THE DYNAMIC OF ABELIAN SUBGROUP OF Diffr $\left.\mathbb{K}^{n}\right)$, FIXING A POINT, $(\mathbb{K}=\mathbb{R}$ OR $\mathbb{C})$

YAHYA N'DAO AND ADLENE AYADI

Abstract

In this paper, we study the action of any abelian subgroup G of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ on \mathbb{K}^{n}, $(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$. We prove that there exist a decreasing finite sequence $F_{0}, F_{1}, \ldots, F_{q}$ of invariant closed sets such that $\Omega_{j}=F_{j} \backslash F_{j-1}$ is an open subset(for the relative topology) of F_{j} in which every orbit is isomorphic to any orbits meeting its closure. Moreover, if G has a dense orbit in \mathbb{K}^{n} then every orbit of Ω_{q} is dense in \mathbb{K}^{n}.

1. Introduction

Denote by $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$, $(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ the group of all C^{r}-diffemorphisms of \mathbb{K}^{n}. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $\operatorname{Fix}(G) \neq \emptyset$, where $\operatorname{Fix}(G)=\left\{x \in \mathbb{K}^{n}: f(x)=x, \forall f \in G\right\}$ be the global fixed point set of G. There is a natural action $G \times \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n} .(f, x) \longmapsto f(x)$. For a point $x \in \mathbb{K}^{n}$, denote by $G(x)=\{f(x), f \in G\} \subset \mathbb{K}^{n}$ the orbit of G through x. A subset $E \subset \mathbb{K}^{n}$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. Denote by \bar{E} (resp. $\stackrel{\circ}{E}$) the closure (resp. interior) of E.

A subset E of \mathbb{K}^{n} is called a minimal set of G if E is closed in \mathbb{K}^{n}, non empty, G-invariant and has no proper subset with these properties. It is equivalent to say that E is a G-invariant set such that every orbit contained in E is dense in it. If Ω is a G-invariant set in \mathbb{K}^{n}, we say that E is a minimal set in Ω if it is a minimal set of the restriction $G_{/ \Omega}$ of G to Ω. An orbit $O \subset \Omega$ is called minimal in Ω if $\bar{O} \cap \Omega$ is a minimal set in Ω. This means that for every $x \in \bar{O} \cap \Omega$ we have $\bar{O} \cap \Omega=\overline{G(x)} \cap \Omega$. For example, a closed orbit in Ω is minimal in Ω. In particular, every point in $F i x(G)$ is minimal in \mathbb{K}^{n}.

In [2], S.Frimo proved taht if G is an abelian subgroup of $\operatorname{Diff} f^{1}\left(\mathbb{R}^{2}\right)$ generated by any family of commuting diffeomorphisms of the plane wich are C^{1}-close to the identity and having a bounded orbit then $\operatorname{Fix}(G) \neq \emptyset$. In [7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated abelian subgroup of $\operatorname{Dif} f_{+}^{1}\left(\mathbb{R}^{2}\right)$ and if there is a compact G-invariant set $C \subset \mathbb{R}^{2}$, then $\operatorname{Fix}(G)$ is non-empty.

This paper can be viewed as a generalization of the results given by S.Chihi in [5] for abelian linear group. We study here, the action of an abelian subgroup G of $\operatorname{Diff}\left(\mathbb{K}^{n}\right)$.

[^0] 15.

Our principal results can be stated as follows:
We generalize the result given in [1] for abelian subgroup of $G L(n, \mathbb{K})$:
For a subset $E \subset \mathbb{K}^{n}$, denote by $\operatorname{vect}(E)$ the vector subspace of \mathbb{K}^{n} generated by all elements of E. Set $\mathcal{A}(G)$ be the algebra generated by G. In general, $\mathcal{A}(G)$ is not commutative. For a fixed vector $x \in \mathbb{K}^{n} \backslash\{0\}$, denote by:

- $\Phi_{x}: \mathcal{A}(G) \longrightarrow \Phi_{x}(\mathcal{A}(G)) \subset \mathbb{K}^{n}$ the linear map given by $\Phi_{x}(f)=f(x)$.
- $E(x)=\Phi_{x}(\mathcal{A}(G))$.
- $r(x)=\operatorname{dim}(E(x))$.

Let $a \in \operatorname{Fix}(G)$, denote by $G^{\prime}=T_{-a} \circ G \circ T_{a}$, where T_{a} is the translation by a. So $0 \in \operatorname{Fix}\left(G^{\prime}\right)$. Define then:

- $L^{\prime}(x)=\left\{D f_{0}(x), f \in G^{\prime}\right\}$ and $\widetilde{E}^{\prime}(x)=\operatorname{vect}\left(L^{\prime}(x)\right)$ the vector space generated by $L^{\prime}(x)$.
- $r_{x}=r_{x-a}^{\prime}=\operatorname{dim}\left(\widetilde{E}^{\prime}(x-a)\right)$, for every $x \in \mathbb{K}^{n}$.

Theorem 1.1 (Structure's Theorem). Let G be an abelian subgroup of of $\operatorname{Dif} f^{r}\left(\mathbb{K}^{n}\right)$, $r \geq 1$ such that $\operatorname{Fix}(G) \neq \emptyset$. Then there exist a finite increasing sequence of G invariant closed subsets of $\mathbb{K}^{n}, F_{0} \subset \cdots \subset F_{q}, 1 \leq q \leq n$, with the following properties:
(i) $F_{0}=\emptyset, F_{q}=\mathbb{K}^{n} \backslash\{0\}$ and $\mathbb{K}^{n}=\bigcup_{j=1}^{q} \Omega_{j}$, where $\Omega_{j}=F_{j} \backslash F_{j-1}$.
(ii) For every $x \in \Omega_{j}$ and for every $y \in \overline{G(x)} \cap \Omega_{j}$ there exists a linear isomorphism Φ_{y}^{x} satisfying $\Phi_{y}^{x}(x)=y$ and $\Phi_{y}^{x}(G(x))=G(y)$, for every $1 \leq j \leq q$.
(iii) If $r(x)=r_{x}$ for some $x \in \mathbb{K}^{n}$, then for every $y \in \overline{G(x)} \cap \Omega_{j}$ we have $\overline{G(y)} \cap \Omega_{j}=\overline{G(x)} \cap \Omega_{j}$ for every $j \in\{1, \ldots, q\}$.

Under the hypothesis of Theorem 1.1, denote by $U=\Omega_{q}=\mathbb{K}^{n} \backslash F_{q-1}$. We have the following corollaries.
Corollary 1.2. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $\operatorname{Fix}(G) \neq \emptyset$. If G has a dense orbit then every orbit in U is dense in \mathbb{K}^{n}.

Corollary 1.3. If G has a locally dense orbit O in \mathbb{K}^{n} and C is a connected component of U meeting O then every orbit meeting C is dense in it.

This paper is organized as follows: In Section 2, we introduce some properties of G-invariant vector space. The Section 3 is devoted to prove the main results. In the section 4 , we give an example for $n=2$.

2. G-invariant vector space

- $F(x)$ be a supplement to $\operatorname{Ker}\left(\Phi_{x}\right)$ containing the identity map $i d_{E(x)}$ of $E(x)$. (i.e. $\left.F(x) \oplus \operatorname{Ker}\left(\Phi_{x}\right)=\mathcal{A}(G)\right)$. Denote by $U_{x}=\left\{y \in \mathbb{K}^{n}, \quad r(y)=r(x)\right\}$.

Lemma 2.1. Suppose that $0 \in \operatorname{Fix}(G)$ and let $x \in U_{j}$. Then for every $y \in U_{x}$. Then there exists a vector space F of $\mathcal{A}(G)$ such that $\mathcal{A}(G)=F \oplus \operatorname{Ker}\left(\Phi_{x}\right)=$ $F \oplus \operatorname{Ker}\left(\Phi_{y}\right)$. (i.e. $\left.F_{x}=F_{y}=F\right)$.

Proof. Let $y \in U_{x}$. Then $r(x)=r(y)=j$, so $\operatorname{cod}\left(\operatorname{Ker}\left(\Phi_{x}\right)\right)=\operatorname{cod}\left(\operatorname{Ker}\left(\Phi_{y}\right)\right)=j \geq$ 1. There are two cases:

- If $\operatorname{Ker}\left(\Phi_{y}\right)=\operatorname{Ker}\left(\Phi_{x}\right)$, then any supplement F of $\operatorname{Ker}\left(\Phi_{x}\right)$ in $\mathcal{A}(G)$ is a supplement of $\operatorname{Ker}\left(\Phi_{y}\right)$ in $\mathcal{A}(G)$.
- If $\operatorname{Ker}\left(\Phi_{y}\right) \neq \operatorname{Ker}\left(\Phi_{x}\right)$, we take $f_{1} \in \operatorname{Ker}\left(\Phi_{x}\right) \backslash \operatorname{Ker}\left(\Phi_{y}\right)$ and $g_{1} \in \operatorname{Ker}\left(\Phi_{y}\right) \backslash \operatorname{Ker}\left(\Phi_{x}\right)$, so $h_{1}=f_{1}+g_{1} \notin \operatorname{Ker}\left(\Phi_{x}\right) \cup \operatorname{Ker}\left(\Phi_{y}\right)$. Denote by $H_{1}^{x}=\mathbb{K} h_{1} \oplus \operatorname{Ker}\left(\Phi_{x}\right)$ and $H_{1}^{y}=\mathbb{K} h_{1} \oplus \operatorname{Ker}\left(\Phi_{y}\right)$. We establish two cases:
- If $H_{1}^{x}=H_{1}^{y}$, then any supplement F of H_{1}^{x} in $\mathcal{A}(G)$ is a supplement of H_{1}^{y} in $\mathcal{A}(G)$.
- If $H_{1}^{x} \neq H_{1}^{y}$, we take $f_{2} \in H_{1}^{x} \backslash H_{1}^{y}$ and $g_{2} \in H_{1}^{y} \backslash H_{1}^{x}$, so $h_{2}=f_{2}+g_{2} \notin H_{1}^{x} \cup H_{1}^{y}$. Denote by $H_{2}^{x}=\mathbb{K} h_{2} \oplus H_{1}^{x}$ and $H_{1}^{y}=\mathbb{K} h_{2} \oplus H_{1}^{y}$. We repeat the same processes until $j-1$ times and we obtain: - If $H_{j-1}^{x}=H_{j-1}^{y}$, then any supplement F of H_{j-1}^{x} in $\mathcal{A}(G)$ is a supplement of H_{j-1}^{y} in $\mathcal{A}(G)$.
- If $H_{j-1}^{x} \neq H_{j-1}^{y}$, we take $f_{j} \in H_{j-1}^{x} \backslash H_{j-1}^{y}$ and $g_{j} \in H_{j-1}^{y} \backslash H_{j-1}^{x}$, so $h_{j}=f_{j}+g_{j} \notin$ $H_{j-1}^{x} \cup H_{j-1}^{y}$. Denote by $H_{j}^{x}=\mathbb{K} h_{j} \oplus H_{j-1}^{x}$ and $H_{j}^{y}=\mathbb{K} h_{j} \oplus H_{j-1}^{y}$. We obtain then $H_{j}^{x}=H_{j}^{y}=\mathcal{A}(G)$, hence the proof is completed by taking $F=\operatorname{vect}\left(h_{1}, \ldots, h_{j}\right)$.

Lemma 2.2. If $y \in \overline{G(x)} \cap U_{x}$, then:
(i) Φ_{x} and Φ_{y} are two isomorphisms from F_{x} to $E(x)$.
(ii) $\Phi_{y}^{x}=\Phi_{x} \circ \Phi_{y}^{-1}: E(x) \longrightarrow E(x)$ is an isomorphism satisfying $\Phi_{y}^{x}(x)=y$ and $\Phi_{y}^{x}(G(x))=G(y)$.

Proof. (i) It is easy to show that Φ_{x} (resp. Φ_{y}) is an isomorphism from F_{x} (resp. F_{y}) to $E(x)$ (resp. $E(y)$). The proof results from Lemma 2.1, since $F_{x}=F_{y}$ and $E(x)=E(y)$.
(ii) By (i), Φ_{y}^{x} is an isomorphism. Now,

$$
\begin{aligned}
\Phi_{y}^{x}(x) & =\Phi_{y} \circ \Phi_{x}^{-1}(x) \\
& =\Phi_{y}\left(i d_{E(x)}\right)=y
\end{aligned}
$$

Let $f \in G$, so $f=f_{1}+f_{2}, f_{1} \in F_{x}$ and $f_{2} \in \operatorname{Ker}\left(\Phi_{x}\right)$. Then by (ii) we obtain:

$$
\begin{aligned}
\Phi_{y}^{x}(f(x)) & =\Phi_{y} \circ \Phi_{x}^{-1}\left(f_{1}(x)\right) \\
& =\Phi_{y}\left(f_{1}\right) \\
& =f_{1}(y)=f(y) . \quad\left(\text { since } F_{x}=F_{y}\right)
\end{aligned}
$$

It follows that $\Phi_{y}^{x}(G(x))=G(y)$. The proof is completed.

3. Proof of main results

throughout this section and the following sections, we assume that $0 \in \operatorname{Fix}(G)$ leaving to replace G by $T_{a} \circ G \circ T_{-a}$, for some $a \in \operatorname{Fix}(G)$.

Lemma 3.1. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ and $x \in \mathbb{K}^{n}$. Then $E(x)$ is G-invariant.

Proof. Suppose that $E(x)$ is generated by $f_{1}(x), \ldots, f_{p}(x)$, with $f_{k} \in \mathcal{A}(G), k=$ $1, \ldots, p$. Let $y=\sum_{k=1}^{p} \alpha_{k} f_{k}(x) \in E(x)$ and $f \in G$, then $y=g(x)$, with $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \in$ $\mathcal{A}(G)$. Therefore $f(y)=f \circ g(x)=\Phi_{x}(f \circ g) \in E(x)$, since $f \circ g \in \mathcal{A}(G)$.

Lemma 3.2. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in$ Fix (G). Then $g(0)=0$ for every $g \in \mathcal{A}(G)$.

Proof. Let $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \subset \mathcal{A}(G)$ with $f_{k} \in G, \alpha_{k} \in \mathbb{K}$, so $g(0)=\sum_{k=1}^{p} \alpha_{k} f_{k}(0)=0$. Now, let $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{q} \in \mathcal{A}(G)$ such that $f_{k}(0)=g_{j}(0)=0,1 \leq k \leq m$, $1 \leq j \leq q$, so for every $\alpha_{1}, \ldots, \alpha_{q}, \beta_{1} \ldots, \beta_{m} \in \mathbb{K}$ we have

$$
\begin{aligned}
\left(\sum_{j=1}^{q} \beta_{j} g_{j}\right) \circ\left(\sum_{k=1}^{m} \alpha_{k} f_{k}\right)(0) & =\sum_{j=1}^{q} \beta_{j} g_{j}\left(\sum_{k=1}^{m} \alpha_{k} f_{k}(0)\right) \\
& =\sum_{j=1}^{q} \beta_{j} g_{j}(0) \\
& =0
\end{aligned}
$$

Since $\mathcal{A}(G)$ is the algebra generated by G, so it is stable by composition and by linear combinations, hence we obtain the results.

Lemma 3.3. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in$ Fix (G). Then $L=\varphi(G)$ is an abelian subgroup of $G L(n, \mathbb{K})$.

Proof. Let $f, g \in G$, so $\varphi(f \circ g)=D(f \circ g)(0)=D f(g(0)) . D g(0)$. By Lemma 3.2, $g(0)=0$, so $\varphi(f \circ g)=D(f)(0) \cdot D g(0)=\varphi(f) \cdot \varphi(g)$. The proof is completed.

Proposition 3.4. Let G be an abelian subgroup of Diff $f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in \operatorname{Fix}(G)$. Then for every $0 \leq t \leq r_{G}, U_{t}$ is a G-invariant open subset of \mathbb{K}^{n}.

To prove Proposition 3.4, we need the following notations. For a fixed point $x \in \mathbb{K}^{n}$, denote by:

- $\widetilde{U}_{t}=\left\{y \in \mathbb{K}^{n} / \widetilde{r}_{y} \geq t\right\}$ for every $0 \leq t \leq \widetilde{r}_{G}$.

Proof of Proposition 3.4. By Lemma 3.1, $E(x)$ is G-invariant and remark that the rank $r(y)$ is constant on any orbit $G(y), y \in E(x)$. So U_{t} is G-invariant for every $0 \leq t \leq r_{G}$. Let's show that U_{t} is an open set: Let $y \in U_{t}$ and $r=r_{y}$, so $r \geq t$. Then there exist $f_{1}, \ldots, f_{r} \in F(y)$ such that the r vectors $f_{1}(y), \ldots, f_{r}(y)$ are linearly independent in $E(y)$. For all $z \in \mathbb{K}^{n}$, we consider the Gram's determinant

$$
\Delta(z)=\operatorname{det}\left(\left\langle f_{i}(z) \mid f_{j}(z)\right\rangle\right)_{1 \leq i, j \leq r}
$$

of the vectors $f_{1}(z), \ldots, f_{r}(z)$ where $\langle. \mid$.$\rangle denotes the scalar product in \mathbb{K}^{n}$. It is well known that these vectors are independent if and only if $\Delta(z) \neq 0$, in particular $\Delta(y) \neq 0$. Let

$$
V_{y}=\left\{z \in \mathbb{K}^{n}, \quad \Delta(z) \neq 0\right\}
$$

The set V_{y} is open in \mathbb{K}^{n}, because the map $z \longmapsto \Delta(z)$ is continuous. Now $\Delta(y) \neq 0$, and so $y \in V_{y} \subset U_{t}$. The proof is completed.

By Lemma 3.1, $E(x)$ is G-invariant, then we will restraint the construction of Φ_{x} to $E(x)$ as follow:
Set $f_{1} \ldots, f_{r} \in \mathcal{A}(G)$ such that $f_{1}(x) \ldots, f_{r}(x)$ generate $E(x)$. Denote by $H_{x}=$ $\operatorname{vect}\left(f_{1} \ldots, f_{r}\right)$ the vector space generated by $f_{1} \ldots, f_{r}$ and by $\psi_{x}=\Phi_{x / H_{x}}: H_{x} \longrightarrow$ $E(x)$ given by $\psi_{x}(f)=f(x)$.

Lemma 3.5. If $r(x)=r_{x}$, then the map $\varphi_{x}: E(x) \longrightarrow \widetilde{E}(x)$ defined by $\varphi_{x}(f(x))=$ $D f_{0}(x)$, for every $f \in H$, is an isomorphism and satisfying:
(i) $\varphi_{x}(G(x))=L(x)$.
(ii) for every $y \in \overline{G(x)}, z=\varphi_{x}(y) \in \overline{L(x)}$ and $\varphi_{x}(G(y))=L(z)$.

Proof. (i) By construction, φ_{x} is linear and surjective. The proof results since $r(x)=r_{x}=r$.

Let $f_{1}, \ldots, f_{r} \in \mathcal{A}(G)$ such that $D f_{1}(0)(x), \ldots, D f_{r}(0)(x)$ generate $\widetilde{E}(x)$. Set $H=\operatorname{vect}\left(f_{1}, \ldots, f_{r}\right)$, it is easy to show that $E(x)=\Phi_{x}(H)=\operatorname{vect}\left(f_{1}(x), \ldots, f_{r}(x)\right)$. Now, let $f=\sum_{k=1}^{r} \alpha_{k} f_{k} \in H$, so $\varphi_{x}(f(x))=\sum_{k=1}^{r} \alpha_{k} D f_{k}(0)(x)=D f_{0}(x) \in L(x)$. It follows that $\varphi_{x}(G(x))=L(x)$.
(ii) Since $y \in E(x)$, there exists $g \in H$ such that $y=g(x)$, so $z=D g_{0}(x)$. By continuity of φ_{x} and by (i), we have $z \in \varphi_{x}(\overline{G(x)}) \subset \overline{\varphi_{x}(G(x))}=\overline{L(x)}$. Let $f \in G$, we have $f=\sum_{k=1}^{r} \alpha_{k} f_{k}$, so $\varphi_{x}(f(y))=\varphi_{x}(f \circ g(y))=D f_{0} . D g_{0}(x)=D f_{0}(z) \in L(z)$. It follows that $\varphi_{x}(G(y))=L(z)$.

By applying Lemma 3.11 given in [5] to the abelian linear group \widetilde{L}, we found the following result:
Lemma 3.6. ([5], Lemma3.11) \widetilde{U}_{t} is a \widetilde{G}-invariant dense open subset of \mathbb{K}^{n}.

Consider the distinct values $\widetilde{r}_{0}=0<\widetilde{r}_{1}<\cdots<\widetilde{r}_{p}=\widetilde{r_{G}}$ taken by the map $\widetilde{r}: \mathbb{K}^{n} \longrightarrow \mathbb{N}$ given by $x \longmapsto r_{x}, x \in \mathbb{K}^{n}$ and let $\widetilde{F}_{j}=\left\{x \in \mathbb{K}^{n} / r_{x} \leq \widetilde{r}_{j}\right\}$, $j=0,1, \ldots, p$. Evidently $\widetilde{F}_{j}(0 \leq j \leq q)$ is the complementary of the L-invariant open set $\widetilde{U}_{\widetilde{r}_{j-1}}$ (Lemma 3.6) and so the sequence $\widetilde{F}_{0}, \ldots, \widetilde{F}_{p}$ is a increasing sequence of closed subsets of \mathbb{K}^{n} and $\widetilde{\Omega}_{j}=\widetilde{F}_{j} \backslash \widetilde{F}_{j-1}=\widetilde{F}_{j} \cap \widetilde{U}_{\widetilde{r}_{j-1}}$. By Lemma 3.3, L is an abelian subgroup of $G L(n, \mathbb{K})$. Then we will use the following result given in [5]:

We have used the same construction of the open sets $\widetilde{\Omega}_{j}$ given by S.Chihi in the proof of Theorem 3.10.

Lemma 3.7. ([5], Theorem 3.10) Let $1 \leq j \leq \widetilde{r}_{G}$ and $x \in \widetilde{\Omega}_{j}$ then for every $y \in \overline{L(x)} \cap \widetilde{\Omega}_{j}$ we have $\overline{L(y)} \cap \widetilde{\Omega}_{j}=\overline{L(x)} \cap \widetilde{\Omega}_{j}$.

Proof of Structure's Theorem. By Proposition 3.4, U_{t} is a G-invariant open set of \mathbb{K}^{n} for every $0 \leq t \leq r_{G}$ and it is dense in \mathbb{K}^{n} for every $0 \leq t \leq \widetilde{r}_{G}$. Consider the distinct values $r_{0}=0<r_{1}<\cdots<r_{q}=r_{G}$ taken by the map $r: \mathbb{K}^{n} \longrightarrow \mathbb{N}$ given by $x \longmapsto r(x), x \in \mathbb{K}^{n}$ and let $F_{j}=\left\{x \in \mathbb{K}^{n} / r(x) \leq r_{j}\right\}, j=0,1, \ldots, q$. Evidently $F_{j}(0 \leq j \leq q)$ is the complementary of the G-invariant open set $U_{r_{j-1}}$ and so the sequence F_{0}, \ldots, F_{q} is a increasing sequence of closed subsets of \mathbb{K}^{n} and $\Omega_{j}=F_{j} \backslash F_{j-1}=F_{j} \cap U_{r_{j-1}}$. Yet, by Proposition 3.4, $U_{r_{j-1}}$ is a G-invariant open set of \mathbb{K}^{n} and it is dense in \mathbb{K}^{n} if $r_{j-1} \leq \widetilde{r}_{G}$, so Ω_{j} is a dense open set of F_{j} if $r_{j-1} \leq \widetilde{r}_{G}$, for the relative topology. Let $p \geq 0$ such that $r_{j} \leq \widetilde{r}_{G}$ for every $0 \leq j \leq p$. This proves (i).

The proof of (ii): Let $x \in \Omega_{j}(1 \leq j \leq q)$ and $y \in \overline{G(x)} \cap \Omega_{j}$. We have $r(x)=r(y)=r_{j}$ since $x, y \in \Omega_{j}$. Then $E(x)=E(y)$, so $y \in \overline{G(x)} \cap U_{x}$. The proof follows from Lemma 2.2.(iii) since $\Phi_{y}^{x}(G(x))=G(y)$.

The proof of (iii): Let $y \in \overline{G(x)} \cap \Omega_{j}$. By Lemma 3.5, there exists an isomor$\operatorname{phism} \varphi_{x}: E(x) \longrightarrow \widetilde{E}(x)$ satisfying $\varphi_{x}(G(x))=L(x)$ and $\varphi_{x}(G(y))=L(z)$ with $z=\varphi_{x}(y)$. By Lemma 3.7, we have

$$
\begin{equation*}
\overline{L(y)} \cap \widetilde{\Omega}_{j}=\overline{L(x)} \cap \widetilde{\Omega}_{j} \tag{1}
\end{equation*}
$$

By Lemma 3.5, we have φ_{x} is an isomorphism satisfying $\varphi_{x}(E(x))=\widetilde{E}_{x}$ and $\varphi_{x}(G(x))=L(x)$. It is easily to show that $\varphi_{x}\left(\Omega_{j}\right)=\widetilde{\Omega}_{j}$, therefore by (1) we obtain

$$
\begin{aligned}
\overline{G(x)} \cap \Omega_{j} & =\varphi_{x}^{-1}(\overline{L(x)}) \cap \varphi_{x}^{-1}\left(\widetilde{\Omega}_{j}\right) \\
& =\varphi_{x}^{-1}\left(\overline{L(x)} \cap \widetilde{\Omega}_{j}\right) \\
& =\varphi_{x}^{-1}\left(\overline{L(y)} \cap \widetilde{\Omega}_{j}\right) \\
& =\overline{\varphi_{x}^{-1}(L(y))} \cap \Omega_{j} \\
& =\overline{G(y)} \cap \Omega_{j} .
\end{aligned}
$$

It follows that $\overline{G(x)} \cap \Omega_{j}=\overline{G(y)} \cap \Omega_{j}$. The proof is completed.

Remark 3.8. (i) See that $q \leq r_{G}$ and $p \leq \widetilde{r}_{G}$.
(ii) If $\widetilde{r}_{G}=r_{G}$ then $p=q$ and so Ω_{j} is dense in F_{j} for every $j \leq q$. In general, $\widetilde{r}_{G}<r_{G}$ (see example 4.1).

Proof of Corollary 1.2. Suppose that $\overline{G(x)}=\mathbb{K}^{n}$ and let $y \in U$. We have $y \in$ $\overline{G(x)} \cap U$ and $E(x)=E(y)=\mathbb{K}^{n}$, so by Theorem 1.1.(iii), there exists an isomorphisms Φ_{x}^{y} such that $G(y)=\Phi_{x}^{y}(G(x))$. Hence $\overline{G(y)}=\Phi_{x}^{y}(\overline{G(x)})=\Phi_{x}^{y}\left(\mathbb{K}^{n}\right)=\mathbb{K}^{n}$. The proof is complete.

Proof of Corollay 1.3. Let $x \in \mathbb{K}^{n}$ such that $\bar{\circ} \overline{G(x)} \neq \emptyset$, so $r(x)=n$ and so $x \in$ U. Denote by C the connected component of U meeting $G(x)$, say that $x \in C$, (otherwise we let $y \in G(x) \cap C$). Now, let's show that $B:=(\overline{G(x)} \cap C) \backslash \overline{G^{(x)}}$ is an open and closed subset of C : By construction, B is G-invariant and closed in C. Let $y \in B$, so $G(y) \subset \overline{G(x)} \cap U$. By Theorem 1.1.(ii), there exists an isomorphisms $\Phi_{y}^{x}: E(x) \longrightarrow E(x)$ satisfying $\Phi_{y}^{x}(x)=y$ and $\Phi_{y}^{x}(G(x))=G(y)$. Then $\Phi_{y}^{x}(\bar{\circ} \overline{G(x)})=\bar{\circ}$. Thus $\bar{\circ} \overline{G(y)} \neq \emptyset$, so $y \in \bar{\circ} \overline{G(y)} \subset B$, hence B is an open and closed subset of C. It follows that $B=\emptyset$, since $x \in C \backslash B$. Then $\bar{\circ} \cap C$ is a non empty open and closed subset of C, so $G(x)$ is dense in C. By the same proof, for every $z \in C \subset \overline{G(x)}$, we have $\bar{\circ} \overline{G(y)} \neq \emptyset$. The proof follows then from the above.

This completes the proof.

4. Example in the dimension $\mathbf{n}=\mathbf{2}$

Example 4.1. Let G be the group generated by $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ the diffeomorphism given by $f(x, y)=\left(x-\frac{y-1}{2\left((y-1)^{2}+1\right)}-\frac{1}{4}, \quad y-\frac{x+1}{2\left((x+1)^{2}+1\right)}+\frac{1}{4}\right)$ with $f(0,0)=(0,0)$. Then $r_{G}=2$ and $\widetilde{r}_{G}=1$.

Proof. Let $u=(1,-1), g=T_{u} \circ f \circ T_{-u}$ and $G^{\prime}=T_{u} \circ f \circ T_{-u}$, where T_{u} denotes the translation by u. Then $g(x, y)=\left(x-\frac{y}{2\left(y^{2}+1\right)}-\frac{1}{4}, \quad y-\frac{x}{2\left(x^{2}+1\right)}+\frac{1}{4}\right)$. We will show that g is a diffeomorphism, $r_{G^{\prime}}=2$ and $\widetilde{r}_{G^{\prime}}=1$. Let $\varphi: x \longmapsto \frac{-x}{2\left(x^{2}+1\right)}-\frac{1}{4}$ and $\psi: x \longmapsto \varphi(x)+\frac{1}{2}$, be two differentiable map of \mathbb{R} satifying $\left|\varphi^{\prime}(x)\right|=\left|\psi^{\prime}(x)\right|<\frac{1}{2}$ for every $x \in \mathbb{R}$, since $\varphi^{\prime}(x)=\frac{x^{2}-1}{2\left(x^{2}+1\right)^{2}}$. We have $g(x, y)=(x+\varphi(y), y+\psi(x))$. Firstly, we will show that g is bijective: Let $(a, b),(x, y) \in \mathbb{R}^{2}$ then

$$
g(x, y)=(a, b) \Longleftrightarrow\left\{\begin{array} { l }
{ x + \varphi (y) = a } \\
{ y + \psi (x) = b }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x+\varphi(b-\psi(x))=a \\
y=b-\psi(x)
\end{array}\right.\right.
$$

Consider the map $\chi_{b}: x \longmapsto x+\varphi(b-\psi(x))$, then χ_{b} is continuous, differentiable and $\chi_{b}^{\prime}(x)=1-\psi^{\prime}(x) \varphi^{\prime}(b-\psi(x))$, so $\chi_{b}^{\prime}(x)>0$ because $\left|\psi^{\prime}(x) \varphi^{\prime}(b-\psi(x))\right|<1$. Therefore, χ_{b} is strictly increasing. Moreover φ and ψ are $\left.\frac{1}{2} \operatorname{Lipschitz:~} \right\rvert\, \varphi(t)-$ $\varphi(0) \left\lvert\, \leq \frac{|t|}{2}\right.$ and $|\psi(t)-\psi(0)| \leq \frac{|t|}{2}$, then $|\varphi(t)| \leq \frac{|t|}{2}+|\varphi(0)|$ and $|\psi(t)| \leq \frac{|t|}{2}+|\psi(0)|$, so

$$
\begin{aligned}
|\varphi(b-\psi(x))| & \leq \frac{1}{2}|b-\psi(x)|-\frac{1}{4} \\
& \leq \frac{1}{2}|\psi(x)|+\frac{|b|}{2}-\frac{1}{4} \\
& \leq \frac{1}{4}|x|+\frac{|b|}{2}-\frac{1}{8}
\end{aligned}
$$

therefore,

$$
\chi_{b}(x) \geq\left(1-\frac{1}{4}\right) x-\left(\frac{|b|}{2}-\frac{1}{8}\right) \longrightarrow+\infty, \quad \text { if } \quad x \longrightarrow+\infty
$$

and

$$
\chi_{b}(x) \leq\left(1-\frac{1}{4}\right) x+\left(\frac{|b|}{2}-\frac{1}{8}\right) \longrightarrow-\infty, \quad \text { if } x \longrightarrow-\infty
$$

Thus χ_{b} realizes a bijection from \mathbb{R} unto \mathbb{R}. As a consequence:

$$
g(x, y)=(a, b) \Longleftrightarrow\left\{\begin{array}{l}
x=\chi_{b}^{-1}(a) \\
y=b-\psi\left(\chi_{b}^{-1}(a)\right)
\end{array}\right.
$$

This implies that g is bijective.
Secondly, we will show that g is a local diffeomorphism: The Jacobien matrix of g on any point $(x, y) \in \mathbb{R}^{2}$ is given by

$$
D g_{(x, y)}=\left[\begin{array}{cc}
1 & \psi^{\prime}(x) \\
\varphi^{\prime}(y) & 1
\end{array}\right]
$$

Then $\operatorname{det}\left(D g_{(x, y)}\right)=1-\varphi^{\prime}(x) \psi^{\prime}(y) \neq 0$ for every $(x, y) \in \mathbb{R}^{2}$. Since g is bijective, it follows that g is a diffeomorphism, so is f. Now $g(u)=u$ and $D g_{u}=I_{2}$. As a consequence, we have $f(0,0)=(0,0)$ and $D f_{(0,0)}=D g_{u}=I_{2}$. For $v=(1,0)$, we have $f(v)=\left(1, \frac{1}{20}\right)$. Since $(v, f(v))$ is a basis of \mathbb{R}^{2}, so $E(v)=\mathbb{R}^{2}$, hence $r_{G}=2$. On the other hand, $\widetilde{G}=G$ and $L=\varphi_{v}(G)=\left\{I_{2}\right\}$, so $L(x, y)=\mathbb{R}(x, y)$, so $\operatorname{dim}(L(x, y))=1$, hence $\widetilde{r}_{G}=1$.

Question : An abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right)$ fixing some point is-it conjugate to a linear group?

References

1. A. Ayadi.A and H. Marzougui, Dynamic of Abelian subgroups of $G L(n, C)$: a structure Theorem, Geometria Dedicata, 116(2005) 111-127.
2. F.Saponga, Localisation des points fixes communs pour des difféomorphismes commutants du plan, Bull Braz Math Soc, New seies 42 (3), (2010), 373-397.
3. M.Waldschmidt, Topologie des points rationnels, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
4. P.W.Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980c.
5. S.Chihi, On the minimal orbits of an abelian linear action, Differential Geometry - Dynamical Systems, Vol.12, (2010), 61-72.
6. V.Bergelson, M.Misiurewicz and S.Senti, Affine actions of a free semigroup on the real line, Ergod. Th. and Dynam. Sys. (2006), 26, 12851305.
7. J. FRANKS, M. HANDEL and K. PARWANI, Fixed points of abelian actions on S^{2}, Ergodic Theory and Dynamical Systems, 27, (2007), 1557-1581

Yahya N'dao, University of Moncton, of mathematics and statistics, Canada
E-mail address: yahiandao@yahoo.fr
Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 37C85, 47A16, 37E30, 37C25.
 Key words and phrases. Diffeomorphisms, abelian, group, orbit, action.
 This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-

