New insights into Approximate Bayesian Computation - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Year : 2015

New insights into Approximate Bayesian Computation

Abstract

Approximate Bayesian Computation (ABC for short) is a family of computational techniques which offer an almost automated solution in situations where evaluation of the posterior likelihood is computationally prohibitive, or whenever suitable likelihoods are not available. In the present paper, we analyze the procedure from the point of view of k-nearest neighbor theory and explore the statistical properties of its outputs. We discuss in particular some asymptotic features of the genuine conditional density estimate associated with ABC, which is an interesting hybrid between a k-nearest neighbor and a kernel method.
Fichier principal
Vignette du fichier
abc11.pdf (302.18 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00721164 , version 1 (26-07-2012)
hal-00721164 , version 2 (03-06-2013)

Identifiers

Cite

Gérard Biau, Frédéric Cérou, Arnaud Guyader. New insights into Approximate Bayesian Computation. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2015, 51 (1), pp.376-403. ⟨10.1214/13-AIHP590⟩. ⟨hal-00721164v2⟩
546 View
295 Download

Altmetric

Share

Gmail Facebook X LinkedIn More