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Erratum

The proof of Proposition 1 and Theorem 2 in [START_REF] Soulé | Linear projections and successive minima[END_REF] is incorrect. Indeed, §2.5 and §2.7 in op.cit contain a vicious circle: the definition of the filtration V i , 1 ≤ i ≤ n, in §2.5 depends on the choice of the integers n i , when the definition of the integers n i in §2.7 depends on the choice of the filtration (V i ). Thus, only Theorem 1 and Corollary 1 in [START_REF] Soulé | Linear projections and successive minima[END_REF] are proved. We shall prove below another result instead of Proposition 1 in [START_REF] Soulé | Linear projections and successive minima[END_REF]. I thank J.-B. Bost, C. Gasbarri and C. Voisin for their help.

An inequality

2.1

Let K be a number field, O K its ring of algebraic integers and S = Spec(O K ) the associated scheme. Consider an hermitian vector bundle (E, h) over S. Define the i-th successive minima µ i of (E, h) as in [START_REF] Soulé | Linear projections and successive minima[END_REF] §2.1. Let X K ⊂ P(E ∨ K ) be a smooth, geometrically irreducible curve of genus g and degree d. We assume that X K ⊂ P(E ∨ K ) is defined by a complete linear series on X K and that d ≥ 2g + 1. The rank of E is thus

N = d + 1 -g. Let h(X K ) be the Faltings height of X K ([3] §2.2).
For any positive integer i ≤ N we define the integer f i by the formulas

f i = i -1 if i -1 ≤ d -2g , f i = i -1 + α if i -1 = d -2g + α , 0 ≤ α ≤ g ,
and f N = d. * CNRS et IH ÉS, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette, France soule@ihes.fr 1 Fix two natural integers s and t and suppose that 1 ≤ s < t ≤ N -2. When 2 ≤ i ≤ s we let

A i = f 2 i (i -1) f i - i-1 j=2 f j
, and, when t ≤ i ≤ N ,

A i = f 2 i ((i -t + s) f i -(f 1 + f 2 + . . . + f s + f t + . . . + f i-1 )) , consider A(s, t) = max 2≤i≤s or t≤i≤N A i .
Theorem 1. There exists a constant c(d) such that the following inequality holds:

h(X K ) [K : Q] +(2d-A(s, t)(N -t+s+1)) µ 1 +A(s, t)( N +1-t α=1 µ α + N α=N +1-s µ α )+c(d) ≥ 0 .

2.2

To prove Theorem 1 we start by the following variant of Corollary 1 in [START_REF] Morrison | Projective stability of ruled surfaces[END_REF]. Then

S ≤ B(s, t)( s j=1 (r j -r N ) + N j=t (r j -r N )) , where B(s, t) = max 2≤i≤s or t≤i≤N B i ,
and B i is defined by the same formula as A i , each f j being replaced by e j .

Proof. We can assume that r N = 0. As in [START_REF] Morrison | Projective stability of ruled surfaces[END_REF], proof of Theorem 1, we may first assume that S = 1 and seek to minimize r j , so we may assume that all the points actually lie on the polygon. In particular S(r 1 , . . . , r N ) = S(r 1 , r 2 , . . . , r s , . . . , r s , r t , . . . , r N )

and we may assume that the point (e j , r j ) = (e s , r j ) lies on this polygon when s ≤ j ≤ t -1. For such r i 's we have

S(r 1 , . . . , r N ) = N -1 i=1 (r i -r i+1 ) (e i + e i+1 ) .
Let σ i = r i-1 -r i , i = 2, . . . , N . The condition that the points (e i , r i ) lie on their Newton polygon and that the r i decrease becomes, in terms of the σ i ,

σ 2 e 2 -e 1 ≥ σ 3 e 3 -e 2 ≥ . . . ≥ 0 . (1) 
Furthermore

σ s+1 = . . . = σ t-1 = 0 .
Next, we impose the constraint

s j=1 r j + N j=t r j = 1, i.e. s j=2 (j -1) σ j + N j=t (j -t + s) σ j = 1 . (2) 
In the subspace of the points σ = (σ 2 , . . . , σ s , σ t , . . . , σ N ) defined by (2), the inequalities (1) define a simplex. The linear function S = 2≤j≤s σ j (e j-1 + e j ) + t≤j≤N σ j (e j-1 + e j ) must achieve its maximum on this simplex at one of the vertices, i.e. a point where, for some i and α, we have

α = σ 2 e 2 -e 1 = . . . = σ i e i -e i-1 > σ i+1 e i+1 -e i = . . . = 0 .
We get 

σ j = α(e j -e j-1 ) if j ≤ i 0 else. Then, using (2) we get, if i ≤ s, α =   (i -1) e i - i-1 j=2 e j   -1 , 3 

2.3

We come back to the situation of Theorem 1. For every complex embedding σ : K → C, the metric h defines a scalar product

h σ on E ⊗ OK C. If v ∈ E we let v = max σ h σ (v, v) .
Choose N elements x 1 , . . . , x N in E, linearly independent over K and such that log

x i = µ N -i+1 , 1 ≤ i ≤ N .
Let y 1 , . . . , y N ∈ E ∨ K be the dual basis of x 1 , . . . , x N . Let A(d) be the constant appearing in [START_REF] Soulé | Linear projections and successive minima[END_REF], Theorem 1. From [START_REF] Soulé | Linear projections and successive minima[END_REF], Corollary 1, we deduce

Lemma 1. Assume 1 ≤ s ≤ t ≤ N -2. We may choose integers n i , s + 1 ≤ i ≤ t -1, such that i) For all i |n i | ≤ A(d) + d ii) Let w i = y i if 1 ≤ i ≤ s or t ≤ i ≤ N and w i = y i + n i y i+1 if s + 1 ≤ i ≤ t -1.
Let w 1 , . . . , w i ⊂ E ∨ K be the subspace spanned by w 1 , . . . , w i , and

W i = E ∨ K / w 1 , . . . , w i (W 0 = E ∨ K )
. Then, when s + 1 ≤ i ≤ t -1, the linear projection from P(W i-1 ) to P(W i ) does not change the degree of the image of X K .

2.4

Let (v i ) ∈ E N K be the dual basis of (w i ). We have v i = x i when i ≤ s + 1 or i ≥ t + 1 and v i = x i -n i-1 x i-1 + n i-1 n i-2 x i-2 -. . . ± n i-1 . . . n s+1 x s+1

Proposition 1 .

 1 Fix an increasing sequence of integers 0 = e 1 ≤ e 2 ≤ . . . ≤ e N and a decreasing sequence of numbers r 1 ≥ r 2 ≥ . . . ≥ r N . Assume that e s = e s+1 = . . . = e t-1 . Let S = min 0=i0<...<i ℓ =N ℓ-1 j=0 (r ij -r ij+1 )(e ij + e ij+1 ) .

  If we graph the points (e j , r j ), S/2 is the area of the Newton polygon they determine in the first quadrant. Moving the points not lying on the polygon down onto it only reduces

-e 2 j- 1 ) = α e 2 i

 212 and, when i ≥ t, α = ((i -t + s) e i -e 1 -e 2 -. . . -e s -e t -. . . -e i-1 ) Proposition 1 follows.

From these formulas it follows that there exists a positive constant c 1 (d) such that

Let d i be the degree of the image of X K in P(W i ), and e i = d -d i . By Lemma 1 we have e s = e s+1 = . . . = e t-1 .

Therefore we can argue as in [START_REF] Soulé | Successive minima on arithmetic varieties[END_REF], Theorem 1 and [START_REF] Soulé | Linear projections and successive minima[END_REF] pp. 50-53, to deduce Theorem 1 from Proposition 1.