THE DYNAMIC OF ABELIAN SUBGROUP OF Diffr $\left.\mathbb{K}^{n}\right)$, FIXING A POINT, $(\mathbb{K}=\mathbb{R}$ OR $\mathbb{C})$

YAHYA N'DAO AND ADLENE AYADI

Abstract

In this paper, we study the action of any abelian subgroup G of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ on \mathbb{K}^{n}, $(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$. We prove that there exist a decreasing finite sequence $F_{0}, F_{1}, \ldots, F_{q}$ of invariant closed sets such that $\Omega_{j}=F_{j} \backslash F_{j-1}$ is an open subset(for the relative topology) of F_{j} in which every orbit is minimal in it.

1. Introduction

Denote by $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$, $(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ the group of all C^{r}-diffemorphisms of \mathbb{K}^{n}. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $\operatorname{Fix}(G) \neq \emptyset$, where $\operatorname{Fix}(G)=\left\{x \in \mathbb{K}^{n}: f(x)=x, \forall f \in G\right\}$ be the global fixed point set of G. There is a natural action $G \times \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n} .(f, x) \longmapsto f(x)$. For a point $x \in \mathbb{K}^{n}$, denote by $G(x)=\{f(x), f \in G\} \subset \mathbb{K}^{n}$ the orbit of G through x. A subset $E \subset \mathbb{K}^{n}$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. Denote by \bar{E} (resp. $\stackrel{\circ}{E}$) the closure (resp. interior) of E. An orbit O is called minimal in any G-invariant subset Ω of \mathbb{K}^{n} if for every $x \in \bar{O} \cap \Omega$ we have $\bar{O} \cap \Omega=\overline{G(x)} \cap \Omega$.

In [2], S.Frimo proved taht if G is an abelian subgroup of Diff $f^{1}\left(\mathbb{R}^{2}\right)$ generated by any family of commuting diffeomorphisms of the plane wich are C^{1}-close to the identity and having a bounded orbit then $\operatorname{Fix}(G) \neq \emptyset$. In [7], J. Franks, M. Handel and K. Parwani proved that if G is a finitely generated abelian subgroup of $\operatorname{Dif} f_{+}^{1}\left(\mathbb{R}^{2}\right)$ and if there is a compact G-invariant set $C \subset \mathbb{R}^{2}$, then $\operatorname{Fix}(G)$ is non-empty.

This paper can be viewed as a generalization of the results given in [1] for abelian linear group. We study here, the action of an abelian subgroup G of $\operatorname{Diff}\left(\mathbb{K}^{n}\right)$.

Our principal results can be stated as follows:
We generalize the result given in [1] for abelian subgroup of $G L(n, \mathbb{K})$:
Theorem 1.1 (Structure's Theorem). Let G be an abelian subgroup of of Diff $f^{r}\left(\mathbb{K}^{n}\right)$, $r \geq 1$ such that $\operatorname{Fix}(G) \neq \emptyset$. Then there exist a finite increasing sequence of G invariant closed subsets of $\mathbb{K}^{n}, F_{0} \subset \cdots \subset F_{q}$ with the following properties:
(i) $F_{0}=\emptyset$ and $F_{q}=\mathbb{K}^{n} \backslash\{0\}$.
(ii) $\Omega_{j}=F_{j} \backslash F_{j-1}(1 \leq j \leq q)$ is a G-invariant open set of F_{j}.

[^0] 15.
(iii) There exists $p \leq q$ such that Ω_{j} is dense in F_{j} for every $1 \leq j \leq p$.
(iv) Every orbit in Ω_{j} is minimal in $\Omega_{j}, 1 \leq j \leq q$.

Denote by $U=\Omega_{q}=\mathbb{K}^{n} \backslash F_{q-1}$.
Corollary 1.2. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $F i x(G) \neq \emptyset$. If G has a dense orbit then every orbit in U is dense in \mathbb{K}^{n}.

For $n=1$, we obtain the following result.
Corollary 1.3. Let G be an abelian subgroup of $\operatorname{Diff}(\mathbb{K}), r \geq 1$ such that $\operatorname{Fix}(G) \neq \emptyset$. If G has a dense orbit then the orbit of every $x \in \mathbb{K} \backslash F i x(G)$, is dense in \mathbb{K}^{n}.

This paper is organized as follows: In Section 2, we introduce some properties of G-invariant vector space. In Section 3, we prove the Structure's Theorem (Theorem 1.1) and the Corollary 1.2. The section 4, is devoted to study particular cases, we prove the Corollary 1.3 and we give an example for $n=2$.

2. G-invariant vector space

For a subset $E \subset \mathbb{K}^{n}$, denote by $\operatorname{vect}(E)$ the vector subspace of \mathbb{K}^{n} generated by all elements of E. Set $\mathcal{A}(G)$ be the algebra generated by G.

For every $x \in \mathbb{K}^{n}$, We consider the vector space $E(x)=\operatorname{vect}(G(x))$ generated by the orbit $G(x)$.

Lemma 2.1. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ and $x \in \mathbb{K}^{n}$. Then $E(x)$ is G-invariant.

Proof. Suppose that $E(x)$ is generated by $f_{1}(x), \ldots, f_{p}(x)$, with $f_{k} \in G, k=$ $1, \ldots, p$. Let $y=\sum_{k=1}^{p} \alpha_{k} f_{k}(x) \in E(x)$ and $f \in G$, then $y=g(x)$, with $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \in$ $\mathcal{A}(G)$. Therefore $f(y)=f \circ g(x)=\Phi_{x}(f \circ g) \in E(x)$, since $f \circ g \in \mathcal{A}(G)$.

For a fixed vector $x \in \mathbb{K}^{n}$, denote by:

- $F(x)=\mathcal{A}\left(G_{/ E(x)}\right)$ the algebra generated by the restriction $G_{/ E(x)}$ of G to $E(x)$. We will show that $F(x)$ has a finite dimension (Proposition 2.3).

Lemma 2.2. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in$ $\operatorname{Fix}(G)$. Then $g(0)=0$ for every $g \in \mathcal{A}(G)$.

Proof. Let $g=\sum_{k=1}^{p} \alpha_{k} f_{k} \subset \mathcal{A}(G)$ with $f_{k} \in G, \alpha_{k} \in \mathbb{K}$, so $g(0)=\sum_{k=1}^{p} \alpha_{k} f_{k}(0)=0$.
Now, let $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{q} \in \mathcal{A}(G)$ such that $f_{k}(0)=g_{j}(0)=0,1 \leq k \leq m$,
$1 \leq j \leq q$, so for every $\alpha_{1}, \ldots, \alpha_{q}, \beta_{1} \ldots, \beta_{m} \in \mathbb{K}$ we have

$$
\begin{aligned}
\left(\sum_{j=1}^{q} \beta_{j} g_{j}\right) \circ\left(\sum_{k=1}^{m} \alpha_{k} f_{k}\right)(0) & =\sum_{j=1}^{q} \beta_{j} g_{j}\left(\sum_{k=1}^{m} \alpha_{k} f_{k}(0)\right) \\
& =\sum_{j=1}^{q} \beta_{j} g_{j}(0) \\
& =0
\end{aligned}
$$

Since $\mathcal{A}(G)$ is the algebra generated by G, so it is stable by composition and by linear combinations, hence we obtain the results.

Denote by $\Phi_{x}: F(x) \longrightarrow \Phi_{x}(F(x)) \subset \mathbb{K}^{n}$ the linear map given by $\Phi_{x}(f)=f(x)$. So $E(x)=\Phi_{x}(F(x))$.
Proposition 2.3. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in \operatorname{Fix}(G)$ and $x \in \mathbb{K}^{n}$. Then Φ_{x} is a linear isomorphism. In particular, $F(x)$ has a finite dimension.

Proof. Let $f \in \operatorname{Ker}\left(\Phi_{x}\right)$, so $f(x)=0$. Let $y \in E(x)$, since $\Phi_{x}: F(x) \longrightarrow E(x)$ is surjective there exists $g \in \mathcal{A}(G)$ such that $y=g(x)$. As G is abelian, $\mathcal{A}(G)$ is also. Then $g \circ f=f \circ g$. Therefore $f(y)=f(g(x))=g(f(x))=g(0)$. By Lemma 2.2, $g(0)=0$, so $f(y)=0$. It follows that $f=0$. Hence $\operatorname{Ker}\left(\Phi_{x}\right)=\{0\}$. This completes the proof.

Denote by:

- $D F(x)$ the group of all diffeomorphisms of $F(x)$.
- $\overline{G_{/ E(x)}}$ the closure of the restriction $G_{/ E(x)}$ in $F(x)$ for the relative topology of $\mathcal{C}^{r}\left(\mathbb{K}^{n}, \mathbb{K}^{n}\right)$ (the vector space of all C^{r}-differentiable maps from \mathbb{K}^{n} to $\left.\mathbb{K}^{n}\right)$.
- $\widetilde{G}=\overline{G_{/ E(x)}} \cap D F(x)$. It is a closed subgroup of $D F(x)$.
$-\widetilde{G}(x)=\Phi_{x}(\widetilde{G})$.
Lemma 2.4. We have $\overline{\widetilde{G}(x)}=\overline{G(x)}$.

Proof. Recall that $G(x)=\Phi_{x}\left(G_{/ E(x)}\right)$ and $\widetilde{G}(x)=\Phi_{x}(\widetilde{G})$. Then $\overline{G(x)} \subset \overline{\widetilde{G}(x)}$. Let $y \in \overline{\widetilde{G}(x)}$, so $y=\lim _{m \rightarrow+\infty} f_{m}(x)$ for some sequence $\left(f_{m}\right)_{m \in \mathbb{N}}$ in \widetilde{G}. Therefore, for every $m \in \mathbb{N}$, there exists a sequence $\left(f_{m, k}\right)_{k \in \mathbb{N}}$ in $G_{/ E(x)}$ tending to f_{m}. As Φ_{x} is continuous, $\lim _{k \rightarrow+\infty} \Phi_{x}\left(f_{m, k}\right)=\Phi_{x}\left(f_{m}\right)$, so $\lim _{k \rightarrow+\infty} f_{m, k}(x)=f_{m}(x)$. Thus for every $\varepsilon>0$, there exists $M>0$ and for every $m \geq M$, there exists $k_{m}>0$, such that for every $k \geq k_{m}$, we have $\left\|f_{m}(x)-y\right\|<\frac{\varepsilon}{2}$ and $\left\|f_{m, k}(x)-f_{m}(x)\right\|<\frac{\varepsilon}{2}$. Then, for every $m>M$,

$$
\left\|f_{m, k_{m}}(x)-y\right\| \leq\left\|f_{m, k_{m}}(x)-f_{m}(x)\right\|+\left\|f_{m}(x)-y\right\|<\varepsilon
$$

Hence $\lim _{m \rightarrow+\infty} f_{m, k_{m}}(x)=y$, so $y \in \overline{G(x)}$. It follows that $\overline{\widetilde{G}(u)} \subset \overline{G(u)}$. The proof is completed.

3. Proof of structure's Theorem

For a fixed point $x \in \mathbb{K}^{n}$, denote by:

- $p=\operatorname{dim}(F(x))$.
- $\varphi_{x}: F(x) \longrightarrow \varphi_{x}(F(x)) \subset M_{p}(\mathbb{K})$ the linear map given by $\varphi_{x}(f)=D f(0)$, where $D f(0)$ is the differential of f on 0 .

Lemma 3.1. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in$ Fix (G). Then φ_{x} is a homomorphism of groups. In particular, $\varphi_{x}(D F(x))$ is an abelian subgroup of $G L(p, \mathbb{K})$.

Proof. Let $f, g \in D F(x)$, so $\varphi_{x}(f \circ g)=D(f \circ g)(0)=D f(g(0)) \cdot D g(0)$. By Lemma 2.2, $g(0)=0$, so $\varphi_{x}(f \circ g)=D(f)(0) \cdot D g(0)=\varphi_{x}(f) \cdot \varphi_{x}(g)$. The proof is completed.

Lemma 3.2. Let G be an abelian subgroup of $\operatorname{Diff} f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in$ $\operatorname{Fix}(G)$. Let $x, y \in \mathbb{K}^{n}$ such that $E(x)=E(y)$. Then $y=f(x)$ for some $f \in$ $D F(x)$. In particular, $G(y)=f(G(x))$.

Proof. Since $E(y)=E(x)$, we have $G_{/ E(x)}=G_{/ E(y)}$, so $F(x)=F(y)$. Then there exist $f, h \in F(x)$ such that $f(x)=y$ and $h(y)=x$. So $f \circ h(y)-y=$ 0 . As $f \circ h-i d_{E(x)} \in F(y)$, where $i d_{E(x)}$ is the identity of $E(x)$, we obtain $\Phi_{y}\left(f \circ h-i d_{E(x)}\right)=0$. By Proposition 2.3, $\Phi_{y}: F(y) \longrightarrow E(y)$ is an isomorphism, so $f \circ h-i d_{E(x)}=0$. Hence $f \circ h=h \circ f=i d_{E(x)}$. It follows that $f \in D F(x)$. This completes the proof since $f \circ g=g \circ f$ for every $g \in G$.

For every $x \in \mathbb{K}^{n}$, denote by:

- $r(x)=\operatorname{dim}(E(x))$ is called the rank of $x y \in \mathbb{K}^{n}$ over G.
$-r_{G}=\max \left\{r(y), \quad y \in \mathbb{K}^{n}\right\}$.
- $\widetilde{\Phi}_{x}: \varphi_{x}(F(x)) \longrightarrow E(x)$ the linear map given by $\widetilde{\Phi}_{x}(A)=A x, A \in \varphi_{x}(F(x))$.
- $\widetilde{E}_{x}=\widetilde{\Phi}_{x} \circ \varphi_{x}(F(x))$.

Lemma 3.3. Let G be an abelian subgroup of Diff $f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in$ Fix (G). Then the linear map $\widetilde{\Phi}_{y}: \varphi_{y}(F(y)) \longrightarrow \widetilde{E}(y)$ is an isomorphism.

Proof. The proof results directly by applying the Proposition 2.3 to $\varphi_{y}(F(y))$, because all matrices in $\varphi_{y}(F(y))$ fixed 0 and commute two by two and φ_{y} is surjective.

Denote by:

- $U=\left\{y \in \mathbb{K}^{n}, \quad r(y)=r_{G}\right\}$.
- $U_{t}=\left\{y \in \mathbb{K}^{n} / r(y) \geq t\right\}$ for every $0<t \leq r_{G}$.

Proposition 3.4. Let G be an abelian subgroup of Diff $f^{r}\left(\mathbb{K}^{n}\right), r \geq 1$ such that $0 \in \operatorname{Fix}(G)$. Then for every $0 \leq t \leq r_{G}, U_{t}$ is a G-invariant open subset of \mathbb{K}^{n}. In particular, is U. Moreover, for every $0 \leq t \leq \widetilde{r}_{G}, U_{t}$ is dense in \mathbb{K}^{n}.

To prove Proposition 3.4, we need the following notations. For a fixed point $x \in \mathbb{K}^{n}$, denote by:

- $\widetilde{L}=\varphi_{x}(\widetilde{G})$.
- $\widetilde{L}(x)=\widetilde{\Phi}_{x} \circ \varphi_{x}(\widetilde{G})$, so \widetilde{E}_{x} is the vector space generated by $\widetilde{L}(x)$.
- $\widetilde{r}_{y}=\operatorname{dim}(\widetilde{E}(y))$.
$-\widetilde{r}_{G}=\max \left\{\widetilde{r}_{y}, \quad y \in \mathbb{K}^{n}\right\}$.
$-\widetilde{U}=\left\{y \in \mathbb{K}^{n}: \quad \operatorname{dim}(\widetilde{E}(y))=\widetilde{r}_{G}\right\}$.
- $\widetilde{U}_{t}=\left\{y \in \mathbb{K}^{n} / \widetilde{r}_{y} \geq t\right\}$ for every $0 \leq t \leq \widetilde{r}_{G}$.

By applying Lemma 3.11 given in [5] to the abelian linear group \widetilde{L}, we found the following result:
Lemma 3.5. ([5], Lemma3.11) \widetilde{U}_{t} is a \widetilde{G}-invariant dense open subset of \mathbb{K}^{n}.

Lemma 3.6. $\operatorname{dim}(E(y)) \geq \operatorname{dim}\left(\widetilde{E}_{y}\right)$ for every $y \in \mathbb{K}^{n}$. In particular, for every $0 \leq t \leq \widetilde{r}_{G}$, we have $\widetilde{U}_{t} \subset U_{t}$.

Proof. Let $y \in \mathbb{K}^{n}$. Denote by $r=\widetilde{r}_{y}$ and let $f_{1}, \ldots, f_{r} \in F(y)$ such that $D f_{1}(0)(y), \ldots, D f_{r}(0)(y)$ generate \widetilde{E}_{y}. By Lemma 3.3, $\widetilde{\Phi}_{y}: \varphi_{y}(F(y)) \longrightarrow \widetilde{E}_{y}$ is an isomorphism, then $D f_{1}(0), \ldots, D f_{r}(0)$ generate $\varphi_{y}(F(y))$. Let's show that f_{1}, \ldots, f_{r} are linear independent in $F(y)$: If $\alpha_{1} f_{1}+\cdots+\alpha_{r} f_{r}=0$ for some $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{K}$ then $\alpha_{1} D f_{1}(0)+\cdots+\alpha_{r} D f_{r}(0)=0$, hence $\alpha_{1}=\cdots=\alpha_{r}=0$. It follows that $\operatorname{dim}(F(y)) \geq r$. By Proposition 2.3, $\Phi_{y}: F(y) \longrightarrow E(y)$ is an isomorphism, so $\operatorname{dim}(E(y)) \geq r$. The proof is completed.

Proof of Proposition 3.4. Remark that the rank is constant on the orbits, so U_{t} is G-invariant for every $0 \leq t \leq r_{G}$. Let's show that U_{t} is an open set: Let $y \in U_{t}$ and $r=r_{y}$, so $r \geq t$. Then there exist $f_{1}, \ldots, f_{r} \in F(y)$ such that the r vectors $f_{1}(y), \ldots, f_{r}(y)$ are linearly independent in $E(y)$. For all $z \in \mathbb{K}^{n}$, we consider the Gram's determinant

$$
\Delta(z)=\operatorname{det}\left(\left\langle f_{i}(z) \mid f_{j}(z)\right\rangle\right)_{1 \leq i, j \leq r}
$$

of the vectors $f_{1}(z), \ldots, f_{r}(z)$ where $\langle. \mid$.$\rangle denotes the scalar product in \mathbb{K}^{n}$. It is well known that these vectors are independent if and only if $\Delta(z) \neq 0$, in particular $\Delta(y) \neq 0$. Let

$$
V_{y}=\left\{z \in \mathbb{K}^{n}, \quad \Delta(z) \neq 0\right\}
$$

The set V_{y} is open in \mathbb{K}^{n}, because the map $z \longmapsto \Delta(z)$ is continuous. Now $\Delta(y) \neq$ 0 , and so $y \in V_{y} \subset U_{t}$. On the other hand, for every $0 \leq t \leq \widetilde{r}_{G}$, we have $\widetilde{U}_{t} \subset U_{t}$ (Lemma 3.6) and by Lemma 3.5, \widetilde{U}_{t} is dense in \mathbb{K}^{n}, so is U_{t}. The proof is completed.

Proof of Structure's Theorem. By Proposition 3.4, U_{t} is a G-invariant open set of \mathbb{K}^{n} for every $0 \leq t \leq r_{G}$ and it is dense in \mathbb{K}^{n} for every $0 \leq t \leq \widetilde{r}_{G}$. Consider the distinct values $r_{0}=0<r_{1}<\cdots<r_{q}=r_{G}$ taken by the map $r: \mathbb{K}^{n} \longrightarrow \mathbb{N}$ given by $x \longmapsto r(x), x \in \mathbb{K}^{n}$ and let $F_{j}=\left\{x \in \mathbb{K}^{n} / r(x) \leq r_{j}\right\}, j=0,1, \ldots, q$. Evidently $F_{j}(0 \leq j \leq q)$ is the complementary of the G-invariant open set $U_{r_{j}}$ and so the sequence F_{0}, \ldots, F_{q} is a increasing sequence of closed subsets of \mathbb{K}^{n} and $\Omega_{j}=F_{j} \backslash F_{j-1}=F_{j} \cap U_{r_{j-1}}$. Yet, by Proposition 3.4, $U_{r_{j-1}}$ is a G-invariant open set of \mathbb{K}^{n} and it is dense in \mathbb{K}^{n} if $r_{j-1} \leq \widetilde{r}_{G}$, so Ω_{j} is a dense open set of F_{j} if $r_{j-1} \leq \widetilde{r}_{G}$, for the relative topology. Let $p \geq 0$ such that $r_{j} \leq \widetilde{r}_{G}$ for every $0 \leq j \leq p$. This proves (i), (ii) and (iii).

The proof of (iv): Remark at first that $\Omega_{j}=\left\{x \in \mathbb{K}^{n}, \quad r(x)=r_{j}\right\}$. Let $x \in \Omega_{j}(1 \leq j \leq q)$ and $y \in \overline{G(x)} \cap \Omega_{j}$. We have $r(x)=r(y)=r_{j}$ since $x, y \in \Omega_{j}$. Then $E(x)=E(y)$, so by Lemma 3.2 there exists $f \in D F(x)$ such that $y=f(x)$. By Proposition 2.3, $\Phi_{x}: F(x) \longrightarrow E(x)$ is an isomorphism, so $\left(\Phi_{x}\right)^{-1}(y)=f \in\left(\Phi_{x}\right)^{-1}(\overline{G(x)})=\overline{G_{/ E(x)}}$. Thus $f \in D F(x) \cap \overline{G_{/ E(x)}}$, so $f \in \widetilde{G}$. Hence $y=f(x) \in \widetilde{G}(x)$. It follows that $\widetilde{G}(y)=\widetilde{G}(x)$. By Lemma 2.4, $\overline{G(x)}=\overline{\widetilde{G}(x)}=\overline{\widetilde{G}(y)}$, then $\overline{G(y)} \cap \Omega_{j}=\overline{\widetilde{G}(y)} \cap \Omega_{j}=\overline{G(x)} \cap \Omega_{j}$.

Remark 3.7. (i) See that $q \leq r_{G}$ and $p \leq \widetilde{r}_{G}$.
(ii) If $\widetilde{r}_{G}=r_{G}$ then $p=q$ and so Ω_{j} is dense in F_{j} for every $j \leq q$. In general, $\widetilde{r}_{G}<r_{G}$ (see example 4.2).

Proof of Corollary 1.2. Suppose that $\overline{G(x)}=\mathbb{K}^{n}$ and let $y \in U$. We have $y \in$ $\overline{G(x)} \cap U$ and $E(x)=E(y)=\mathbb{K}^{n}$, so by Lemma 3.2, there exists $f \in D F(x)$ such that $G(y)=f(G(x))$. Hence $\overline{G(y)}=f(\overline{G(x)})=f\left(\mathbb{K}^{n}\right)=\mathbb{K}^{n}$. The proof is complete.

4. Particular cases

4.1. Results for the dimension $\mathbf{n}=\mathbf{1}$. For every abelian subgroup G of $\mathcal{H}(1, \mathbb{R})$, we have $\widetilde{L}(x) \neq\{0\}, \forall x \in \mathbb{K}^{n} \backslash\{0\}$, so $\widetilde{r}_{G}=r_{G}$. Therefore, the Theorem 1.1 can be stated as follow:

Corollary 4.1. Let G be an abelian subgroup of $\operatorname{Diff}(\mathbb{K}), r \geq 1$ such that $F i x(G) \neq \emptyset$. Then there exists $a \in F i x(G)$ such that every orbit in $U=\mathbb{K} \backslash\{a\}$ is minimal in U.

Proof. Suppose that $a=0$ (leaving to replace G by $T_{-a} \circ G \circ T_{a}$). So for every $x \in \mathbb{K} \backslash\{0\}, \widetilde{L}(x) \neq\{0\}$, so $\widetilde{r}_{x}=1$. Hence $r_{G}=1$. Therefore, $U=\mathbb{K} \backslash\{0\}$ and the proof results directly from Theorem 4.1 and Remark 3.7.

Proof of Corollay 1.3. Suppose that $a=0$ (leaving to replace G by $T_{-a} \circ G \circ T_{a}$). Set $x \in \mathbb{K}$ with a dense orbit. Then $x \notin \operatorname{Fix}(G)$, so $V=\mathbb{K} \backslash F i x(G) \neq \emptyset$ and $x \neq 0$. See that V is an open subset of \mathbb{K} contained in $U=\mathbb{K} \backslash\{0\}$. For every $y \in V$, we have $y \in U=\overline{G(x)} \cap U$, so by Corollary 4.1, $\overline{G(y)} \cap U=\overline{G(x)} \cap U=U$, hence $\overline{G(y)}=\mathbb{K}$. This completes the proof.

4.2. Example in the dimension $\mathbf{n}=\mathbf{2}$.

Example 4.2. Let G be the group generated by $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ the diffeomorphism given by $f(x, y)=\left(x-\frac{y-1}{2\left((y-1)^{2}+1\right)}-\frac{1}{4}, \quad y-\frac{x+1}{2\left((x+1)^{2}+1\right)}+\frac{1}{4}\right)$. Then $r_{G}=2$ and $\widetilde{r}_{G}=1$.

Proof. Let $u=(1,-1), g=T_{u} \circ f \circ T_{-u}$ and $G^{\prime}=T_{u} \circ f \circ T_{-u}$, where T_{u} denotes the translation by u. Then $g(x, y)=\left(x-\frac{y}{2\left(y^{2}+1\right)}-\frac{1}{4}, \quad y-\frac{x}{2\left(x^{2}+1\right)}+\frac{1}{4}\right)$. We will show that g is a diffeomorphism, $r_{G^{\prime}}=2$ and $\widetilde{r}_{G^{\prime}}=1$. Let $\varphi: x \longmapsto \frac{-x}{2\left(x^{2}+1\right)}-\frac{1}{4}$ and $\psi: x \longmapsto \varphi(x)+\frac{1}{2}$, be two differentiable map of \mathbb{R} satifying $\left|\varphi^{\prime}(x)\right|=\left|\psi^{\prime}(x)\right|<\frac{1}{2}$ for every $x \in \mathbb{R}$, since $\varphi^{\prime}(x)=\frac{x^{2}-1}{2\left(x^{2}+1\right)^{2}}$. We have $g(x, y)=(x+\varphi(y), y+\psi(x))$. Firstly, we will show that g is bijective: Let $(a, b),(x, y) \in \mathbb{R}^{2}$ then

$$
g(x, y)=(a, b) \Longleftrightarrow\left\{\begin{array} { l }
{ x + \varphi (y) = a } \\
{ y + \psi (x) = b }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x+\varphi(b-\psi(x))=a \\
y=b-\psi(x)
\end{array}\right.\right.
$$

Consider the map $\chi_{b}: x \longmapsto x+\varphi(b-\psi(x))$, then χ_{b} is continuous, differentiable and $\chi_{b}^{\prime}(x)=1-\psi^{\prime}(x) \varphi^{\prime}(b-\psi(x))$, so $\chi_{b}^{\prime}(x)>0$ because $\left|\psi^{\prime}(x) \varphi^{\prime}(b-\psi(x))\right|<1$. Therefore, χ_{b} is strictly increasing. Moreover φ and ψ are $\left.\frac{1}{2} \operatorname{Lipschitz:~} \right\rvert\, \varphi(t)-$ $\varphi(0) \left\lvert\, \leq \frac{|t|}{2}\right.$ and $|\psi(t)-\psi(0)| \leq \frac{|t|}{2}$, then $|\varphi(t)| \leq \frac{|t|}{2}+|\varphi(0)|$ and $|\psi(t)| \leq \frac{|t|}{2}+|\psi(0)|$, so

$$
\begin{aligned}
|\varphi(b-\psi(x))| & \leq \frac{1}{2}|b-\psi(x)|-\frac{1}{4} \\
& \leq \frac{1}{2}|\psi(x)|+\frac{|b|}{2}-\frac{1}{4} \\
& \leq \frac{1}{4}|x|+\frac{|b|}{2}-\frac{1}{8}
\end{aligned}
$$

therefore,

$$
\chi_{b}(x) \geq\left(1-\frac{1}{4}\right) x-\left(\frac{|b|}{2}-\frac{1}{8}\right) \longrightarrow+\infty, \quad \text { if } \quad x \longrightarrow+\infty
$$

and

$$
\chi_{b}(x) \leq\left(1-\frac{1}{4}\right) x+\left(\frac{|b|}{2}-\frac{1}{8}\right) \longrightarrow-\infty, \quad \text { if } \quad x \longrightarrow-\infty
$$

Thus χ_{b} realizes a bijection from \mathbb{R} unto \mathbb{R}. As a consequence:

$$
g(x, y)=(a, b) \Longleftrightarrow\left\{\begin{array}{l}
x=\chi_{b}^{-1}(a) \\
y=b-\psi\left(\chi_{b}^{-1}(a)\right)
\end{array}\right.
$$

This implies that g is bijective.
Secondly, we will show that g is a local diffeomorphism: The Jacobien matrix of g on any point $(x, y) \in \mathbb{R}^{2}$ is given by

$$
D g_{(x, y)}=\left[\begin{array}{cc}
1 & \psi^{\prime}(x) \\
\varphi^{\prime}(y) & 1
\end{array}\right] .
$$

Then $\operatorname{det}\left(D g_{(x, y)}\right)=1-\varphi^{\prime}(x) \psi^{\prime}(y) \neq 0$ for every $(x, y) \in \mathbb{R}^{2}$. Since g is bijective, it follows that g is a diffeomorphism, so is f. Now $g(u)=u$ and $D g_{u}=I_{2}$. As a consequence, we have $f(0,0)=(0,0)$ and $D f_{(0,0)}=D g_{u}=I_{2}$. For $v=(1,0)$, we have $f(v)=\left(1, \frac{1}{20}\right)$. Since $(v, f(v))$ is a basis of \mathbb{R}^{2}, so $E(v)=\mathbb{R}^{2}$, hence $r_{G}=2$. On the other hand, $\widetilde{G}=G$ and $L=\varphi_{v}(G)=\left\{I_{2}\right\}$, so $L(x, y)=\mathbb{R}(x, y)$, so $\operatorname{dim}(L(x, y))=1$, hence $\widetilde{r}_{G}=1$.

References

1. A. Ayadi.A and H. Marzougui, Dynamic of Abelian subgroups of $G L(n, C)$: a structure Theorem, Geometria Dedicata, 116(2005) 111-127.
2. F.Saponga, Localisation des points fixes communs pour des difféomorphismes commutants du plan, Bull Braz Math Soc, New seies 42 (3), (2010), 373-397.
3. M.Waldschmidt, Topologie des points rationnels, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
4. P.W.Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980c.
5. S.Chihi, On the minimal orbits of an abelian linear action, Differential Geometry - Dynamical Systems, Vol.12, (2010), 61-72.
6. V.Bergelson, M.Misiurewicz and S.Senti, Affine actions of a free semigroup on the real line, Ergod. Th. and Dynam. Sys. (2006), 26, 12851305.
7. J. FRANKS, M. HANDEL and K. PARWANI, Fixed points of abelian actions on S^{2}, Ergodic Theory and Dynamical Systems, 27, (2007), 1557-1581

Yahya N'dao, University of Moncton, of mathematics and statistics, Canada
E-mail address: yahiandao@yahoo.fr
Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 37C85, 47A16, 37E30, 37C25.
 Key words and phrases. Diffeomorphisms, abelian, group, orbit, action.
 This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-

