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1 INTRODUCTION 

The full characterization of the vulnerability of criti-
cal infrastructures (CIs) requires modeling the dy-
namics of flow of the physical quantities within the 
network. This entails considering the interplay be-
tween structural characteristics and dynamical as-
pects, which makes the modeling and analysis very 
complicated since the load and capacity of each 
component, and the flow through the network are of-
ten highly variable quantities both in space and time. 

Functional models are, then, often used to capture 
the basic features of CIs networks within a weighted 
topological analysis framework, i.e. disregarding the 
representation of the individual dynamics of the CIs 
elements (Motter and Lai 2002; Dobson, Carreras et 
al. 2007; Zio and Sansavini 2009). These models can 
shed light on the way complex networks react to 
faults and attacks, evaluating their consequences 
when the dynamics of flow of the physical quantities 
in the network is taken into account. The response 
behavior often results in a dramatic cascade pheno-
menon due to avalanches of node breakings. 

As infrastructures do not exist in isolation of one 
another, the relations among them must be identified 
to perform realistic analyses (Rinaldi 2004). This 
shifts the focus of the research on CIs from single, 
isolated systems to multiple, interconnected and mu-
tually dependent systems with the additional objec-
tive of assessing the influences and limitations 
which interacting infrastructures impose on the indi-
vidual system operating conditions (Zimmerman 
2001). 

The modeling of interdependent CIs can be car-
ried out in a cascading failure simulation framework 

which abstracts the physical details of the services 
provided by the individual infrastructures, while at 
the same time capturing their essential operating fea-
tures and interdependencies, and examines the 
emergent effects of disruptions, with the associated 
downstream consequences (Newman et al. 2005; Zio 
and Sansavini 2010). Interdependencies are modeled 
as links connecting nodes of the interdependent sys-
tems; these links are conceptually similar to those of 
the individual systems and can be bidirectional with 
respect to the “flow” between the interdependent 
networks. 

In this paper, such framework is extended to ac-
count for the physical nature of the components and 
their interdependencies. The propagation of cascad-
ing failures in a power transmission network is taken 
as reference example; its components are physically 
specialized in “generators” and “distributors”; the 
effects onto two interdependent CIs (communication 
and transportation networks) are investigated, whe-
reby the interdependencies are modeled as “physi-
cal”, “cyber”, “geographic” and “logical” (Rinaldi et 
al. 2001). The analysis focuses on cascading failures 
triggered by the intentional removal of a single 
component, e.g. due to a malicious attack. 

The paper is organized as follows: the modeling 
of cascading failures in CIs with physical characteri-
zation of components is presented in Section 2; in 
Section 3, the physical characterization of interde-
pendencies is introduced; in Section 4, the functional 
model for interdependent CIs is detailed; in Section 
5, the proposed model is applied to three interdepen-
dent CIs whose structures are based on the 380 kV 
Italian power transmission network (TERNA 2002, 
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Rosato, Bologna et al. 2007). Conclusions are drawn 
in Section 6. 

2 A MODEL OF CASCADING FAILURES IN A 
POWER TRANSMISSION NETWORK 

The model proposed represents the power grid as a 
network of N nodes (substations) and K edges 
(transmission lines). Two types of substations are 
distinguished: NG generators are the sources of pow-
er and ND distribution substations are at the outer 
edge of the transmission grid, as centers of local dis-
tribution grids. 

While the connectedness of the power grid allows 
for the transmission of power over large distances, it 
also implies that local disturbances propagate over 
the whole grid. The failure of a power line due to 
lightning strike or short-circuit leads to the overload-
ing of parallel and nearby lines. Power lines are 
guarded by automatic devices that take them out of 
service when the voltage on them is too high. Gene-
rating substations are designed to switch off if their 
power cannot be transmitted; this protective measure 
has the unwanted effect of diminishing power for all 
consumers. Another possible consequence of power 
line failure is the incapacitation of transmission 
substations, possibly causing that the power from 
generators cannot reach distribution substations and 
ultimately consumers. 
In the unperturbed state each distribution substation 

can receive power from any of the generators. As 

substations lose function, the number of generators, 

NG
i
, connected to (and able to feed) a certain distri-

bution substation i decreases. The concept of con-

nectivity loss, CL, is used to quantify the average de-

crease in the number of generators connected to a 

distributing substation (Albert et al. 2004). The cal-

culation of this parameter relies on the topological 

structure of the network and the available least-

resistance pathways. Denoting by NG the order of the 

generation subset at the unperturbed state of the 

network, and NG
i
 the number of generation units able 

to supply flow to distribution node i after disruptions 

take place 
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where the averaging is done over all distributing 

substations. In summary, the connectivity loss 

measures the decrease of the ability of distribution 

substations to receive power from the generators. 
The load on a transmission or distribution substa-

tion is modeled as dependent on the number of links 
transiting through it, when flow is sent from each 
available generation node to each distribution node. 
In this view, the maximum load or amount of flow 

passing through a node is measured by the node 
betweenness (Sabidussi 1966; Nieminen 1974; 
Freeman 1978; Freeman, Borgatti et al. 1991; Little 
2002), calculated as the number of shortest paths 
that pass through a node, when flow is sent from 
each available generation node to each distribution 
node. The node with the highest value of between-
ness is that through which the most electric power 
flows within the system. Assuming that power is 
routed through the most direct path, the betweenness 
of a substation is a good approximation of how 
much power it is transmitting, i.e. its load (Albert et 
al. 2004). 

In the proposed modeling framework, the load at 
a component is then the total number of shortest 
paths connecting every generator to every distributor 
passing through that component (Newman and Gir-
van 2004), (Batagelj 1994). At any instant of time, 
the load is to be compared with the component ca-
pacity, i.e. the maximum load that it can process. In 
man-made networks, the capacity of a component is 
limited by technological limitations and economic 
considerations. For modeling purposes, it can be as-
sumed that the capacity Cj of component j is dimen-
sioned proportionally to its nominal load Lj at which 
it is designed to operate initially, 

 1 1,2,...,j jC L j N     (2) 

where the constant α > 0, called the tolerance para-
meter of the power transmission network, is for sim-
plicity assumed equal for all components. This pa-
rameter can be regarded as an operating margin 
allowing safe operations of the component under 
possible load increments. When α = 0, the system is 
working at its limit capacity, its operating margin 
being null: any further load added to a component 
would result in its failure and removal from the net-
work and in the propagation of a cascading failure 
involving a large part of the system. 
When all the components are working, the network 
operates without problems in so far as α > 0. On the 
contrary, the occurrence of component failures leads 
to a redistribution of the shortest paths in the net-
work and, consequently, to a change in the loads of 
the surviving components. If the load on a compo-
nent increases beyond capacity, the component fails 
and a new redistribution of the shortest paths and 
loads follows, which, as a result, can lead to a cas-
cading effect of subsequent failures. 

In the modeling scheme adopted, the distribution 
of loads is in turn highly correlated with the distribu-
tion of links: networks with heterogeneous distribu-
tion of links are expected to be heterogeneous with 
respect to the load, so that on average components 
with large number of links will have high loads. This 
behavior confirms the robust-yet-fragile property of 
heterogeneous networks, which was first observed in 



(Albert, Jeong et al. 2000) with respect to the attack 
on several components. 

The importance of the cascade effect with respect 
to intentional attacks stems from the fact that a large 
damage can be caused by the attack on a single 
component. Obviously, in general more links render 
a network more resistant against cascading failures, 
but this increases the cost of the network. 

When looking at the potential of a cascading 
process triggered by the removal of a single compo-
nent, two situations are expected: if prior to its re-
moval the component is operating at a relatively 
small load (i.e., if a small number of shortest paths 
go through it), its removal will not cause major 
changes in the balance of loads and subsequent over-
load failures are unlikely; however, when the load of 
the component is relatively large, its removal is like-
ly to affect significantly the loads of other compo-
nents and possibly start a sequence of overload fail-
ures. Intuitively, the following behavior is expected 
(Motter and Lai 2002): global cascades occur if the 
network exhibits a highly heterogeneous distribution 
of loads and the removed component is among those 
with highest loads; otherwise, cascades are not ex-
pected. 

3 MODELLING OF INTERDEPENDENCIES 
AMONG CRITICAL INFRASTRUCTURES 

According to (Rinaldi et al. 2001), interdependency 
is a bidirectional relationship between two infra-
structures by means of which the state of an infra-
structure is somehow dependent on the state of 
another infrastructure, and vice versa. From this 
view interdependencies are macro-properties of 
coupled systems, i.e. „systems of systems‟: they do 
not in general exist between individual components 
of systems. Other interpretations, however, do not 
necessarily treat interdependencies as bidirectional 
relationships; instead they are seen as unidirectional 
relationships between systems, thus treating depen-
dencies and interdependencies as synonyms (McDa-
niels et al. 2007). 

This view is embraced in the present work in 
which interdependencies among different CIs are 
physically specialized. Thus, the influence that in-
frastructure i exerts on infrastructure j is not symme-
tric.  

In (Rinaldi et al. 2001) a classical framework for 
the characterizations of interdependencies is pro-
posed. Interdependencies are characterized as either 
physical (an output from a system is required as an 
input to another system), cyber (the state of a system 
is dependent on information transmitted through an 
information infrastructure), geographic (two or more 
systems can be affected by the same local event, i.e. 
they are spatially proximate), and logical (includes 

all other types of interdependencies, for example re-
lated to human behavior). 

Functional dependencies between infrastructures 
are modeled as edges between nodes in different in-
frastructures. If an infrastructure is not able to 
supply the demanded service the outgoing depen-
dency edge is removed, thus signaling the unavaila-
bility of the desired service to other infrastructures. 
The effect of a removed dependency edge is eva-
luated separately in the functional model of each of 
the dependent infrastructures. This means that each 
infrastructure only sees and acts upon local informa-
tion regarding dependencies (Johansson and Jonsson 
2009).  

In the following, physically specialized interde-
pendencies among three CIs, i.e. power transmis-
sion, communication and railway networks, are 
modeled and analyzed.  

Physical dependencies: the output of a node from 
a CI is required for the node in the dependent CI to 
operate, thus if the dependency edge is removed, the 
node in the dependent system is disconnected from 
its network. 

Cyber dependencies: the output of a node from a 
communication network is required for the node in 
the dependent CI to operate safely. If the dependen-
cy edge is removed, i.e. the dependent node has no 
access to the communication service, it may fail and 
is disconnected from its network with probability p. 

Logical dependencies are modeled in a similar 
way as the cyber dependencies. 

Geographical dependencies: two or more systems 
can be affected by the same local event, i.e. they are 
spatially proximate. Nodes connected by geographi-
cal dependencies fail simultaneously when they are 
hit by the same local spatial event. 

4 FUNCTIONAL MODEL OF 
INTERDEPENDENT SYSTEMS 

Only the most essential functional properties of the 
CIs are modeled in order to provide a clear presenta-
tion of the developed methodology. More detailed 
functional models, embedding additional physical 
features, could be developed in case a more realistic 
characterization of the CIs is required. 
The functional models of the railway and of the 
communication systems consist in a connectedness 
evaluation algorithm ascertaining the average short-
est path length in the networks. The variation in the 
systems performances is evaluated as the relative 
decrease in the average global efficiency, ΔEglob, 
with respect to the unperturbed systems (Latora and 
Marchiori 2005).  

A node of the railway network is in service as 
long as it has access to the telecommunication sys-
tem and as long as the power transmission system is 
able to supply electricity. Hence, each node of the 



railway network has a cyber dependency from the 
telecommunication system and a physical dependen-
cy from the power transmission network. If the in-
terdependent node in the communication network 
fails, the node in the railway network may fail with 
probability pcr, while if the interdependent node in 
the power transmission network fails, the node in the 
railway network is disconnected. 

A node of the communication network is in func-
tion as long as the power transmission system is able 
to supply electricity. Hence, each node of the com-
munication network has a physical dependency from 
the power transmission network. If the interdepen-
dent node in the power transmission network fails, 
the node in the railway network is disconnected. 

The functional model of the power transmission 
network has been introduced in Section 2. An input 
from the communication system is required for the 
nodes of the power transmission network to operate. 
Hence, each node of the power transmission network 
has a cyber dependency from the communication 
network. If the interdependent node in the commu-
nication network fails, the node in the power trans-
mission network may fail with probability pcp. 

From the functional descriptions of the three CIs, 
it follows that cascading failures only propagate in 
the power transmission network due to the rerouting 
of the flows between generators and distributors and 
their effects propagate to the communication and 
railway networks through the removal of the inter-
dependency connections. Moreover, unlike the 
communication and the power transmission systems, 
which show mutual interdependencies, the operation 
of the transportation network are affected by the 
other two CIs but has no effect on them. 

5 CASE STUDY 

The model of cascading failure introduced in Section 
2 has been applied to the topological network of the 
380 kV Italian power transmission network (Figure 
1). The 380 kV Italian power transmission network 
is a branch of a high voltage level transmission, 
which can be modeled as a network of N=127 nodes 
(NG=30 generator and ND=97 distributor nodes) con-
nected by K=342 links (TERNA 2002, Rosato, Bo-
logna et al. 2007). In Section 5.1, the propagation of 
cascading failures for the isolated independent pow-
er transmission network is assessed. In Section 5.2, 
two additional CIs interdependent on the power 
transmission network are considered, i.e. the com-
munication network and the railway network. The 
effects of the interdependencies among these CIs 
modeled in Sections 3 and 4 have been assessed. 
Due to the lack of actual data but with no loss of ge-
nerality, the topological structures of the two inter-
dependent CIs have been developed on the basis of 
the topology of the 380 kV Italian power transmis-

sion network. Redundancies have been added to the 
communication network assuming that the neigh-
borhood of each node forms a fully connected sub-
graph. This accounts for the presence of alternative 
communication routes among nodes which are not 
„too far‟ from each other. The railway network re-
produces exactly the topology of the power trans-
mission network. 

 

 
Figure 1. The 380 kV Italian power transmission network 
(TERNA 2002, Rosato, Bologna et al. 2007). 

5.1 Independent power transmission network 

The effects of cascading failures are first investi-
gated in the isolated power transmission network. 
The scenario considered regards the malevolent tar-
geted attack aiming at disconnecting node {88}, 
which handles the largest load in the system, i.e. 
through which pass the largest number of generator-
distributor shortest paths. Previous studies have 
showed that power transmission networks can be 
very sensitive to this kind of attacks due to the diffi-
culty of handling flow redistribution when the most 
congested elements fail, because neighboring ele-
ments are also working close to their full capacity 
and are incapable of handling significant additional 
flows (Duenas-Osorio & Vemuru 2009). Hence, the 
disconnection of a most congested node is regarded 
as a critical scenario of malicious attack. In addition 
to that, node {88} plays a strategic role in the sys-
tem, bridging the northern and the southern branches 
of the Tyrrhenian backbone. 

Once the triggering event occurs, flow redistribu-
tion takes place as a mechanism to equilibrate 
supply and demand constraints. The flow redistribu-



tion process is followed by introducing an artificial 
cascade discrete time step ti: at t0 the network is in-
tact, at t1 the initial induced failure occurs; and at t≥2 
the cascading failure progresses as nodes overload 
and cause further failures in neighboring elements. 
The cascading process is followed until the response 
stabilizes and indicators of the severity of the cas-
cade are computed such as the cascade size S, i.e. the 
number of failed components, and the connectivity 
loss, CL (Section 2). 

In Figure 2, the final value of the connectivity 
loss, CL, once the system response has stabilized, is 
plotted versus the tolerance parameter, α.  
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Figure 2. The final value of the connectivity loss, CL, vs. the to-
lerance parameter, α, when the system response has stabilized. 
The cascades are triggered by the removal of the most con-
gested node {88}. 

 
As expected, increasing the flow-carrying capaci-

ty of the network elements reduces the extent of the 
cascades because flow redistribution can be handled 
at the local scale. Yet, we observe jumps to larger 
values of the connectivity loss. In order to gain a 
deeper understanding of this, the transition taking 
place at 0.34 ≤ α ≤ 0.42 is analyzed in detail. Figures 
3 and 4 show the cascade evolution in terms of the 
cascade size, S, and in terms of the connectivity loss, 
CL, for three values of the tolerance parameter in the 
range 0.34 ≤ α ≤ 0.42. At the second time step, S and 
CL are larger for α = 0.34 than for α = 0.39, as ex-
pected. However, at the third time step, the values of   
S and CL for α = 0.39 are almost three times as large 
as they are for α = 0.34. This behavior is related to 
the so-called “islanding” effect. For α = 0.34, the 
failures of „weak‟ nodes occurring at the second 
time step split the network into isolated islanding 
sections (namely, the northern and the southern parts 
of the network), disconnecting many generator-
distributor paths and thus reducing the demand and 
stabilizing the power transmission system. Con-
versely, for α = 0.39, nodes {71, 83, 84} along the 
Adriatic backbone are not failed at the second time 
step, allowing flow redistribution to weaker nodes, 

which fail subsequently at the third time step dis-
rupting the power transmission network. This beha-
vior suggests the inclusion of „weak‟ nodes in the 
system design, for early disconnection or islanding 
and cascade-controlled operation of CIs. Finally, the 
sharp transition occurring at α = 0.42 (Figure 2) is 
due to the fact that nodes which are neighbor of high 
load nodes are able to handle the redistribution of 
flow thanks to the tolerance increase. This is the 
case also for the sharp transitions at α = 0.69 and α = 
1.29 in Figure 2. 

The effects of the physical specialization of the 
components in the power transmission system can be 
seen by comparing Figure 3 and Figure 4. Despite 
the larger number of components, S, failed for α = 
0.42 as compared to α = 0.34, the connectivity loss, 
CL, assumes higher values for α = 0.42 due to the 
fact that more generator-distributor paths are active 
in the network. 
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Figure 3. The cascade evolution in terms of the cascade size, S, 
for three values of the tolerance parameter in the range 0.34 ≤ α 
≤ 0.42. 

 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Artificial time step, t
i

C
o
n
n
e
c
ti
v
it
y
 l
o
s
s
,  

C
L

 

 

 = 0.34

 = 0.39

 = 0.42

 
Figure 4. The cascade evolution in terms of the connectivity 
loss, CL, for three values of the tolerance parameter in the range 
0.34 ≤ α ≤ 0.42. 

 



The CL versus α curve of Figure 2 is relevant for 
safety, because it identifies the transition between 
the cascade-safe region and the onset of disrupting 
cascades in terms of the operating safety margin, α. 
As an example, in order to reduce the connectivity 
loss CL below 60%, the power transmission network 
must be operated accounting for a safety margin α ≥ 
69% beyond the actual working load; the cascading 
failures occurring beyond this safety margin would 
result in connectivity losses lower than the selected 
value. Yet, such a wide safety margin might not be 
always available in real power transmission systems 
and component replacements might be required to 
comply with the prescribed safety margins. Informa-
tion concerning the benefits of possible system im-
provements can also be inferred from the same 
curve. As an example, an increase in tolerance from 
α = 0% to α = 34% leads to a decrease in CL; yet, the 
resilience to cascading failure does not benefit from 
further tolerance increments until a value α = 65% is 
reached. Furthermore, increasing α from 73% to 
123% has no advantage at all. Hence, it cannot be 
said that simply increasing the tolerance α is an ac-
tual improvement for the system vulnerability to-
wards cascading failures. 

With respect to the malicious targeted attack of 
single nodes, the components of the system can be 
ranked in view of the damage caused by the cascade 
of failures triggered by their individual removal. To 
this aim, in Figure 5 the histogram of the connectivi-
ty loss, CL, caused by the removal of each node in 
the power transmission system is presented for α = 
30% which is a reasonable assumption in standard 
practice. Surprisingly, the most congested node {88} 
is not among the most critical. Nodes {14, 79, 76, 71 
and 83} are ranked as the most critical ones, being 
bottlenecks for many generator-distributor shortest 
paths due to their position in the network. Hence, an 
attacker aiming at disrupting the most „active‟ node 
would not actually produce the maximum „desirable‟ 
damage.  

The ranking of the most critical components is 
dependent on the tolerance parameter, α, characteris-
tic of the system; thus it must be reevaluated in case 
the system undergoes modifications affecting its op-
erating margins.  
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Figure 5. The connectivity loss, CL, caused by the removal of 
each node (abscissa) in the power transmission system. The to-
lerance parameter is α = 30%. 

5.2 Interdependent CIs 

Two additional CIs interdependent on the power 
transmission network are considered, i.e. the com-
munication network and the railway network; their 
local interaction rules have been detailed in Section 
4.  

The effects of the disconnection of the most con-
gested node {88} in the power transmission on the 
communication and railway networks are reported in 
Figure 6, where the loss of service in terms of the 
relative decrease of the average global efficiency, 
ΔEglob, with respect to the unperturbed systems is 
plotted versus the tolerance parameter α. Due to the 
strong physical interdependencies between the pow-
er transmission system and the two interdependent 
CIs, the loss of service trend is closely related to the 
connectivity loss, CL, as it can be seen comparing 
Figure 2 and Figure 6. The evaluation of average in-
dicators is not needed for this scenario, since the 
probabilistic cyber interdependencies act on nodes 
which have already failed due to the physical inter-
dependencies from the power transmission system. 
Due to the higher degree of redundancy in the com-
munication network, the loss of service for this in-
frastructure is smaller than it is for the railway sys-
tem. The curve in Figure 6 provides vulnerability 
information as the one in Figure 2. As an example, if 
a designer aims at protecting the railway systems re-
quiring a maximum loss of service, e.g. ΔEglob ≤ 0.5, 
the interdependent power transmission network must 
be operated at α ≥ 69%. From this curve, informa-
tion on the feasibility and the benefits of power 
transmission system improvements can also be in-
ferred with respect to the attainable reduction in the 
vulnerability of the interdependent CIs. 
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Figure 6. The loss of service in terms of the relative decrease of 
the average global efficiency with respect to the unperturbed 
systems vs. the tolerance parameter α. The cascades are trig-
gered by the removal of the most congested node {88} in the 
power transmission system. 
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Figure 7. The loss of service, ΔEglob, caused by the removal of 
each node (abscissa) in the power transmission system. The to-
lerance parameter is α = 30%. 

 
In Figure 7, the removal of each node in the pow-

er transmission system is associated with its conse-
quences on the interdependent CIs. Similarities with 
Figure 5 appear, for the reasons explained above. 

Henceforth, the focus of the analysis becomes 
that of assessing the effects the intentional removal 
of the most connected node {88} belonging to the 
communication system. They are reported in Figures 
7 and 8 as CL and ΔEglob vs. α, respectively, for the 
values of the interdependency strengths pcr = pcp = 
0.5. Comparing Figures 8 and 9 and Figures 2 and 6, 
it appears that cyber dependencies are less critical 
than physical dependencies with respect to the fail-
ure propagation, due to their assumed probabilistic 
nature. 
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Figure 8. The final value of the connectivity loss, CL, vs. the to-
lerance parameter, α. The results are averaged over 100 cas-
cades triggered by the removal of the most connected node 
{88} in the communication system. pcr = pcp = 0.5. 
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Figure 9. The loss of service, ΔEglob, vs. the tolerance parameter 
α. The results are averaged over 100 cascades triggered by the 
removal of the most connected node {88} in the communica-
tion system. pcr = pcp = 0.5. 

 
Aiming at assessing the effects of the interdepen-

dency strengths on the failure propagation, a sensi-
tivity study is carried out with respect to pcp for two 
different α values and its results are reported in Fig-
ures 10 and 11, when pcr = 0.5. A linear decrease is 
attained in the effects of the cascading failure in 
terms of CL and ΔEglob when the interdependency 
strength, pcp, is reduced. Furthermore, the „system-
of-systems‟ sensitivity to pcp decreases when the to-
lerance α increases, as indicated by the reduced 
slope for the case α = 30%. The curves in Figures 10 
and 11 convey information concerning the vulnera-
bility of CIs with respect to the interdependency 
strength. As an example, if a maximum service loss 
is prescribed for the railway system, e.g.  ΔEglob ≤ 
40%, the interdependencies between the communi-
cation system and the power system must be operat-
ed so that pcp ≤ 70%. 
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Figure 10. The connectivity loss, CL, vs. the interdependency 
strength, pcp. The results are averaged over 100 cascades trig-
gered by the removal of the most connected node {88} in the 
communication system. pcr = 0.5. 
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Figure 11. The loss of service, ΔEglob, vs. the interdependency 
strength, pcp. The results are averaged over 100 cascades trig-
gered by the removal of the most connected node {88} in the 
communication system. pcr = 0.5. 

 
The interdependent CIs are not sensitive to varia-

tions of pcr, which do not influence the cascade trig-
gering in the power system. 

Finally, the removal of each node in the commu-
nication system is associated with its consequences 
on the interdependent CIs in Figures 12 and 13. Si-
milarly to the independent power transmission net-
work case, the more connected node {88} in the 
communication system is not the most critical with 
respect to failure propagation (it is ranked lower that 
13

th
 for all the three CIs). Nodes {76, 14, 12 and 71} 

are ranked as the most critical for all the three CIs. 
Compared to the single infrastructure case of Section 
5.1, the relative ranking of some node originally 
present has changed (i.e. nodes {14, 76 and 71}) and 
other nodes (i.e. node {12}) appear among the most 
critical. 
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Figure 12. The average connectivity loss, CL, caused by re-
moval of each node (abscissa) in the communication system 
(100 simulations for each node). α = 30%, pcr = pcp = 0.5.  
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Figure 13. The loss of service, ΔEglob, caused by removal of 
each node (abscissa) in the communication system (100 simu-
lations for each node). α = 30%, pcr = pcp = 0.5. 

6 CONCLUSIONS 

In an effort to enhance the capability of models of 
cascading failures propagation based on network 
theory, the physical characterization of components 
in a power transmission network and of interdepen-
dencies among CIs has been introduced. The model 
has been applied to assess the cascade propagation 
process triggered by a defined scenario: the malevo-
lent targeted removal of single nodes. Three interde-
pendent CIs have been considered, namely the pow-
er transmission network, the communication 
network and the railway network. 

For the independent power transmission network 
case and the interdependent CIs case, the effects of 
the variations of the operating safety margin, α, on 
the cascade propagation have been assessed. The 
knowledge gained from this analysis can help setting 
the value of the operating safety margin, α, so as to 



limit the consequences of cascading failures, e.g. 
measured by CL or ΔEglob, in the CI. 

Ranking of the nodes according to the disruptions 
triggered by their individual removal has shown that 
nodes which could be thought as most critical be-
cause of their high congestion or connectivity, are 
not associated with the largest consequences follow-
ing their removal. This points to the fact that the 
physical characterization of the components and in-
terdependencies adds a further level of complexity to 
the cascade propagation, so that the system bottle-
necks cannot be identified though the static topolog-
ical analysis alone but they require dynamical simu-
lations. 

The analyses performed confirm the need for ear-
ly disconnection or islanding, through inclusion of 
„weak‟ nodes in the system design.  

For the interdependent CIs case, the extent to 
which the interdependency parameter, i.e. the inter-
dependency strength, affects the cascade propaga-
tion has been assessed for various operating safety 
margins, α. Once the operating safety margin is 
known, the systems can be designed or operated, 
tweaking the interdependency strength, pcr, to limit 
the maximum average connectivity loss, CL or ser-
vice loss, ΔEglob. 

Future developments of this work will be the 
modeling of active safety systems for preventing and 
mitigating cascading failures propagations and the 
analysis of interdependent CIs having their own in-
dividual cascade dynamics. 
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