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Abstract. In this paper, we study the action of any abelian subgroup G

of Diffr(Kn), r ≥ 1 on Kn, (K = R or C). We prove that there exist
a decreasing finite sequence F0, F1, . . . , Fq of invariant closed sets such that
Ωj = Fj\Fj−1 is an open subset(for the relative topology) of Fj in which every
orbit is minimal in it.

1. Introduction

Denote by Diff r(Kn), r ≥ 1, (K = R or C) the group of all Cr-diffemorphisms
of Kn. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that Fix(G) 6= ∅,
where Fix(G) = {x ∈ Kn : f(x) = x, ∀f ∈ G} be the global fixed point set
of G. There is a natural action G × K

n −→ K
n. (f, x) 7−→ f(x). For a point

x ∈ Kn, denote by G(x) = {f(x), f ∈ G} ⊂ Kn the orbit of G through x. A subset
E ⊂ Kn is called G-invariant if f(E) ⊂ E for any f ∈ G; that is E is a union of

orbits. Denote by E (resp.
◦

E ) the closure (resp. interior) of E. An orbit O is
called minimal in any G-invariant subset Ω of Kn if for every x ∈ O ∩ Ω we have
O ∩Ω = G(x) ∩ Ω.

In [2], S.Frimo proved taht if G is an abelian subgroup of Diff1(R2) generated
by any family of commuting diffeomorphisms of the plane wich are C1-close to
the identity and having a bounded orbit then Fix(G) 6= ∅. In [7], J. Franks, M.
Handel and K. Parwani proved that if G is a finitely generated abelian subgroup
of Diff1

+(R
2) and if there is a compact G-invariant set C ⊂ R2, then Fix(G) is

non-empty.

This paper can be viewed as a generalization of the results given in [1] for abelian
linear group. We study here, the action of an abelian subgroup G of Diff(Kn).

Our principal results can be stated as follows:

We generalize the result given in [1] for abelian subgroup of GL(n,K):

Theorem 1.1 (Structure’s Theorem). Let G be an abelian subgroup of of Diff r(Kn),
r ≥ 1 such that Fix(G) 6= ∅. Then there exist a finite increasing sequence of G-
invariant closed subsets of Kn, F0 ⊂ · · · ⊂ Fq with the following properties:

(i) F0 = ∅ and Fq = Kn\{0}.
(ii) Ωj = Fj\Fj−1 (1 ≤ j ≤ q) is a G-invariant open set of Fj.
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(iii) There exists p ≤ q such that Ωj is dense in Fj for every 1 ≤ j ≤ p.
(iv) Every orbit in Ωj is minimal in Ωj, 1 ≤ j ≤ q.

Denote by U = Ωq = Kn\Fq−1.

Corollary 1.2. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that

Fix(G) 6= ∅. If G has a dense orbit then every orbit in U is dense in K
n.

For n = 1, we obtain the following result.

Corollary 1.3. Let G be an abelian subgroup of Diff r(K), r ≥ 1 such that

Fix(G) 6= ∅. If G has a dense orbit then the orbit of every x ∈ K\Fix(G), is

dense in Kn.

This paper is organized as follows: In Section 2, we introduce some properties of
G-invariant vector space. In Section 3, we prove the Structure’s Theorem (Theo-
rem 1.1) and the Corollary 1.2. The section 4, is devoted to study particular cases,
we prove the Corollary 1.3 and we give an example for n = 2.

2. G-invariant vector space

For a subset E ⊂ Kn , denote by vect(E) the vector subspace of Kn generated
by all elements of E. Set A(G) be the algebra generated by G.

For every x ∈ Kn, We consider the vector space E(x) = vect(G(x)) generated
by the orbit G(x).

Lemma 2.1. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 and x ∈ Kn.

Then E(x) is G-invariant.

Proof. Suppose that E(x) is generated by f1(x), . . . , fp(x), with fk ∈ G, k =

1, . . . , p. Let y =
p∑

k=1

αkfk(x) ∈ E(x) and f ∈ G, then y = g(x), with g =
p∑

k=1

αkfk ∈

A(G). Therefore f(y) = f ◦ g(x) = Φx(f ◦ g) ∈ E(x), since f ◦ g ∈ A(G). �

For a fixed vector x ∈ Kn, denote by:
- F (x) = A

(
G/E(x)

)
the algebra generated by the restriction G/E(x) of G to E(x).

We will show that F (x) has a finite dimension (Proposition 2.3).

Lemma 2.2. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that 0 ∈
Fix(G). Then g(0) = 0 for every g ∈ A(G).

Proof. Let g =
p∑

k=1

αkfk ⊂ A(G) with fk ∈ G, αk ∈ K, so g(0) =
p∑

k=1

αkfk(0) = 0.

Now, let f1, . . . , fm, g1, . . . , gq ∈ A(G) such that fk(0) = gj(0) = 0, 1 ≤ k ≤ m,
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1 ≤ j ≤ q, so for every α1, . . . , αq, β1 . . . , βm ∈ K we have



q∑

j=1

βjgj



 ◦

(
m∑

k=1

αkfk

)
(0) =

q∑

j=1

βjgj

(
m∑

k=1

αkfk(0)

)

=

q∑

j=1

βjgj(0)

= 0

Since A(G) is the algebra generated by G, so it is stable by composition and by
linear combinations, hence we obtain the results. �

Denote by Φx : F (x) −→ Φx(F (x)) ⊂ K
n the linear map given by Φx(f) = f(x).

So E(x) = Φx(F (x)).

Proposition 2.3. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that

0 ∈ Fix(G) and x ∈ Kn. Then Φx is a linear isomorphism. In particular, F (x)
has a finite dimension.

Proof. Let f ∈ Ker(Φx), so f(x) = 0. Let y ∈ E(x), since Φx : F (x) −→ E(x) is
surjective there exists g ∈ A(G) such that y = g(x). As G is abelian, A(G) is also.
Then g ◦ f = f ◦ g. Therefore f(y) = f(g(x)) = g(f(x)) = g(0). By Lemma 2.2,
g(0) = 0, so f(y) = 0. It follows that f = 0. Hence Ker(Φx) = {0}. This completes
the proof. �

Denote by:
- DF (x) the group of all diffeomorphisms of F (x).
- G/E(x) the closure of the restriction G/E(x) in F (x) for the relative topology of
Cr(Kn,Kn) (the vector space of all Cr-differentiable maps from K

n to K
n).

- G̃ = G/E(x) ∩DF (x). It is a closed subgroup of DF (x).

- G̃(x) = Φx(G̃).

Lemma 2.4. We have G̃(x) = G(x).

Proof. Recall that G(x) = Φx(G/E(x)) and G̃(x) = Φx(G̃). Then G(x) ⊂ G̃(x).

Let y ∈ G̃(x), so y = lim
m→+∞

fm(x) for some sequence (fm)m∈N in G̃. Therefore, for

every m ∈ N, there exists a sequence (fm,k)k∈N in G/E(x) tending to fm. As Φx is
continuous, lim

k→+∞
Φx(fm,k) = Φx(fm), so lim

k→+∞
fm,k(x) = fm(x). Thus for every

ε > 0, there exists M > 0 and for every m ≥ M , there exists km > 0, such that
for every k ≥ km, we have ‖fm(x)− y‖ < ε

2 and ‖fm,k(x)− fm(x)‖ < ε
2 . Then, for

every m > M ,

‖fm,km
(x)− y‖ ≤ ‖fm,km

(x)− fm(x)‖ + ‖fm(x) − y‖ < ε.

Hence lim
m→+∞

fm,km
(x) = y, so y ∈ G(x). It follows that G̃(u) ⊂ G(u). The proof

is completed. �
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3. Proof of structure’s Theorem

For a fixed point x ∈ Kn, denote by:
- p = dim(F (x)).
- ϕx : F (x) −→ ϕx(F (x)) ⊂Mp(K) the linear map given by ϕx(f) = Df(0), where
Df(0) is the differential of f on 0.

Lemma 3.1. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that 0 ∈
Fix(G). Then ϕx is a homomorphism of groups. In particular, ϕx(DF (x)) is an

abelian subgroup of GL(p,K).

Proof. Let f, g ∈ DF (x), so ϕx(f ◦ g) = D(f ◦ g)(0) = Df(g(0)).Dg(0). By
Lemma 2.2, g(0) = 0, so ϕx(f ◦ g) = D(f)(0).Dg(0) = ϕx(f).ϕx(g). The proof is
completed. �

Lemma 3.2. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that 0 ∈
Fix(G). Let x, y ∈ Kn such that E(x) = E(y). Then y = f(x) for some f ∈
DF (x). In particular, G(y) = f(G(x)).

Proof. Since E(y) = E(x), we have G/E(x) = G/E(y), so F (x) = F (y). Then
there exist f, h ∈ F (x) such that f(x) = y and h(y) = x. So f ◦ h(y) − y =
0. As f ◦ h − idE(x) ∈ F (y), where idE(x) is the identity of E(x), we obtain
Φy(f ◦ h− idE(x)) = 0. By Proposition 2.3, Φy : F (y) −→ E(y) is an isomorphism,
so f ◦ h − idE(x) = 0. Hence f ◦ h = h ◦ f = idE(x). It follows that f ∈ DF (x).
This completes the proof since f ◦ g = g ◦ f for every g ∈ G. �

For every x ∈ Kn, denote by:
- r(x) = dim(E(x)) is called the rank of xy ∈ Kn over G.
- rG = max {r(y), y ∈ Kn}.

- Φ̃x : ϕx(F (x)) −→ E(x) the linear map given by Φ̃x(A) = Ax, A ∈ ϕx(F (x)).

- Ẽx = Φ̃x ◦ ϕx(F (x)).

Lemma 3.3. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that 0 ∈

Fix(G). Then the linear map Φ̃y : ϕy(F (y)) −→ Ẽ(y) is an isomorphism.

Proof. The proof results directly by applying the Proposition 2.3 to ϕy(F (y)), be-
cause all matrices in ϕy(F (y)) fixed 0 and commute two by two and ϕy is surjec-
tive. �

Denote by:
- U = {y ∈ Kn, r(y) = rG}.
- Ut = {y ∈ K

n /r(y) ≥ t} for every 0 < t ≤ rG.
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Proposition 3.4. Let G be an abelian subgroup of Diff r(Kn), r ≥ 1 such that

0 ∈ Fix(G). Then for every 0 ≤ t ≤ rG, Ut is a G-invariant open subset of Kn. In

particular, is U . Moreover, for every 0 ≤ t ≤ r̃G, Ut is dense in Kn.

To prove Proposition 3.4, we need the following notations. For a fixed point x ∈ Kn,
denote by:

- L̃ = ϕx(G̃).

- L̃(x) = Φ̃x ◦ ϕx(G̃), so Ẽx is the vector space generated by L̃(x).

- r̃y = dim(Ẽ(y)).
- r̃G = max{r̃y, y ∈ K

n}.

- Ũ =
{
y ∈ Kn : dim(Ẽ(y)) = r̃G

}
.

- Ũt = {y ∈ Kn /r̃y ≥ t} for every 0 ≤ t ≤ r̃G.

By applying Lemma 3.11 given in [5] to the abelian linear group L̃, we found the
following result:

Lemma 3.5. ([5], Lemma3.11) Ũt is a G̃-invariant dense open subset of Kn.

Lemma 3.6. dim(E(y)) ≥ dim(Ẽy) for every y ∈ Kn. In particular, for every

0 ≤ t ≤ r̃G, we have Ũt ⊂ Ut.

Proof. Let y ∈ Kn. Denote by r = r̃y and let f1, . . . , fr ∈ F (y) such that

Df1(0)(y), . . . , Dfr(0)(y) generate Ẽy. By Lemma 3.3, Φ̃y : ϕy(F (y)) −→ Ẽy

is an isomorphism, then Df1(0), . . . , Dfr(0) generate ϕy(F (y)). Let’s show that
f1, . . . , fr are linear independent in F (y): If α1f1 + · · · + αrfr = 0 for some
α1, . . . , αr ∈ K then α1Df1(0) + · · · + αrDfr(0) = 0, hence α1 = · · · = αr = 0.
It follows that dim(F (y)) ≥ r. By Proposition 2.3, Φy : F (y) −→ E(y) is an
isomorphism, so dim(E(y)) ≥ r. The proof is completed. �

Proof of Proposition 3.4. Remark that the rank is constant on the orbits, so Ut is
G-invariant for every 0 ≤ t ≤ rG. Let’s show that Ut is an open set: Let y ∈ Ut

and r = ry, so r ≥ t. Then there exist f1, . . . , fr ∈ F (y) such that the r vectors
f1(y), . . . , fr(y) are linearly independent in E(y). For all z ∈ Kn, we consider the
Gram’s determinant

∆(z) = det (〈fi(z) | fj(z)〉)1≤i,j≤r

of the vectors f1(z), . . . , fr(z) where 〈.|.〉 denotes the scalar product in Kn. It is
well known that these vectors are independent if and only if ∆(z) 6= 0, in particular
∆(y) 6= 0. Let

Vy = {z ∈ K
n, ∆(z) 6= 0}

The set Vy is open in Kn, because the map z 7−→ ∆(z) is continuous. Now ∆(y) 6=
0, and so y ∈ Vy ⊂ Ut. On the other hand, for every 0 ≤ t ≤ r̃G, we have

Ũt ⊂ Ut (Lemma 3.6) and by Lemma 3.5, Ũt is dense in Kn, so is Ut. The proof is
completed. �
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Proof of Structure’s Theorem. By Proposition 3.4, Ut is a G-invariant open set of
Kn for every 0 ≤ t ≤ rG and it is dense in Kn for every 0 ≤ t ≤ r̃G. Consider
the distinct values r0 = 0 < r1 < · · · < rq = rG taken by the map r : Kn −→ N

given by x 7−→ r(x), x ∈ Kn and let Fj = {x ∈ Kn/r(x) ≤ rj}, j = 0, 1, . . . , q.
Evidently Fj (0 ≤ j ≤ q) is the complementary of the G-invariant open set Urj

and so the sequence F0, . . . , Fq is a increasing sequence of closed subsets of Kn

and Ωj = Fj\Fj−1 = Fj ∩ Urj−1
. Yet, by Proposition 3.4, Urj−1

is a G-invariant
open set of Kn and it is dense in Kn if rj−1 ≤ r̃G, so Ωj is a dense open set of
Fj if rj−1 ≤ r̃G, for the relative topology. Let p ≥ 0 such that rj ≤ r̃G for every
0 ≤ j ≤ p. This proves (i), (ii) and (iii).

The proof of (iv): Remark at first that Ωj = {x ∈ Kn, r(x) = rj}. Let

x ∈ Ωj (1 ≤ j ≤ q) and y ∈ G(x) ∩ Ωj . We have r(x) = r(y) = rj since
x, y ∈ Ωj . Then E(x) = E(y), so by Lemma 3.2 there exists f ∈ DF (x) such
that y = f(x). By Proposition 2.3, Φx : F (x) −→ E(x) is an isomorphism,

so (Φx)
−1(y) = f ∈ (Φx)

−1(G(x)) = G/E(x). Thus f ∈ DF (x) ∩ G/E(x), so

f ∈ G̃. Hence y = f(x) ∈ G̃(x). It follows that G̃(y) = G̃(x). By Lemma 2.4,

G(x) = G̃(x) = G̃(y), then G(y) ∩ Ωj = G̃(y) ∩ Ωj = G(x) ∩Ωj . �

Remark 3.7. (i) See that q ≤ rG and p ≤ r̃G.
(ii) If r̃G = rG then p = q and so Ωj is dense in Fj for every j ≤ q. In general,
r̃G < rG (see example 4.2).

Proof of Corollary 1.2. Suppose that G(x) = Kn and let y ∈ U . We have y ∈

G(x) ∩ U and E(x) = E(y) = K
n, so by Lemma 3.2, there exists f ∈ DF (x)

such that G(y) = f(G(x)). Hence G(y) = f(G(x)) = f(Kn) = K
n. The proof is

complete. �

4. Particular cases

4.1. Results for the dimension n=1. For every abelian subgroup G of H(1,R),

we have L̃(x) 6= {0}, ∀ x ∈ K
n\{0}, so r̃G = rG. Therefore, the Theorem 1.1 can

be stated as follow:

Corollary 4.1. Let G be an abelian subgroup of Diff r(K), r ≥ 1 such that

Fix(G) 6= ∅. Then there exists a ∈ Fix(G) such that every orbit in U = K\{a} is

minimal in U .

Proof. Suppose that a = 0 (leaving to replace G by T−a ◦ G ◦ Ta). So for every

x ∈ K\{0}, L̃(x) 6= {0}, so r̃x = 1. Hence rG = 1. Therefore, U = K\{0} and the
proof results directly from Theorem 4.1 and Remark 3.7. �
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Proof of Corollay 1.3. Suppose that a = 0 (leaving to replace G by T−a ◦G ◦ Ta).
Set x ∈ K with a dense orbit. Then x /∈ Fix(G), so V = K\Fix(G) 6= ∅ and x 6= 0.
See that V is an open subset of K contained in U = K\{0}. For every y ∈ V , we

have y ∈ U = G(x) ∩ U , so by Corollary 4.1, G(y) ∩ U = G(x) ∩ U = U , hence

G(y) = K. This completes the proof. �

4.2. Example in the dimension n=2.

Example 4.2. Let G be the group generated by f : R2 −→ R
2 the diffeomorphism

given by f(x, y) =
(
x− y−1

2((y−1)2+1) −
1
4 , y − x+1

2((x+1)2+1) +
1
4

)
. Then rG = 2 and

r̃G = 1.

Proof. Let u = (1,−1), g = Tu ◦ f ◦ T−u and G′ = Tu ◦ f ◦ T−u, where Tu denotes

the translation by u. Then g(x, y) =
(
x− y

2(y2+1) −
1
4 , y − x

2(x2+1) +
1
4

)
. We will

show that g is a diffeomorphism, rG′ = 2 and r̃G′ = 1. Let ϕ : x 7−→ −x
2(x2+1)−

1
4 and

ψ : x 7−→ ϕ(x) + 1
2 , be two differentiable map of R satifying |ϕ′(x)| = |ψ′(x)| < 1

2

for every x ∈ R, since ϕ′(x) = x2−1
2(x2+1)2 . We have g(x, y) = (x + ϕ(y), y + ψ(x)).

Firstly, we will show that g is bijective: Let (a, b), (x, y) ∈ R2 then

g(x, y) = (a, b) ⇐⇒

{
x+ ϕ(y) = a
y + ψ(x) = b

⇐⇒

{
x+ ϕ(b− ψ(x)) = a
y = b− ψ(x)

Consider the map χb : x 7−→ x+ ϕ(b − ψ(x)), then χb is continuous, differentiable
and χ′

b(x) = 1 − ψ′(x)ϕ′(b − ψ(x)), so χ′
b(x) > 0 because |ψ′(x)ϕ′(b − ψ(x))| < 1.

Therefore, χb is strictly increasing. Moreover ϕ and ψ are 1
2 Lipschitz: |ϕ(t) −

ϕ(0)| ≤ |t|
2 and |ψ(t)−ψ(0)| ≤ |t|

2 , then |ϕ(t)| ≤ |t|
2 + |ϕ(0)| and |ψ(t)| ≤ |t|

2 + |ψ(0)|
, so

|ϕ(b− ψ(x))| ≤
1

2
|b− ψ(x)| −

1

4

≤
1

2
|ψ(x)| +

|b|

2
−

1

4

≤
1

4
|x|+

|b|

2
−

1

8

therefore,

χb(x) ≥ (1−
1

4
)x−

(
|b|

2
−

1

8

)
−→ +∞, if x −→ +∞

and

χb(x) ≤ (1−
1

4
)x+

(
|b|

2
−

1

8

)
−→ −∞, if x −→ −∞

Thus χb realizes a bijection from R unto R. As a consequence:

g(x, y) = (a, b) ⇐⇒

{
x = χ−1

b (a)
y = b − ψ(χ−1

b (a))
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This implies that g is bijective.
Secondly, we will show that g is a local diffeomorphism: The Jacobien matrix of g
on any point (x, y) ∈ R2 is given by

Dg(x,y) =

[
1 ψ′(x)

ϕ′(y) 1

]
.

Then det(Dg(x,y)) = 1− ϕ′(x)ψ′(y) 6= 0 for every (x, y) ∈ R2. Since g is bijective,
it follows that g is a diffeomorphism, so is f . Now g(u) = u and Dgu = I2. As
a consequence, we have f(0, 0) = (0, 0) and Df(0,0) = Dgu = I2. For v = (1, 0),

we have f(v) =
(
1, 1

20

)
. Since (v, f(v)) is a basis of R2, so E(v) = R2, hence

rG = 2. On the other hand, G̃ = G and L = ϕv(G) = {I2}, so L(x, y) = R(x, y),
so dim(L(x, y)) = 1, hence r̃G = 1. �
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