{C}^{n}. Suppose that $0 \in F i x(G)$ and $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$, where $\operatorname{vect}\left(L_{G}\right)$ is the vector space generated by $L_{G}=\left\{D f_{0}, f \in G\right\}$. We prove the existence of a decreasing finite sequence $F_{0}, F_{1}, \ldots, F_{q}$ of invariant closed sets such that $\Omega_{j}=F_{j} \backslash F_{j-1}$ is an open subset(for the relative topology) of F_{j} in which every orbit is minimal. Moreover, if G has a dense orbit in \mathbb{C}^{n} then every orbit of Ω_{q} is dense in \mathbb{C}^{n}.

1. Introduction

Denote by $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$ the group of all C^{1}-diffemorphisms of \mathbb{C}^{n}. Let G be an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$ and $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$, where $\operatorname{vect}\left(L_{G}\right)$ is the vector space generated by $L_{G}=\{D f(0), f \in G\}$ and $\operatorname{Fix}(G)=\left\{x \in \mathbb{C}^{n}: f(x)=x, \forall f \in G\right\}$ be the global fixed point set of G. There is a natural action $G \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n} .(f, x) \longmapsto f(x)$. For a point $x \in \mathbb{C}^{n}$, denote by $G(x)=\{f(x), f \in G\} \subset \mathbb{C}^{n}$ the orbit of G through x. A subset $E \subset \mathbb{C}^{n}$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. Denote by \bar{E} (resp. $\stackrel{\circ}{E}$) the closure (resp. interior) of E.

A subset E of \mathbb{C}^{n} is called a minimal set of G if E is closed in \mathbb{C}^{n}, non empty, G-invariant and has no proper subset with these properties. It is equivalent to say that E is a G-invariant set such that every orbit contained in E is dense in it. If Ω is a G-invariant set in \mathbb{C}^{n}, we say that E is a minimal set in Ω if it is a minimal set of the restriction $G_{/ \Omega}$ of G to Ω. An orbit $O \subset \Omega$ is called minimal in Ω if $\bar{O} \cap \Omega$ is a minimal set in Ω. This means that for every $x \in \bar{O} \cap \Omega$ we have $\bar{O} \cap \Omega=\overline{G(x)} \cap \Omega$. For example, a closed orbit in Ω is minimal in Ω. In particular, every point in $\operatorname{Fix}(G)$ is minimal in \mathbb{C}^{n}.

Many authors have studied the existence of commune fixed point of any abelian group of diffeomorphisms. In [5], S.Frimo proved that if G is an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{R}^{2}\right)$ generated by any family of commuting diffeomorphisms of the plane wich are C^{1}-close to the identity and having a bounded orbit then $\operatorname{Fix}(G) \neq \emptyset$. In [7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated abelian subgroup of $\operatorname{Dif} f_{+}^{1}\left(\mathbb{R}^{2}\right)$ and if there is a compact G-invariant set $C \subset \mathbb{R}^{2}$, then $\operatorname{Fix}(G)$ is non-empty.

[^0] 15.

This paper can be viewed as a generalization of the results given in [3] whose generalize the structure's theorem given in [1] and it uses a construction analogous to that given by S.Chihi in [10] for abelian linear group.

Our principal results can be stated as follows:
Denote by $L_{G}=\left\{D f_{0}, f \in\right\}$ and vect $\left(L_{G}\right)$ be the vector space generated by L_{G}. We generalize the result given in [1] for abelian subgroup of $G L(n, \mathbb{C})$:

Theorem 1.1 (Structure's Theorem1). Let G be an abelian subgroup of Diff $f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$ and $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. Then there exist a finite increasing sequence of G-invariant closed subsets of $\mathbb{C}^{n}, F_{0} \subset \cdots \subset F_{q}, 1 \leq q \leq n$, with the following properties:
(i) $F_{0}=\emptyset, F_{q}=\mathbb{C}^{n} \backslash\{0\}$ and $\mathbb{C}^{n}=\bigcup_{j=1}^{q} \Omega_{j}$, where $\Omega_{j}=F_{j} \backslash F_{j-1}$.
(ii) Every orbit of Ω_{j} is minimal in it.

Under the hypothesis of Theorem 1.1, denote by $U=\Omega_{q}=\mathbb{C}^{n} \backslash F_{q-1}$. We have the following corollaries.
Corollary 1.2. Let G be an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$ and $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. If G has a dense orbit then every orbit in U is dense in \mathbb{C}^{n}.

Corollary 1.3. If G has a locally dense orbit O in \mathbb{C}^{n} and C is a connected component of U meeting O then every orbit meeting C is dense in it.

For every $x \in \mathbb{C}^{n}$, denote by:

- $L_{G}(x)=\left\{A x, A \in L_{G}\right\}$ the orbit of x defined by the natural action of the linear group L_{G} on \mathbb{C}^{n}.
- $\widetilde{E}(x)$ be the vector space generated by $L_{G}(x)$.

Another version of the Structure's theorem is given by:
Theorem 1.4 (Structure's Theorem2). Let G be an abelian subgroup of Diff $f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$. If there exists $x \in \mathbb{C}^{n}$ with $\widetilde{E}(x)=\mathbb{C}^{n}$, then there exist a finite increasing sequence of G-invariant closed subsets of $\mathbb{C}^{n}, F_{0} \subset \cdots \subset F_{q}$, $1 \leq q \leq n$, with the following properties:
(i) $F_{0}=\emptyset, F_{q}=\mathbb{C}^{n} \backslash\{0\}$ and $\mathbb{C}^{n}=\bigcup_{j=1}^{q} \Omega_{j}$, where $\Omega_{j}=F_{j} \backslash F_{j-1}$.
(ii) Every orbit of Ω_{j} is minimal in it.

In the second Theorem, we prove that the condition $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$ can be replaced by $\widetilde{E}(x)=\mathbb{C}^{n}$ for some $x \in \mathbb{C}^{n}$ and so the Corllaries 1.2 and 1.3 remains valid.

This paper is organized as follows: In Section 2, we give some results for abelian linear group. The Section 3 is devoted to prove the main results. In the section 4, we give two examples for $n=2$.

2. Some results for abelian linear group

Denote by $M_{n}(\mathbb{C})$ the set of complex square matrices of order $n \geq 1$, and $G L(n, \mathbb{C})$ the group of the invertible matrices of $M_{n}(\mathbb{C})$.

- $\mathbb{T}_{n}(\mathbb{C})$ the set of all lower-triangular matrices over \mathbb{C}, of order n and with only one eigenvalue.
- $\mathbb{T}_{n}^{*}(\mathbb{C})=\mathbb{T}_{n}(\mathbb{C}) \cap G L(n, \mathbb{C})$ (i.e. the subset of matrix of $\mathbb{T}_{n}(\mathbb{C})$ having a non zero eigenvalue), it is a subgroup of $G L(n, \mathbb{C})$.
$-\mathbb{D}_{n}(\mathbb{C})$ the set of diagonal matrix of $M_{n}(\mathbb{C})$.
- $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $\mathbb{N}_{0}=\mathbb{N} \backslash\{0\}$.

Let $r \in \mathbb{N}^{*}$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}$ such that $\sum_{i=1}^{r} n_{i}=n$. Denote by:
$-\mathcal{K}_{\eta, r}(\mathbb{C})=\left\{M=\operatorname{diag}\left(T_{1}, \ldots, T_{r}\right) \in M_{n}(\mathbb{C}): T_{k} \in \mathbb{T}_{n_{k}}(\mathbb{C}), k=1, \ldots, r\right\}$.

- $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})=\mathcal{K}_{\eta, r}(\mathbb{C}) \cap G L(n, \mathbb{C})$, it is a subgroup of $G L(n, \mathbb{C})$.
- v^{T} the transpose of a vector $v \in \mathbb{C}^{n}$.
- $\mathcal{E}_{n}=\left(e_{1}, \ldots, e_{n}\right)$ the standard basis of \mathbb{C}^{n}.
- I_{n} the identity matrix on \mathbb{C}^{n}.

Denote by:

- $u_{0}=\left[e_{1,1}, \ldots, e_{r, 1}\right]^{T} \in \mathbb{C}^{n}$, where $e_{k, 1}=[1,0, \ldots, 0]^{T} \in \mathbb{C}^{n_{k}}, \quad 1 \leq k \leq r$.
$-e^{(k)}=\left[0_{\mathbb{C}^{n_{1}}}, \ldots, 0_{\mathbb{C}^{n_{k-1}}}, e_{k, 1}^{T}, 0_{\mathbb{C}^{n_{k+1}}}, \ldots, 0_{\mathbb{C}^{n_{r}}}\right]^{T}, \quad 1 \leq k \leq r$.
For a vector $v \in \mathbb{C}^{n}$, we write $v=\Re(v)+i \Im(v)$, where $\Re(v)$ and $\Im(v) \in \mathbb{R}^{n}$.

In [2], the authors proved the following
Proposition 2.1. ([2], Proposition 6.1.) Let L be an abelian subgroup of $G L(n, \mathbb{C})$, then there exists $P \in G L(n, \mathbb{C})$ such that $\widetilde{L}=P^{-1} L P$ is a subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$, for some $1 \leq r \leq n$ and $\eta \in \mathbb{N}_{0}^{r}$.

For such matrix P define $v_{0}=P u_{0}$.
Let L be an abelian subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. denote by:

- $\left(e_{k, 1}, \ldots, e_{k, n_{k}}\right)$ be the canonical basis of $\mathbb{C}^{n_{k}}$, for every $k=1, \ldots, r$.
- $L_{k}=\left\{A_{k}, A=\operatorname{diag}\left(A_{1}, \ldots, A_{r}\right) \in L\right\}$.
- If $L \subset \mathbb{T}_{n}(\mathbb{C})$ denote by $F_{L}=\operatorname{vect}\left\{\left(A-\mu_{A} I_{n}\right) e_{i}, A \in L, 1 \leq i \leq n-1\right\}$.
- In general, if $L \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$, denote by $F_{L_{k}}=\operatorname{vect}\left\{\left(A_{k}-\mu_{A_{k}} I_{n_{k}}\right) e_{k, i}, A_{k} \in L_{k}, 1 \leq\right.$ $\left.i \leq n_{k}-1\right\}$.

Lemma 2.2. ([2], Theorem 5.2) Let L be an abelian subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. Assume that $\operatorname{dim}\left(F_{L_{k}}\right)=n_{k}-1, k=1, \ldots, r$. Then there exists a linear injective map $\rho: \mathbb{C}^{n} \longrightarrow \mathcal{K}_{\eta, r}(\mathbb{C})$ such that:
i) $L \subset \rho\left(\mathbb{C}^{n}\right)$.
ii) For every $v \in \mathbb{C}^{n}, \rho(v) u_{0}=v$.

Lemma 2.3. Let \widetilde{L} be an abelian linear subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ with $\eta=\left(n_{1}, \ldots, n_{r}\right)$. If $\operatorname{dim}(\operatorname{vect}(\widetilde{L}))=n$, then $\operatorname{dim}\left(F_{\widetilde{L}_{k}}\right)=n_{k}-1$ for every $k=1, \ldots, r$.
Proof. Since $\operatorname{dim}(\operatorname{vect}(\widetilde{L}))=n$ then $\operatorname{dim}\left(\operatorname{vect}\left(\widetilde{L}_{k}\right)\right)=n_{k}, k=1, \ldots, r$. To show the Lemma for each \widetilde{L}_{k}, we suppose that \widetilde{L} is an abelian subgroup of $\mathbb{T}_{n}^{*}(\mathbb{C})$. We proceed by induction on the dimension $n \geq 1$:

- For $n=1, \widetilde{L} \subset \mathbb{C}^{*}$ and $F_{1}=\{0\}$, so $\operatorname{dim}\left(F_{1}\right)=n-1=0$.
- Suppose the property is true until dimension $n-1$ and let \widetilde{L} be an abelian subgroup of $\mathbb{T}_{n}^{*}(\mathbb{C})$. Every $A \in \widetilde{L}$ is written in the form:

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
T_{A} & \mu_{A}
\end{array}\right], \text { with } A_{1} \in \mathbb{T}_{n-1}^{*}(\mathbb{C}), T_{A} \in M_{1, n-1}(\mathbb{C})
$$

and μ_{A} be the only eigenvalue of A. Consider the set $\widetilde{L}^{1}=\left\{A^{1}, A \in \widetilde{L}\right\}$. It is clear that \widetilde{L}^{1} is an abelian subgroup of $\mathbb{T}_{n-1}^{*}(\mathbb{C})$. We can verify that $\operatorname{dim}\left(\operatorname{vect}\left(\widetilde{L}^{1}\right)\right)=$ $n-1$, since $\operatorname{dim}(\operatorname{vect}(\widetilde{L}))=n$. By applying the induction property on \widetilde{L}^{1}, we obtain $\operatorname{dim}\left(F_{\widetilde{L}^{1}}\right)=n-2$, where $F_{\widetilde{L}^{1}}=\operatorname{vect}\left(\left(A^{1}-\mu_{A} I_{n-1}\right) e_{i}^{1}, A \in \widetilde{L}, k=1, \ldots, n-2\right\}$ and $\left(e_{1}^{1}, \ldots, e_{n-1}^{1}\right)$ be the canonical basis of \mathbb{C}^{n-1}. Now, if $\operatorname{dim}\left(F_{\widetilde{L}}\right)<n-1$, then $\operatorname{dim}\left(F_{\widetilde{L}}\right)=n-2$. Let $\left(v_{1}^{1}, \ldots, v_{n-2}^{1}\right)$ be a basis of $F_{\widetilde{L}^{1}}$ and denote by $v_{k}=\left(v_{k}^{1}, 0\right)$ for each k. We can assume that for any matrix $A \in \widetilde{L}, T_{A}=0$ leaving to change the canonical basis of \mathbb{C}^{n} by the basis $\left(v_{1}, \ldots, v_{n-2}, e_{n-1}, e_{n}\right)$, because $F_{\widetilde{L}^{1}}$ is $\widetilde{L}^{1}-$ invariant. Let $\theta: \mathbb{T}_{n-1}(\mathbb{C}) \longrightarrow \mathbb{T}_{n}(\mathbb{C})$ given by $\theta\left(A_{1}\right)=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & \mu_{A_{1}}\end{array}\right]$ is linear injective map such that $\widetilde{L}=\theta\left(\widetilde{L}^{1}\right)$, so $\operatorname{vect}(\widetilde{L})=\theta\left(\operatorname{vect}\left(\widetilde{L}^{1}\right)\right)$. It follows that $\operatorname{dim}(\operatorname{vect}(\widetilde{L}))=n-1 \neq n$, a contradiction.

Lemma 2.4. Let L be an abelian linear subgroup of $G L(n, \mathbb{C})$. Then $\operatorname{dim}(\operatorname{vect}(L))=$ n if and only if $\operatorname{dim}\left(\operatorname{vect}\left(L\left(v_{0}\right)\right)\right)=n$.

Proof. Firstly, by Proposition 2.1, suppose that $L \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ and so $v_{0}=u_{0}$. Since $\operatorname{dim}(\operatorname{vect}(L))=n$ then $\operatorname{dim}\left(\operatorname{vect}\left(L_{k}\right)\right)=n_{k}, k=1, \ldots, r$.
Suppose that $\operatorname{dim}(\operatorname{vect}(L))=n$, then by Lemma 2.3, $\operatorname{dim}\left(F_{L_{k}}\right)=n_{k}-1, k=$ $1, \ldots, r$. By Lemma 2.2 , there exists a linear injective map $\rho: \mathbb{C}^{n} \longrightarrow \mathcal{K}_{\eta, r}(\mathbb{C})$ such that:
i) $L \subset \rho\left(\mathbb{C}^{n}\right)$.
ii) For every $v \in \mathbb{C}^{n}, \rho(v) u_{0}=v$.

Let $M^{(1)}, \ldots, M^{(n)} \in L$ be the generators of $\operatorname{vect}(L)$. By (i), there exist $v_{1}, \ldots, v_{n} \in$ \mathbb{C}^{n} such that $\rho\left(v_{i}\right)=M^{(i)}$ for each i. By (ii), $v_{i}=\rho\left(v_{i}\right) u_{0}=M^{(i)} u_{0} \in L\left(u_{0}\right)$. It follows that v_{1}, \ldots, v_{n} generate $\operatorname{vect}\left(L\left(u_{0}\right)\right)$. Since ρ is injective and $M^{(1)}, \ldots, M^{(n)}$ are free, then $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of $\operatorname{vect}\left(L\left(u_{0}\right)\right)$ and so $\operatorname{vect}\left(L\left(u_{0}\right)\right)=\mathbb{C}^{n}$.

Conversely, suppose that $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\left(u_{0}\right)\right)\right)=n$, so $\operatorname{dim}\left(\operatorname{vect}\left(L_{k}\left(e_{k, 1}\right)\right)=n_{k}\right.$, where $e_{k, 1}=[1,0, \ldots, 0]^{T} \in \mathbb{C}^{n_{k}}$ and $L_{k}:=\left(L_{G}\right)_{k}$ for every $k=1, \ldots, r$. It follows that $\operatorname{dim}\left(F_{L_{k}}\right)=n_{k-1}$. We repeat the same proof, as in above, by using the Lemma 2.2.

Denote by:

- $\Psi_{x}: \operatorname{vect}\left(L_{G}\right) \longrightarrow \widetilde{E}(x) \subset \mathbb{C}^{n}$ the linear map given by $\Psi_{x}(A)=A x$.

Lemma 2.5. Let G be an abelian subgroup of Diff $f^{1}(\mathbb{C})$ such that $0 \in \in \operatorname{Fix}(G)$ and $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. Then $\widetilde{E}(x)$ is L_{G}-invariant and the linear map Ψ_{x} : $\operatorname{vect}\left(\left(L_{G}\right)_{/ \widetilde{E}(x)}\right) \longrightarrow \widetilde{E}(x)$ is an isomorphism., where $\left(L_{G}\right)_{/ \widetilde{E}(x)}$ is the restriction of L_{G} on $\widetilde{E}(x)$.

Proof. By construction, $\widetilde{E}(x)$ is L_{G}-invariant and Ψ_{x} is linear and surjective. Let $A \in \operatorname{Ker}\left(\Psi_{x}\right)$ and $y \in \operatorname{vect}\left(L_{G}(x)\right)$. Then there is $B \in \operatorname{vect}\left(\left(L_{G}\right)_{/ \widetilde{E}(x)}\right)$ such that $y=B x$. Now, $A y=A B x=B A x=0$, so $A=0$.

Let \widetilde{L} be an abelian subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. Denote by:
$-\widetilde{\Omega}_{n}=\left\{x \in \mathbb{C}^{n}, \operatorname{dim}(\operatorname{vect}(\widetilde{L}(x)))=n\right\}$.

- $\widetilde{V}=\prod_{k=1}^{r} \mathbb{C}^{*} \times \mathbb{C}^{n_{k}-1}$.

Lemma 2.6. For every $x \in \widetilde{V}$ there is $P \in \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ such that $x=P u_{0}$.
Proof. Write $x=\left(x_{1}, \ldots, x_{r}\right)$ with $x_{k}=\left(x_{k, 1}, \ldots, x_{k, n_{k}}\right)$ for each k. Let $P=$ $\operatorname{diag}\left(P_{1}, \ldots, P_{r}\right)$ such that $P_{k}=\left[\begin{array}{ccccc}x_{k, 1} & & & & \\ x_{k, 2} & \ddots & & 0 & \\ \vdots & 0 & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ x_{k, n_{k}} & 0 & \ldots & 0 & x_{k, 1}\end{array}\right] \in \mathbb{T}_{n_{k}}^{*}(\mathbb{C})$, since $x \in \widetilde{V}$, so $x_{k, 1} \neq 0$ for all k. It follows that $x=P u_{0}$, since $P_{k} e_{k, 1}=x_{k}$.

Lemma 2.7. Let \widetilde{L} be an abelian subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ such that $\operatorname{dim}(\operatorname{vect}(\widetilde{L}))=n$. Then $\widetilde{\Omega}_{n}=\widetilde{V}$.

Proof. Firstly, remark that $u_{0} \in \widetilde{\Omega}_{n}$ since $\operatorname{dim}(\operatorname{vect}(\widetilde{L})=n$ and by Lemma 2.4, $\operatorname{dim}\left(\operatorname{vect}\left(\widetilde{L}\left(u_{0}\right)\right)=n\right.$. Let $x \in \widetilde{V}$. By Lemma 2.6, there is $P \in \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ such that $x=P u_{0}$. Denote by $L=P^{-1} \widetilde{L} P$, so $L \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ and $\operatorname{dim}(\operatorname{vect}(L))=n$, hence by applying Lemma 2.4 on L, we have $\operatorname{dim}\left(\operatorname{vect}\left(L\left(u_{0}\right)\right)=n\right.$. Now, $\widetilde{L}(x)=$ $P L P^{-1}(x)=P L\left(u_{0}\right)$, then $\operatorname{vect}(\widetilde{L}(x))=P\left(\operatorname{vect}\left(L\left(u_{0}\right)\right)\right.$, so $\operatorname{dim}(\operatorname{vect}(\widetilde{L}(x))=n$, hence $x \in \widetilde{\Omega}_{n}$.
Conversely, let $x \in \widetilde{\Omega}_{n}$, so $\operatorname{dim}\left(\operatorname{vect}(\widetilde{L}(x))=n\right.$. Since $\mathbb{C}^{n} \backslash \widetilde{V}=\bigcup_{k=1}^{r} \widetilde{H}_{k}$, where

$$
\widetilde{H}_{k}=\left\{y=\left(y_{1}, \ldots, y_{r}\right), \quad y_{k} \in\{0\} \times \mathbb{C}^{n_{k}-1}, y_{i} \in \mathbb{C}^{n_{i}}, \text { for every } i \neq k\right\}
$$

By the form of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$, we can verify, that each \widetilde{H}_{k} is \widetilde{L}-invariant, so $x \notin H_{k}$ because $\operatorname{dim}\left(H_{k}\right)=n-1$. It follows that $x \in \widetilde{V}$.

3. Proof of main results

Lemma 3.1. Let G be an abelian subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$ and $x \in \mathbb{C}^{n}$. Then $E(x)$ is G-invariant.

Proof. Suppose that $E(x)$ is generated by $f_{1}(x), \ldots, f_{p}(x)$, with $f_{k} \in \mathcal{A}(G), k=$ $1, \ldots, p$. Let $y=\sum_{k=1}^{p} \alpha_{k} f_{k}(x) \in E(x)$ and $f \in G$, then $y=g(x)$, with $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \in$ $\mathcal{A}(G)$. Therefore $f(y)=f \circ g(x)=\Phi_{x}(f \circ g) \in E(x)$, since $f \circ g \in \mathcal{A}(G)$.

Lemma 3.2. Let G be an abelian subgroup of $\operatorname{Diff}^{1}\left(\mathbb{C}^{n}\right), r \geq 1$ such that $0 \in$ Fix (G). Then $g(0)=0$ for every $g \in \mathcal{A}(G)$.

Proof. Let $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \subset \mathcal{A}(G)$ with $f_{k} \in G, \alpha_{k} \in \mathbb{C}$, so $g(0)=\sum_{k=1}^{p} \alpha_{k} f_{k}(0)=0$. Now, let $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{q} \in \mathcal{A}(G)$ such that $f_{k}(0)=g_{j}(0)=0,1 \leq k \leq m$, $1 \leq j \leq q$, so for every $\alpha_{1}, \ldots, \alpha_{q}, \beta_{1} \ldots, \beta_{m} \in \mathbb{C}$ we have

$$
\begin{aligned}
\left(\sum_{j=1}^{q} \beta_{j} g_{j}\right) \circ\left(\sum_{k=1}^{m} \alpha_{k} f_{k}\right)(0) & =\sum_{j=1}^{q} \beta_{j} g_{j}\left(\sum_{k=1}^{m} \alpha_{k} f_{k}(0)\right) \\
& =\sum_{j=1}^{q} \beta_{j} g_{j}(0) \\
& =0
\end{aligned}
$$

Since $\mathcal{A}(G)$ is the algebra generated by G, so it is stable by composition and by linear combinations, hence we obtain the results.

Denote by $\varphi: \mathcal{A}(G) \longrightarrow M_{n}(\mathbb{C})$ the linear map given by $\varphi(f)=D f_{0}$, for every $f \in \mathcal{A}(G)$. Then $L_{G}=\varphi(G)$.

Lemma 3.3. Let G be an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in \operatorname{Fix}(G)$. Then L_{G} is an abelian subgroup of $G L(n, \mathbb{C})$.

Proof. Let $f, g \in G$, so $\varphi(f \circ g)=D(f \circ g)(0)=D f(g(0)) . D g(0)$. By Lemma 3.2, $g(0)=0$, so $\varphi(f \circ g)=D(f)(0) \cdot D g(0)=\varphi(f) \cdot \varphi(g)$. The proof is completed.

Denote by:

- $U_{t}=\left\{x \in \mathbb{C}^{n}, r(x) \geq t\right\}$, for every $t \in \mathbb{N}$.
$-r_{G}=\max \left\{r(x), \quad x \in \mathbb{C}^{n}\right\}$.
Proposition 3.4. Let G be an abelian subgroup of Diff $f^{1}\left(\mathbb{C}^{n}\right), r \geq 1$ such that $0 \in \operatorname{Fix}(G)$. Then for every $0 \leq t \leq r_{G}, U_{t}$ is a G-invariant open subset of \mathbb{C}^{n}.

Proof of Proposition 3.4. In the first, remark that the rank $r(y)$ is constant on any orbit $G(y), y \in E(x)$. So U_{t} is G-invariant for every $0 \leq t \leq r_{G}$. Let's show that U_{t} is an open set: Let $y \in U_{t}$ and $r=r_{y}$, so $r \geq t$. Then there exist $f_{1}, \ldots, f_{r} \in F(y)$ such that the r vectors $f_{1}(y), \ldots, f_{r}(y)$ are linearly independent in $E(y)$. For all $z \in \mathbb{C}^{n}$, we consider the Gram's determinant

$$
\Delta(z)=\operatorname{det}\left(\left\langle f_{i}(z) \mid f_{j}(z)\right\rangle\right)_{1 \leq i, j \leq r}
$$

of the vectors $f_{1}(z), \ldots, f_{r}(z)$ where $\langle. \mid$.$\rangle denotes the scalar product in \mathbb{C}^{n}$. It is well known that these vectors are independent if and only if $\Delta(z) \neq 0$, in particular $\Delta(y) \neq 0$. Let

$$
V_{y}=\left\{z \in \mathbb{C}^{n}, \quad \Delta(z) \neq 0\right\}
$$

The set V_{y} is open in \mathbb{C}^{n}, because the map $z \longmapsto \Delta(z)$ is continuous. Now $\Delta(y) \neq 0$, and so $y \in V_{y} \subset U_{t}$. The proof is completed.
3.1. Hamel basis and norm. The main of this section is to justify the existence of a basis of every vector space. This result is trivial in the finite case, is in fact rather surprising when one thinks of infinite dimensionial vector spaces, and the definition of a basis. Recall that a Hamel basis or simply a basis of a vector space E is a linearly independent set \mathcal{B} (every finite subset of \mathcal{B} is linearly independant) such that for each nonzero $x \in E$ there are $a_{1}, \ldots, a_{k} \in \mathcal{B}$ and nonzero scalars $\alpha_{1}, \ldots, \alpha_{k}$ (all uniquely determined) such that $x=\sum_{i=1}^{k} \alpha_{i} a_{i}$. The following theorem is equivalent to the axiom of choice family of axioms and theorems. In [4], C.D.Aliprantis and K.C.Border proved, in the following theorem, that Zorn's lemma implies that every vector space has a basis.

Theorem 3.5. ([4], Theorem 1.8) Every nontrivial vector space has a Hamel basis.
As a consequence, we found the important following results:
Theorem 3.6. Every nontrivial vector space has a norm called Hamel norm.

Proof. Let E be a nontrivial vector space over \mathbb{R}. By Theorem 3.5, E has a Hamel basis called $\mathcal{B}=\left(a_{i}\right)_{i \in I}$, for any set I of indices (not necessary countable). In this basis, every vector $x \in E$ has the form $x=\sum_{i \in I_{x}} \alpha_{i} a_{i}$, where $\alpha_{i} \in \mathbb{K}$ and $I_{x} \subset I$ with finite cardinal. The family $\left(\alpha_{i}\right)_{i \in I}$ with $\alpha_{i}=0$ for every $i \in I \backslash I_{x}$, is called the coordinate of x. Now, define $\|x\|=\sum_{i \in I_{x}}\left|\alpha_{i}\right|$. It is easy to verify that $\|\cdot\|$ defines a norm on E by the coordinate in the Hamel basis.

Remark that any vector for the Hamel basis is with norm 1.
3.2. Linear map and isomorphism. A subset $E \subset \mathbb{R}^{n}$ is called G-invariant if $f(E) \subset$ E for any $f \in G$; that is E is a union of orbits. Set $\mathcal{A}(G)$ be the algebra generated by G. For a fixed vector $x \in \mathbb{R}^{n} \backslash\{0\}$, denote by:

- $\Phi_{x}: \mathcal{A}(G) \longrightarrow \Phi_{x}(\mathcal{A}(G)) \subset \mathbb{R}^{n}$ the linear map given by $\Phi_{x}(f)=f(x)$.
- $E(x)=\Phi_{x}(\mathcal{A}(G))$.
- F_{x} is an algebraic supplement of $\operatorname{Ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$. It is easy to show that $p_{x}:=\operatorname{dim}\left(F_{x}\right)=\operatorname{dim}\left(\Phi_{x}(\mathcal{A}(G)) \leq n\right.$.
- $\mathcal{C}_{x}=\left(a_{1}, \ldots, a_{p_{x}}\right)$ is a basis of F_{x}.
- $\mathcal{B}_{x}=\left(b_{i}\right)_{i \in I}$ is a Hamel basis (Theorem 3.5) of $\operatorname{Ker}\left(\Phi_{x}\right)$.
- $\mathcal{E}_{x}=\left(\mathcal{C}_{x}, \mathcal{B}_{x}\right)$ is a Hamel basis of $\mathcal{A}(G)$. By theorem 3.6, $\mathcal{A}(G)$ is provided with the Hamel norm defined in the Theorem 3.6 associated to the basis \mathcal{E}_{x}.

Lemma 3.7. The linear map $\Phi_{x}: \mathcal{A}(G) \longrightarrow E(x)$ is continuous. In particular, $\operatorname{Ker}\left(\Phi_{x}\right)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since Φ_{x} is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of Φ_{x} on 0 . Let $f \in \mathcal{A}(G)$ and write $f=f_{1}+f_{2}$ with $f_{1} \in F_{x}$ and $f_{2} \in \operatorname{Ker}\left(\Phi_{x}\right)$. Set $\left(\alpha_{i}\right)_{1 \leq i \leq p_{x}}$ and $\left(\beta_{i}\right)_{i \in I}$ be respectively the coordinates of f_{1} and f_{2} in \mathcal{C}_{x} and \mathcal{B}_{x}. Write $f=\sum_{i=1}^{p_{x}} \alpha_{i} a_{i}+\sum_{i \in I_{2}} \beta_{i} b_{i}$ where $I_{2} \subset I$ with finite cardinal. We have $\|f\|=\sum_{i=1}^{p_{x}}\left|\alpha_{i}\right|+\sum_{i \in I_{2}}\left|\beta_{i}\right|$ and $b_{i}(x)=0$ for all $i \in I_{2}$. Therefore

$$
\begin{aligned}
\left\|\Phi_{x}(f)\right\|=\|f(x)\| & =\left\|\sum_{i=1}^{p_{x}} \alpha_{i} a_{i}(x)+\sum_{i \in I_{2}} \beta_{i} b_{i}(x)\right\| \\
& \leq \sum_{i=1}^{p}\left|\alpha_{i}\right|\left\|a_{i}(x)\right\| \\
& \leq\|f\| \sum_{i=1}^{p_{x}}\left\|a_{i}(x)\right\|
\end{aligned}
$$

Since $\sum_{i=1}^{p_{x}}\left\|a_{i}(x)\right\|$ is constant relative to f, then Φ_{x} is continuous.

Lemma 3.8. Suppose that $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. The linear map $\varphi: \mathcal{A}(G) \longrightarrow$ $\operatorname{vect}\left(L_{G}\right)$ is continuous. In particular, $\operatorname{Ker}(\varphi)$ is a closed subspace of $\mathcal{A}(G)$.

Proof. Since φ is linear and $\mathcal{A}(G)$ is a normed vector space (Lemma 3.6), we will verify the continuity of φ on 0 . Firstly, see that $\operatorname{cod}(\operatorname{Ker}(\varphi))=n$ is finite since $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$. let F be an algebraic supplement to $\operatorname{Ker}(\varphi)$ in $\mathcal{A}, \mathcal{C}^{\prime}=$ $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ and $\mathcal{B}^{\prime}=\left(b_{i}^{\prime}\right)_{i \in J}$ are respectively the Hamel basis of F and $\operatorname{Ker}(\varphi)$ (Lemma 3.5). Let $f \in \mathcal{A}(G)$ and write $f=f_{1}+f_{2}$ with $f_{1} \in F$ and $f_{2} \in \operatorname{Ker}(\varphi)$. Set $\left(\alpha_{i}\right)_{1 \leq i \leq q}$ and $\left(\beta_{i}\right)_{i \in J}$ be respectively the coordinates of f_{1} and f_{2} in \mathcal{C}^{\prime} and \mathcal{B}^{\prime}. Write $f=\sum_{i=1}^{n} \alpha_{i} a_{i}^{\prime}+\sum_{i \in I_{2}} \beta_{i} b_{i}^{\prime}$ where $I_{2} \subset j$ with finite cardinal. We have

$$
\begin{aligned}
\|f\|=\sum_{i=1}^{n}\left|\alpha_{i}\right|+\sum_{i \in I_{2}}\left|\beta_{i}\right| \text { and } \varphi\left(b_{i}\right) & =D b_{i}(0)=0 \text { for all } i \in I_{2} . \text { Therefore } \\
\|\varphi(f)\|=\|D f(0)\| & =\left\|\sum_{i=1}^{n} \alpha_{i} D a_{i}(0)+\sum_{i \in I_{2}} \beta_{i} D b_{i}(0)\right\| \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|D a_{i}(0)\right\| \\
& \leq\|f\| \sum_{i=1}^{n}\left\|D a_{i}(0)\right\|
\end{aligned}
$$

Since $\sum_{i=1}^{n}\left\|D a_{i}(0)\right\|$ is constant relative to f, then φ is continuous.

Lemma 3.9. ([6], 3.5) Let E be a topological vector space over \mathbb{R}, and let M be a closed subspace of finite codimension. Then $E=M \oplus N$ is a topological sum, for every algebraic complementary subspace N of M.

Corollary 3.10. The algebraic sum $\mathcal{A}(G)=F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$ is topological. In particular, $F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$ and $\mathcal{A}(G)$ are topological isomorphic by the map: $\left(f_{1}, f_{2}\right) \longmapsto$ $f_{1}+f_{2}$.

Proof. By the Theorem 3.6, $\mathcal{A}(G)$ is a normed vector space so it is a topological vector space. By Lemma 3.7, Φ_{x} is continuous and so its kernel is closed vector space with finite codimension. The results follows directly by applying the Lemma 3.9 for $E=\mathcal{A}(G)$ and $M=\operatorname{Ker}\left(\Phi_{x}\right)$.

By Corollary 3.10, we can identify $\mathcal{A}(G)$ with $F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$, so every $f \in \mathcal{A}(G)$ is denoted by $f=\left(f_{1}, f_{2}\right)=f_{1}+f_{2}$ with $f_{1} \in F_{x}$ and $f_{2} \in \operatorname{Ker}\left(\Phi_{x}\right)$.

Recall that $\widetilde{E}(x)=\psi_{x}(\mathcal{A}(G))$.
Lemma 3.11. Let H and K be two closed vector subspaces of $\mathcal{A}(G)$ such that $\operatorname{cod}(H)=\operatorname{cod}(K)=j \geq 1$. Let $\psi \in \mathcal{A}(G) \backslash(H \cup K)$. Then there exists a vector space F of $\mathcal{A}(G)$, containing ψ and satisfying $\mathcal{A}(G)=F \oplus H=F \oplus K$.

Proof. There are two cases;
Case 1: If $j=1$, then we take $F=\mathbb{K} \psi$.
Case 2: Suppose that $j \geq 2$. Denote by $H^{\prime}=H \oplus \mathbb{K} \psi$ and $K^{\prime}=K \oplus \mathbb{K} \psi$. Suppose that $H^{\prime} \neq K^{\prime}$ (otherwise, it is easy to take a comment supplement) and let $f_{1} \in H^{\prime} \backslash K^{\prime}$ and $g_{1} \in K^{\prime} \backslash H^{\prime}$, so $h_{1}=f_{1}+g_{1} \notin H^{\prime} \cup K^{\prime}$. Denote by $H_{1}=\mathbb{K} h_{1} \oplus H^{\prime}$ and $K_{1}=\mathbb{K} h_{1} \oplus K^{\prime}$. We establish two cases:

- If $H_{1}=K_{1}$, then any supplement F of H_{1} in $\mathcal{A}(G)$ is a supplement of K_{1} in $\mathcal{A}(G)$, the proof follows then.
- If $H_{1} \neq K_{1}$, we take $f_{2} \in H_{1} \backslash K_{1}$ and $g_{2} \in K_{1} \backslash H_{1}$, so $h_{2}=f_{2}+g_{2} \notin H_{1} \cup K_{1}$. Denote by $H_{2}=\mathbb{K} h_{2} \oplus H_{1}$ and $K_{2}=\mathbb{K} h_{2} \oplus K_{1}$.

We repeat the same processes until $j-2$ times and we obtain:

- If $H_{j-1}=K_{j-1}$, then any supplement F of H_{j-2} in $\mathcal{A}(G)$ is a supplement of K_{j-2} in $\mathcal{A}(G)$.
- If $H_{j-2} \neq K_{j-2}$, we take $f_{j} \in H_{j-2} \backslash K_{j-2}$ and $g_{j} \in H_{j-2} \backslash K_{j-2}$, so $h_{j}=f_{j}+g_{j} \notin$ $H_{j-2} \cup K_{j-2}$. Denote by $H_{j-1}=\mathbb{K} h_{j-1} \oplus H_{j-2}$ and $K_{j-1}=\mathbb{K} h_{j-1} \oplus K_{j-2}$. We obtain then $H_{j-1}=K_{j-1}=\mathcal{A}(G)$, hence the proof is completed by taking $F=\operatorname{vect}\left(\psi, h_{1}, \ldots, h_{j}\right)$.

Denote by:

- $\widetilde{E}(x)=\operatorname{vect}\left(L_{G}(x)\right)$.
$-\widetilde{r}_{x}=\operatorname{dim}(\widetilde{E}(x))$. Since $\operatorname{vect}\left(L_{G}(x)\right)=n$ then by Lemma 2.4, $\operatorname{dim}\left(\widetilde{E}\left(v_{0}\right)\right)=n$, so $\widetilde{r}_{G}:=\sup _{x \in \mathbb{C}^{n}}\left\{\widetilde{r}_{x}\right\}=n$.

Lemma 3.12. If $r(x)=\widetilde{r}_{x}=n$, then there exists a commune vector space $F_{x} \subset$ $\varphi^{-1}\left(L_{G}\right)$ supplement to $\operatorname{Ker}\left(\Phi_{x}\right)$ and to $\operatorname{ker}(\varphi)$ in $\mathcal{A}(G)$. (i.e $F_{x} \oplus \operatorname{Ker}\left(\Phi_{x}\right)=$ $\left.F_{x} \oplus \operatorname{Ker}(\varphi)=\mathcal{A}(G)\right)$.

Proof. Since L_{G} is abelian so $\operatorname{vect}\left(L_{G}\right)$ is an abelian algebra and φ is a morphism of ring, then $\varphi^{-1}\left(L_{G}\right)$ is an algebra containing G. hence $\varphi^{-1}\left(L_{G}\right)=\mathcal{A}(G)$. Then any supplement of $\operatorname{Ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$ is contained in $\varphi^{-1}\left(L_{G}\right)$. Now by Lemma 3.8, φ is continuous. By Lemmas 3.7 and 3.8 both $\left.\operatorname{Ker}\left(\Phi_{x}\right)\right)$ and $\operatorname{Ker}(\varphi)$ are closed and since $\operatorname{cod}\left(\operatorname{Ker}\left(\Phi_{x}\right)\right)=\operatorname{cod}(\operatorname{Ker}(\varphi))$, then by lemma 3.11, there exists a commune supplement F_{x} to $\operatorname{Ker}\left(\Phi_{x}\right)$ and to $\operatorname{ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$ containing I_{d} (because $I d \in$ $\left.\mathcal{A}(G) \backslash \operatorname{Ker}\left(\Phi_{x}\right) \cup \operatorname{Ker}(\varphi)\right)$.

Lemma 3.13. The linear map $\Phi_{x}: F_{x} \longrightarrow E(x)$ given by $\Phi_{x}(f)=f(x)$ is an isomorphism.

Proof. The proof follows directly from the fact that Φ_{x} is linear surjective and $\operatorname{dim}\left(F_{x}\right)=\operatorname{dim}(E(x))=n$.

Lemma 3.14. If $r(x)=\widetilde{r}_{x}=n$, then the restriction $\varphi_{1}: F_{x} \longrightarrow \operatorname{vect}\left(L_{G}\right)$ of φ from F_{x} unto $\operatorname{vect}\left(L_{G}\right)$ is an isomorphism.

Proof. The proof follows directly from the fact that φ_{1} is linear surjective and $\operatorname{dim}\left(F_{x}\right)=\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)\right)=n$.

Lemma 3.15. If $r(x)=\widetilde{r}_{x}=n$, then the map $\varphi_{x}:=\widetilde{\Phi}_{x} \circ \varphi_{1} \circ \Phi_{x}^{-1}: E(x) \longrightarrow \widetilde{E}(x)$ defined by $\varphi_{x}(f(x))=D f_{0}(x), f \in H$, is an isomorphism and satisfying:
(i) $\varphi_{x}(G(x))=L_{G}(x)$.
(ii) Let $y \in E(x)$ and $z=\varphi_{x}(y)$ then $\varphi_{x}(G(y))=L_{G}(z)$.
(iii) for every $y \in \overline{G(x)}$ we have $z=\varphi_{x}(y) \in \overline{L_{G}(x)}$.

Proof. (i) φ_{x} is an isomorphisms, since $\varphi_{x}=\widetilde{\Phi}_{x} \circ \varphi_{1} \circ \Phi_{x}^{-1}$ and by Lemmas 3.14, 2.5 and 3.13 , it is composed by isomorphisms.

By Lemma 3.12, we can assume that F_{x} is a commune supplement to $\operatorname{Ker}\left(\Phi_{x}\right)$ and to $\operatorname{Ker}(\varphi)$ in $\mathcal{A}(G)$. Let $f_{1}, \ldots, f_{r} \in \mathcal{A}(G)$ be the generator of F_{x}. So the restriction $\left(\Phi_{x}\right)_{/ F_{x}}$ (resp. $\left(\psi_{x}\right)_{/ F_{x}}$) of Φ_{x} (resp. ψ_{x}) on F_{x} are bijective from F_{x} to $E(x)$ (resp. $\widetilde{E}(x))$. Then $f_{1}(x), \ldots, f_{r}(x)$ generate $E(x)$ and $D f_{1}(0)(x), \ldots, D f_{r}(0)(x)$ generate $\widetilde{E}(x)$. Now, let $f=\sum_{k=1}^{r} \alpha_{k} f_{k} \in F_{x}$, so $\varphi_{x}(f(x))=\sum_{k=1}^{r} \alpha_{k} D f_{k}(0)(x)=$ $D f_{0}(x) \in L(x)$. It follows that $\varphi_{x}(G(x))=L_{G}(x)$.
(ii) Let $y \in E(x)$ and $z=\varphi_{x}(y)$. Let $f \in G$ and write $f=\sum_{k=1}^{r} \alpha_{k} f_{k}$, where $\left(f_{1}, \ldots, f_{r}\right)$ be a basis of F_{x}. Then by Lemma 3.2, $g(0)=0$ and so $\varphi_{x}(f(y))=$ $\varphi_{x}(f \circ g(x))=D f_{0} . D g_{0}(x)=D f_{0}(z) \in L_{G}(z)$. It follows that $\varphi_{x}(G(y)) \subset L_{G}(z)$. Conversely, let $a \in L_{G}(z)$, so $a=D f_{0}(z)$ for some $f \in G$. Since $z=D g_{0}(x)$ and $g \in G$, so $a=D(f \circ g)_{0}(x)=\varphi_{x}(f \circ g)$. Hence $a \in \varphi_{x}(G(x))$.
(iii) Since $y \in E(x)$, there exists $g \in F_{x}$ such that $y=g(x)$, so $z=D g_{0}(x)$. By continuity of φ_{x} and by (i), we have $z \in \varphi_{x}(\overline{G(x)}) \subset \overline{\varphi_{x}(G(x))}=\overline{L_{G}(x)}$.

Denote by:

- $\widetilde{U}_{t}=\left\{y \in \mathbb{C}^{n}, \quad \widetilde{r}_{y} \geq t\right\}$, for every $0 \leq t \leq n$.

By applying Lemma 3.11 given in [10] to the abelian linear group L_{G}, we found the following result:
Lemma 3.16. ([10], Lemma3.11) \widetilde{U}_{t} is a L_{G}-invariant dense open subset of \mathbb{C}^{n}.

Consider the distinct values $\widetilde{r}_{0}=0<\widetilde{r}_{1}<\cdots<\widetilde{r}_{\underline{p}}=n$ taken by the map $\widetilde{r}: \mathbb{C}^{n} \longrightarrow \mathbb{N}$ given by $x \longmapsto \widetilde{r}_{x}, x \in \mathbb{C}^{n}$ and let $\widetilde{F}_{j}=\left\{x \in \mathbb{C}^{n} / \widetilde{r}_{x} \leq \widetilde{r}_{j}\right\}$, $j=0,1, \ldots, p$. Evidently $\widetilde{F}_{j}(0 \leq j \leq q)$ is the complementary of the L-invariant open set $\widetilde{U}_{\widetilde{r}_{j-1}}($ Lemma 3.16$)$ and so the sequence $\widetilde{F}_{0}, \ldots, \widetilde{F}_{p}$ is a increasing sequence of closed subsets of \mathbb{C}^{n} and $\widetilde{\Omega}_{j}=\widetilde{F}_{j} \backslash \widetilde{F}_{j-1}=\widetilde{F}_{j} \cap \widetilde{U}_{\widetilde{r}_{j-1}}$. By Lemma 3.3, L is an abelian subgroup of $G L(n, \mathbb{C})$. We set the same construction of the open sets $\widetilde{\Omega}_{j}$ which is given by S.Chihi in the proof of Theorem 3.10, for using the following result:
medskip
Lemma 3.17. ([10], Theorem 3.10) Let $1 \leq \underset{\sim}{j} \leq p$ and $x \in \widetilde{\Omega}_{j}$ then for every $y \in \overline{L_{G}(x)} \cap \widetilde{\Omega}_{j}$ we have $\overline{L_{G}(y)} \cap \widetilde{\Omega}_{j}=\overline{L_{G}(x)} \cap \widetilde{\Omega}_{j}$.

Lemma 3.18. (Under the above notations) For every $x \in \Omega_{j}$, we have $\varphi_{x}\left(\Omega_{j} \cap\right.$ $E(x))=\widetilde{\Omega}_{j} \cap \widetilde{E}(x)$ for every $1 \leq j \leq p$.
Proof. Let $y \in \Omega_{j} \cap E(x)$ and $z=\varphi_{x}(y)$. By Lemma 3.15,(ii), $\varphi_{x}(G(y))=L_{G}(z)$. Since φ_{x} is linear, then $\varphi_{x}(E(y))=\widetilde{E}(z)$, so $r(y)=\widetilde{r}_{z}=j$. It follows that $z \in \widetilde{\Omega}_{j} \cap \widetilde{E}(x)$. For the converse we use the same proof for φ_{x}^{-1}.

Proof of Structure's Theorem1. By Proposition 3.4, U_{t} is a G-invariant open set of \mathbb{C}^{n} for every $0 \leq t \leq r_{G}$ and it is dense in \mathbb{C}^{n} for every $0 \leq t \leq \widetilde{r}_{G}$. Consider the distinct values $r_{0}=0<r_{1}<\cdots<r_{q}=r_{G}$ taken by the map $r: \mathbb{C}^{n} \longrightarrow \mathbb{N}$ given by $x \longmapsto r(x), x \in \mathbb{C}^{n}$ and let $F_{j}=\left\{x \in \mathbb{C}^{n} / r(x) \leq r_{j}\right\}, j=0,1, \ldots, q$. Evidently $F_{j}(0 \leq j \leq q)$ is the complementary of the G-invariant open set $U_{r_{j-1}}$ and so the sequence F_{0}, \ldots, F_{q} is a increasing sequence of closed subsets of \mathbb{C}^{n} and $\Omega_{j}=F_{j} \backslash F_{j-1}=F_{j} \cap U_{r_{j-1}}$ for every $1 \leq j \leq q$. Yet, by Proposition 3.4, $U_{r_{j-1}}$ is a G-invariant open set of \mathbb{C}^{n}. This proves (i).

The proof of (ii): Let $x \in \Omega_{j}$ and $y \in \overline{G(x)} \cap \Omega_{j}$. By Lemma 3.15, there exists an isomorphism $\varphi_{x}: E(x) \longrightarrow \widetilde{E}(x)$ satisfying $\varphi_{x}(G(x))=L(x)$ and $\varphi_{x}(G(y))=L_{G}(z)$ with $z=\varphi_{x}(y)$. By Lemma 3.17, we have

$$
\begin{equation*}
\overline{L_{G}(z)} \cap \widetilde{\Omega}_{j}=\overline{L_{G}(x)} \cap \widetilde{\Omega}_{j} \tag{1}
\end{equation*}
$$

By Lemma 3.15, we have φ_{x} is an isomorphism satisfying $\varphi_{x}(E(x))=\widetilde{E}_{x}$ and $\varphi_{x}(G(x))=L_{G}(x)$. By Lemma 3.18, we have $\varphi_{x}\left(\Omega_{j} \cap E(x)\right)=\widetilde{\Omega}_{j} \cap \widetilde{E}(x)$, therefore by (1) we obtain

$$
\begin{aligned}
\overline{G(x)} \cap \Omega_{j} & =\overline{G(x)} \cap \Omega_{j} \cap E(x) \\
& =\varphi_{x}^{-1}\left(\overline{L_{G}(x)}\right) \cap \varphi_{x}^{-1}\left(\widetilde{\Omega}_{j} \cap \widetilde{E}(x)\right) \\
& =\overline{\varphi_{x}^{-1}\left(L_{G}(z)\right)} \cap \Omega_{j} \cap E(x) \\
& =\overline{G(y)} \cap \Omega_{j} .
\end{aligned}
$$

This completes the proof.

Denote by $\widetilde{r}_{G}=\max \left\{\widetilde{r}_{x}, \quad x \in \mathbb{C}^{n}\right\}$.

Proof of Corollary 1.2. Let O be a dense orbit in \mathbb{C}^{n} (i.e. $\bar{O}=\mathbb{C}^{n}$). Then for every $x \in O$, we have $r(x)=n$, so $O \subset U$ and $\bar{O} \cap U=U$. Since O is minimal in U (Theorem 1.1), then for every orbit $L \subset U$, we have $\bar{L} \cap U=\bar{O} \cap U$. Therefore $\bar{L}=\bar{O}=\mathbb{C}^{n}$.

Proof of Corollay 1.3. If O is a locally dense orbit in \mathbb{C}^{n} (i.e. $\bar{O} \neq \emptyset$) then $O \subset U$ (because, as above, for any $x \in O, r(x)=n$). Let C be a connected component of U meeting O. Then $\bar{O} \cap C$ is a nonempty closed subset in C. Lets show that $\bar{O} \cap C$ is open in C. Let $y \in \bar{O} \cap C$. Since O is minimal in U (Theorem 1.1) then $\bar{O} \cap U=\overline{G(y)} \cap U$. So, $\overline{\sigma^{(y)}}=\stackrel{\circ}{\bar{O}} \neq \emptyset$. Then $y \in \bar{\circ} \overline{G(y)} \cap C \subset \bar{\circ} \cap C$. Lets show that every orbit meeting C is dense in C : if O^{\prime} is an orbit meeting C then $O^{\prime} \subset U$. Since O is dense in C then $O^{\prime} \subset \bar{O}$ and then $O^{\prime} \cap C=O \cap C=C$. This completes the proof.

Proof of Structure's Theorem2. Suppose that $\widetilde{E}(x)=\mathbb{C}^{n}$, for some $x \in \mathbb{C}^{n}$. Firstly, by Proposition 2.1, we can assume that $L_{G} \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ and so $v_{0}=u_{0}$. Secondly, we verify that $x \in V:=\prod_{k=1}^{r} \mathbb{C}^{*} \times \mathbb{C}^{n_{k}-1}$: We have $\mathbb{C}^{n} \backslash V=\bigcup_{k=1}^{r} H_{k}$, where

$$
H_{k}=\left\{y=\left(y_{1}, \ldots, y_{r}\right), \quad y_{k} \in\{0\} \times \mathbb{C}^{n_{k}-1}, y_{i} \in \mathbb{C}^{n_{i}} \text { for } i \neq k\right\}
$$

By construction of $\mathcal{K}_{\eta, r}(\mathbb{C})$, each H_{k} is L_{G}-invariant vector space with dimension $n-1$, so $x \in V$.
Thirdly, we can take $x=u_{0}$, leaving to replace L_{G} by $P L_{G} P^{-1}$ for any passage matrix P from the canonical basis to $\left(x, e_{2}, \ldots, e_{n}\right)$.
Finally, the proof of Theorem 1.4 follows directly from Theorem 1.1 and Lemma 2.4.
3.3. Locally results. We can remove the condition $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)=n\right.$ in the Theorem 1.1, we obtain a locally decomposition as follow:

Corollary 3.19. Let G be an abelian subgroup of Diff $f^{1}\left(\mathbb{C}^{n}\right)$, such that $0 \in$ Fix (G). Let $x \in \mathbb{C}^{n}$. If $r(x)=\widetilde{r}_{x}$, there exist a finite increasing sequence of G-invariant closed subsets of $E(x), F_{0} \subset \cdots \subset F_{q}, 1 \leq q \leq n$, with the following properties:
(i) $F_{0}=\emptyset, F_{q}=\mathbb{C}^{n} \backslash\{0\}$ and $\mathbb{C}^{n}=\bigcup_{j=1}^{q} \Omega_{j}$, where $\Omega_{j}=F_{j} \backslash F_{j-1}$.
(ii) Every orbit of Ω_{j} is minimal in it.

Proof. By Lemma 3.1, $E(x)$ is G-invariant. Then the proof results directly by applying Theorem ?? on the restriction $G_{/ E(x)}$ of G on $E(x)$.
3.4. Some results for the dimension $n=1$. We can remove the condition $\operatorname{dim}\left(\operatorname{vect}\left(L_{G}\right)=1\right.$ in the Theorem 1.1, we obtain a global decomposition as follow:

Corollary 3.20. Let G be an abelian subgroup of $\operatorname{Dif} f^{1}(\mathbb{C})$, such that $0 \in \operatorname{Fix}(G)$. Then every orbit of $\mathbb{C} \backslash\{0\}$ is minimal in it.

Proof. Since $i d \in G$, then $i d \in L_{G}$ and so $\operatorname{dim}\left(L_{G}\right)=1$. The prof results from Theorem 1.1, for $F_{0}=\emptyset, F_{1}=\{0\}$ and $F_{2}=\mathbb{C}$.

Remark 3.21. Remark that $\operatorname{dim}\left(L_{G}\right) \geq 1$, since $I_{n} \in L_{G}$, where I_{n} is the identity matrix with order n.

4. Example in the dimension $\mathbf{n}=2$

We give some examples of abelian subgroup of $\operatorname{Dif} f^{1}(\mathbb{C})$ which are near enough th linear group. Recall that $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.

Example 4.1. Let Γ be the group abelian of all diffeomorphisms f of \mathbb{C}^{2} defined by $f(x, y)=(x, y+P(x)), P \in \mathbb{C}[X]$ and G be a subgroup of Γ generated by $f:(x, y) \longmapsto(x, y+P(x))$ and $g:(x, y) \longmapsto(x, y+Q(x))$ with $P, Q \in \mathbb{C}[X]$, $Q(0)=P(0)=0$ and $P^{\prime}(0) \neq 0$. Then every orbit is minimal in the open set $\mathbb{C}^{*} \times \mathbb{C}$.

Proof. We can easily verify that G is abelian, $0 \in \operatorname{Fix}(G)$. In the begin, we have $f^{n} \circ g^{m}(x, y)=(x, y+n P(x)+m Q(x))$ for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$
\begin{equation*}
h(x, y)=(\alpha x, \beta y+R(x)) \quad \text { where } \quad R \in \mathbb{C}[X] \tag{1}
\end{equation*}
$$

We have $D f_{0}=\left[\begin{array}{cc}1 & 0 \\ P^{\prime}(0) & 1\end{array}\right]$. Then $L_{G} \subset \mathbb{T}_{2}^{*}(\mathbb{C})$. Here $u_{0}=e_{1}=(1,0)$ then $\widetilde{E}\left(u_{0}\right)$ is generated by e_{1} and $D f_{0}\left(u_{0}\right)=\left(1, P^{\prime}(0)\right)$, so $\operatorname{dim}\left(\widetilde{E}\left(u_{0}\right)\right)=2$, hence $\widetilde{E}\left(e_{1}\right)=\mathbb{C}^{2}$. By Lemma 2.7, $\widetilde{\Omega}_{2}=\mathbb{C}^{*} \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{e_{1}}\left(\Omega_{2}\right)=\widetilde{\Omega}_{2}$, then

$$
\begin{equation*}
\Omega_{2}=\varphi_{e_{1}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right) \tag{2}
\end{equation*}
$$

By Theorem 1.4, every orbit of Ω_{2} is minimal in it. Now let's prove that $\varphi_{e_{1}}^{-1}\left(\mathbb{C}^{*} \times\right.$ $\mathbb{C})=\mathbb{C}^{*} \times \mathbb{C}$: Recall that $\varphi_{e_{1}}(x, y)=\widetilde{\Phi}_{e_{1}} \circ \varphi \circ \Phi_{e_{1}}^{-1}(x, y)$ (see Lemma 3.15). Let $(x, y) \in \mathbb{C}^{*} \times \mathbb{C}$. Then there exists $h \in \mathcal{A}(G)$ such that $(x, y)=D h_{0} e_{1}$. Using (2) and by integration, h has the form $h:(s, t) \longrightarrow(x s, \beta t+y s+s R(s)+\gamma)$, with $R \in \mathbb{C}[X]$, then $h\left(e_{1}\right)=(x, y+R(1))$ and $D h_{0} e_{1}=(x, y)$. Therefore

$$
\begin{aligned}
\varphi_{e_{1}}^{-1}(x, y) & =\Phi_{e_{1}} \circ \varphi^{-1} \circ \widetilde{\Phi}_{e_{1}}^{-1}(x, y) \\
& =\Phi_{e_{1}} \circ \varphi^{-1}\left(D h_{0}\right) \\
& =\Phi_{e_{1}}(h) \\
& =h\left(e_{1}\right) \\
& =(x, y+R(1)+\gamma) \in \mathbb{C}^{*} \times \mathbb{C}
\end{aligned}
$$

Conversely, Let $(a, b) \in \mathbb{C}^{*} \times \mathbb{C}$ then there is $h \in \mathcal{A}(G)$ such that $h\left(e_{1}\right)=(a, b)$. By (2), h has the form $h(s, t)=(a s, \beta t+b s+s R(s)+\gamma)$, then $D h_{0}\left(e_{1}\right)=(a, b+$ $\left.R(1)+R^{\prime}(1)\right)$. Therefore

$$
\begin{aligned}
\varphi_{e_{1}}(a, b) & =\widetilde{\Phi}_{e_{1}} \circ \varphi \circ \Phi_{e_{1}}^{-1}(a, b) \\
& =\widetilde{\Phi}_{e_{1}} \circ \varphi(h) \\
& =\Phi_{e_{1}}\left(D h_{0}\right) \\
& =h\left(e_{1}\right) \\
& =\left(a, b+R(1)+R^{\prime}(1)\right) \in \mathbb{C}^{*} \times \mathbb{C}
\end{aligned}
$$

It follows that $\varphi_{e_{1}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right)=\mathbb{C}^{*} \times \mathbb{C}$.

Example 4.2. Let G be the abelian group generated by $f(x, y)=\left(x^{q}, y+x^{k}\right)$ and $g(x, y)=\left(x^{q^{\prime}}, y+x^{k^{\prime}}\right) q$ and q^{\prime} are odd integers, $k, k^{\prime} \in \mathbb{N}$. Then every orbit of $\mathbb{C}^{*} \times \mathbb{C}$ is minimal in it.

Proof. We can easily verify that G is abelian, $0 \in \operatorname{Fix}(G)$. In the begin, we have $\left.f^{n}(x, y)=\left(x^{n q}, y+x^{k}+\sum_{i=1}^{n} x^{i q k}\right)\right)$ and so

$$
f^{n} \circ g^{m}(x, y)=\left(x^{n q m q^{\prime}}, \quad y+x^{k}+\sum_{i=1}^{n} x^{i q k}+x^{n q k^{\prime}}+\sum_{j=1}^{m} x^{n q j q^{\prime} k^{\prime}}\right)
$$

for every $n, m \in \mathbb{Z}$. Then every $h \in \mathcal{A}(G)$ has the form:

$$
\begin{equation*}
h(x, y)=(\alpha x, \beta y+R(x)) \quad \text { where } \quad R \in \mathbb{C}[X] \tag{1}
\end{equation*}
$$

We have $\operatorname{Did}_{0}=i d$ and $D f_{0}=D g_{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $L_{G} \subset \mathbb{T}_{1}^{*}(\mathbb{C}) \oplus \mathbb{T}_{1}^{*}(\mathbb{C})$. Here $u_{0}=e_{1}+e_{2}=(1,1)$ then $\widetilde{E}\left(u_{0}\right)$ is generated by e_{1} and $D f_{0}\left(u_{0}\right)=(0,1)$, so $\operatorname{dim}\left(\widetilde{E}\left(u_{0}\right)\right)=2$, hence $\widetilde{E}\left(u_{0}\right)=\mathbb{C}^{2}$. By Lemma $2.7, \widetilde{\Omega}_{2}=\mathbb{C}^{*} \times \mathbb{C}$ and by Lemma 3.18, we have $\varphi_{u_{0}}\left(\Omega_{2}\right)=\widetilde{\Omega}_{2}$, then

$$
\begin{equation*}
\Omega_{2}=\varphi_{u_{0}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right) \tag{2}
\end{equation*}
$$

By Theorem 1.4, every orbit of Ω_{2} is minimal in it. As in the proof of example 4.1, we prove that $\varphi_{u_{0}}^{-1}\left(\mathbb{C}^{*} \times \mathbb{C}\right)=\mathbb{C}^{*} \times \mathbb{C}$.

Question1: Is there an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{C}^{n}\right)$ fixing some point having no minimal set in $\mathbb{C}^{n} \backslash \operatorname{Fix}(G)$?

Question2 : An abelian subgroup of $\operatorname{Dif} f^{1}\left(\mathbb{C}^{n}\right)$ fixing some point and satiffying $r(x)=\widetilde{r}_{x}$ for every $x \in \mathbb{C}^{n}$, is-it conjugate to a linear group?

References

1. A. Ayadi.A and H. Marzougui, Dynamic of Abelian subgroups of $G L(n, C)$: a structure Theorem, Geometria Dedicata, 116(2005) 111-127.
2. Ayadi.A and Marzougui.H, Dense orbits for abelian subgroups of $G L(n, C)$, Foliations 2005: World Scientific,Hackensack,NJ, (2006), 47-69.
3. A.Ayadi, H.Marzougui and Y.Ndao, On the dynamic of abelian groups of affine maps on \mathbb{C}^{n} and \mathbb{R}^{n}, preprint, ictp, IC/2009/062.
4. C.D.Aliprantis and K.C.Border, Infinite dimensional analysis:A Hitchhiker's Guide, $3^{r} d$ Edition, Springer-Verlag, Heidelberg and New York, 2006.
5. F.Saponga, Localisation des points fixes communs pour des difféomorphismes commutants du plan, Bull Braz Math Soc, New seies 42 (3), (2010), 373-397.
6. H.H.Schaefer and M.P.Wolff, Topological vector spaces, Graduate texts in mathematics, 1999.
7. J. FRANKS, M. HANDEL and K. PARWANI, Fixed points of abelian actions on S^{2}, Ergodic Theory and Dynamical Systems, 27, (2007) , 1557-1581
8. M.Waldschmidt, Topologie des points rationnels, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
9. P.W.Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980c.
10. S.Chihi, On the minimal orbits of an abelian linear action, Differential Geometry - Dynamical Systems, Vol.12, (2010), 61-72.
11. V.Bergelson, M.Misiurewicz and S.Senti, Affine actions of a free semigroup on the real line, Ergod. Th. and Dynam. Sys. vol 26, (2006), 1285-1305.

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada

E-mail address: yahiandao@yahoo.fr
Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 37C85, 47A16, 37E30, 37C25.
 Key words and phrases. Diffeomorphisms, abelian, group, orbit, action.
 This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-

