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ABSTRACT

This paper presents a data-driven approach for pteng the available Recovery Time
(RT) of a system during a failure scenario, i.ee time remaining until the system can
no longer perform its function in an irreversibleanmer. A library of reference

multidimensional trajectory patterns from failureesarios is created. When a new
failure scenario develops, its evolution patterc@snpared by fuzzy similarity analysis
to the reference multidimensional trajectory patker The time remaining before the
developing trajectory pattern hits a failure thre#th is predicted by combining the
times of failure of the reference patterns, weighgdheir similarity to the developing

pattern.

For illustration purposes, a case study of litera&uis considered regarding the

estimation of the available RT in failure scenarios the Lead Bismuth Eutectic
eXperimental Accelerator Driven System (LBE-XADS).

Key Words: Recovery Time, Emergency Accident Management,lé&dwd”ower Plant, Lead-
Bismuth Eutectic eXperimental Accelerator Drivenst&yn (LBE-XADS), Fuzzy Similarity
Analysis, Pattern Recognition.



1. Introduction

Nuclear Power Plant (NPP) Accident management v@slthe anticipation of paths of
potentially dangerous behaviors, the predictionthe related effects and actions to avoid any
undesired impact on the safety of the NPP [IAEA)30

In case of an accident, or an initiating event tinaly develop into an accident, the plant
personnel must perform various tasks before takoumteracting actions:

» Identification of the plant state: this diagnostask aims at identifying the cause of the
problem and the states of a number of parametiticacfor the plant operation and safety;

* Prediction of the future development of the accidéms involves prediction of the future
evolution of the states of the critical parametard correspondingly of the behavior of the
plant and its residual Recovery Time (RT) , i.bg time available for corrective actions
before system failure;

* Planning of accident mitigation strategies, to lsévated if safe control of the accident
evolution were not successful.

In modern accident management, computers and cemged procedures are useful tools
which aid operators in the tasks of obtaining t#anformation, following procedures, identifying
plant states, predicting the future accident pregjoa and planning accident control and mitigation
actions. In particular, the complicated phenomdrat take place in a NPP during an accident
situation are more accessible to computerized handhan to human expert evaluation [Qwre,
2001]. Yet, the problem of what kind of decisionppart to provide to nuclear power plant
operators, in particular during transients leadipgo accidents, is far from trivial [NEA, 1992; EC
1999; USNRC, 1999; IAEA, 2003].

Fortunately, NPP personnel have the capability ffecevely manage a broad range of
accidents; their successful management of compexient behaviors requires that they detect the

occurrence of the accident, determine the extentcladllenge to plant safety, monitor the
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performance of active, passive, automatic and aliglstems, select strategies to prevent or
mitigate the safety challenge, implement the acsivategies, and monitor their effectiveness. The
capability to effectively carry out these tasksidgran accident is influenced by the availability o
timely and accurate plant status information arelaWwareness of the RT after the detection of the
fault. Poor decisions may be taken because of sumasd short time available for sorting out the
information relevant to the plant status [Glasstenal., 1998]; on the contrary, timely and correct
decisions can prevent an event from developing antsevere accident or mitigate its undesired
consequences.

The existing computer-based tools which can aiddaot management can be categorized

according to their complexity and specific applicatpurpose [IAEA, 2003]:

Compact simulators;
* Plant analyzers;
* Full-scope training simulators;
* Multifunctional simulators;
» Severe accident simulators;
* Accident management support tools.

In particular, the accident management supportstaambine tracking and predictive
simulators. The former ones monitor the plant statnd provide calculated values also of those
parameters that are not directly observable bynbeitoring systems. The predictive simulators
must be fast-running so as to allow on-line preadicbf the accident progression and of the effects
of the planned mitigation strategies [IAEA, 2003].

The critical point of predictive simulators is tepeed of computation, to provide real time
information. This of course depends on the levalathil included in the plant modeling and on the

computer power available.



One of the main quantities of interest to be de#deby predictive simulators for accident
management use is the available RT. Approached tprBdiction can be categorized broadly into
model-based and data-driven [Chiang et al., 20@bdel-based approaches attempt to incorporate
physical models of the system into the estimatibrthe RT. However, uncertainty due to the
assumptions and simplifications of the adopted rsohay pose significant limitations. Moreover,
the requirement of high computational speed folimresponse necessarily leads to limited details
in the phenomena modeled, with consequent limiiracy in the representation of the actual
plant behavior [Berglund et al., 1995; Serranoletl®99]. On the contrary, data-driven techniques
utilize monitored operational data related to gysteealth. They can be beneficial when
understanding of first principles of system op@miis not straightforward or when the system is so
complex that developing an accurate model is piody expensive. Data-driven approaches can
often be deployed quickly and cheaply, and stilvile wide coverage of system behavior. An
added value of data-driven techniques is theiitgho transform high-dimensional noisy data into
lower dimensional information useful for decisiomking [Dragomir et al., 2007].

Data-driven approaches can be divided into twogmates: statistical techniques (regression
methods, ARMA models, etc.) and Artificial Inteligce (Al) techniques (neural networks, fuzzy
logic systems, etc.).

With respect to Al techniques, Neural Networks (Ndad Fuzzy Logic (FL) techniques
have gained considerable attention in the past fears, due to their ability to deal with the
uncertainties and non-linearities of the real psses, especially in abnormal conditions [@wre,
2001]. Successful prediction models have been natetd based on Neural Networks [Barlett et
al., 1992; Campolucci et al., 1999; Peel et alQ&®io et al., 2008; Santosh et al., 2009] and
Neuro-Fuzzy (NF) systems [Wang et al., 2004]. Iitespf the recognized power of neural network

modeling techniques, skepticism against their useafety-critical applications relates to their



black-box character which limits intuition with pesct to the understanding of their performance
[Wang et al., 2008].

An opportunity for increased transparency and opssiof data-driven models is offered by
fuzzy logic methods, which are increasingly progbse@ modern control and diagnostic
technologies. Based on the principles of Zadehzzyuset theory, fuzzy logic provides a formal
mathematical framework for dealing with the vagussnef everyday reasoning [Zadeh, 1965]. As
opposed to binary reasoning based on ordinary tesiry, within the fuzzy logic framework
measurement uncertainty and estimation imprecisanbe properly accommodated [Yuan et al.,
1997; Zio et al., 2005].

The goal of this work is to extend to the multidm®nal case an approach previously
presented by the authors for the prediction ofavelable RT during an accident [Zio et al., 2009].
The extension is necessary for dealing with reelisases of accident management. The
multidimensional computational framework for the-lore prediction of the system available RT
considers a set of multidimensional trajectory grat arising from different system failures
(hereafter called reference trajectory patterns) ases a fuzzy-based, data-driven similarity
analysis for predicting the RT of a newly develapifailure trajectory (hereafter called test
trajectory pattern). A novelty of the proposed caomapional framework lies in the reliance on a
fuzzy definition of multidimensional trajectory peatn similarity to capture and integrate the
ambiguous information carried by the measured $sgridore specifically, the pattern matching
process is based on a fuzzy evaluation of thertistdetween the signals of the multidimensional
test pattern and the patterns of reference [Angsiger, 2001]; the fuzzy distances from all
reference patterns are then combined to transfoenmiultidimensional data into a one-dimensional
similarity indicator, which is used in the predattiof the available RT.

An application is presented with reference to tlyaeadnic failure scenarios of the Lead
Bismuth Eutectic eXperimental Accelerator Driven st@n (LBE-XADS) with digital

Instrumentation and Control (1&C) [Cammi et al.,0B). Keeping the focus on RT prediction, the
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analysis does not cover the study of the softwackis possible failure modes, the benefits oftfaul
tolerant features, the interactions of the softwarth the hardware and human components. In
other words, the dynamic failure scenario modelsdailored to the purpose of showing the
feasibility of effectively estimating the RT durirap accident. The actual implementation of the
method in a qualified tool of accident managemeiitrequire full dynamic accident calculations,
inclusive of comprehensive models of hardware,vakt and human failure modes and their
interactions.

The paper is structured as follows. Section 2 mesia detailed description of the
computational algorithm for the multidimensionalz2y data similarity evaluation and the
associated RT prediction. Section 3 presents thehamestic model of the LBE-XADS, with the
description of the monitored signals. In Sectiornh#, results of the application of the approach to

LBE-XADS failure scenarios are presented. Finalyne conclusions are drawn in Section 5.

2. Methodology

It is assumed thd\ll trajectories (reference trajectory patterns) aalable, representative
of the evolution of relevant signals during refeeffailure scenarios. These trajectories lasthall t
way to system failure, i.e., to the time when amyai the signals reaches the threshold value
beyond which the system loses its functionality.

When a failure scenario is developing in the systésnmultidimensional signal trajectory
(test trajectory pattern) is compared for similautith the N multidimensional reference trajectory
patterns stored in the database and the residesidf these are used to estimate the RT available
the developing failure scenario [Angstenberger,1200

Figure 1 shows a schematics of the computatioredhdéwork in the general case of

multidimensional trajectories @monitored signalsf (X, X,,...,% ,1).
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Figure 1 The flowchart of the fuzzy based data-drivie approach




For illustration, the procedure is here followeejsby step:

- Step 1: fault detection. The Z-dimensional trajectory of signald (xlxzxZ ,t) IS

continuously monitored throughout the time horizoh observationT, starting from
(discrete) timet =1; at each discrete timg, its values are recorded and appended to the
matrix of the values collected at the previous tisteps. For reasons which will become

clear in the following, the database containingrigference trajectory patterns is organized

ina 3-D structureE[kaxz] , wherek T and its generic elememt(i ') ,z) is the projection
n

on thez-th signal axis ofr (i ] ) which is thej-th segment of lengtim of values of the-th
reference trajectory, =1,2,..N, j=12,..k, z=1,2,...,Z, normalized in the range
[0.2,0.8]. For clarity’s sake, in Figures 2 and 2-® reference trajectory and its partition

into 15 elements are shown, respectively (Ze2 andk=15). As long as no abnormal

signal deviation is detected, the system is qealiis working in nominal conditions and the

estimateﬁ(t) of the available recovery time made at the gerterie t is taken equal to
the system Mean Time to Failuma‘ITTF(t), obtained from the available recovery time
RT (1) of all the failure trajectories in the referenitedry:

RT(1)= MTTF(I):(lilt—::N) ig;t(;i -1 :m ;Z‘t RT( } (1)

wheret, is the system failure time along théh trajectory (i.e., the time when the signal
value exceeds the threshold beyond which the sykises its functionality)(|i |tfi >t) is

the cardinality of the set of reference trajec®nehose failure time is larger thanand

RT(t) is their residual life starting front. At the following time steps, the algorithm



Monitored signal X,

continues to update the estimate @i’(t): MTTF( 9, until a fault is detected upon a

deviation of the signal outside its range of alldwariability; at this time, the algorithm for
the estimation of the available RT starts matchimg similarity of the developing signal
trajectory evolution to those in the referencedilgr and combining their failure times to

provide an estimate of the available RT.
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Figure 2 A bidimensional reference trajectory Figure 3 Bidimensional reference trajectory of Figue 2
on a time horizonT=3000 [s] partitioned into k=15 segments of length=3000/15=200 [s],

i=1,2,....15

Step 2: pointwise difference computation of multidimensional trajectory patterns. At the

current timet, the latestn-long segment of values of the test trajectory guatt

F (X0 %% 08 = (%, %,..,% &= Lt= n+ 2,..} is normalized in [0.2,0.8]. The
pointwise differenced(s) between the-Zvalues of patternf (x, %,,...,% ,t) and those of

the generic reference trajectory segmle('iltj ,z) , Is computed:

5(i,j)=zz:(f~(x t)-rijz)) i=12..N, j=12.k, z2=1,2,..Z )
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The matrixg[ka] contains the difference measurééi,j) between alh-long segments of

the Z-dimensional reference trajectories and the tegedtory pattern of the monitored
signals.

Step 3: computation of trajectory pointwise similarity and corresponding distance score.
Classically, similarity is decided crisply: depemglion whether the distance or similarity
measure between two objects exceeds a specifiedhtbid, the objects are classified into
distinct categories of ‘similar’ or ‘non-similar’ Angstenberger, 2001]. Such binary
classification is restrictive when the situation net so clear-cut and imprecision and
uncertainty in similarity classification exist [Zmermann et al., 1985]. In practice, there are
numerous cases in which the similarity measure lghallow for a gradual transition
between ‘similar’ and ‘non-similar’ [Binaghi et all993; Joentgen et al., 1999]. This can be
achieved by resorting to a fuzzy logic modelinggaiagm in which the pointwise difference

of two trajectories is judged for similarity witlespect to an “approximately zero” fuzzy set
(FS) specified by a function which maps the eleméi, j ) of the difference matriS[ka]
into their values,u(i,j) of membership to the condition of “approximatelgr@’. The

distance scord (i, j) between two trajectory segments is then compuged a

di,j)=1-p(i,j), i=12,..N, j=12,.Kk (3)

Common membership functions can be used for thmitdeh of the FS, e.g. triangular,
trapezoidal, and bell-shaped [Dubois et al., 19B8{he application illustrated in this work,

the following bell-shaped function is used:

e—[";‘f’dzo,nj @



The arbitrary parametersr and [ can be set by the analyst to shape the desired
. . o ~In(a)
interpretation of similarity into the fuzzy setettharger the value of the ratreﬁT, the

narrower the fuzzy set and the stronger the dedmibf similarity [Zio et al., 2009]. The

choice of the values otr and [ depends on the application; one may proceed to
determining the valuef of the difference valued which must have a degree of

membershipy equal toa [Angstenberger, 2001]

Step 4: weight definition. The F/ﬁ'(t) Is estimated as a similarity-weighted sum of the

RT(1):

RT()=> wRT(),i=12,..N (5)

ity >t

The ideas behind the weighting of the individllFa'li'(t) is that:i) all failure trajectories in

the reference library bring useful information fdetermining the available RT of the
trajectory currently developingi) those segments of the reference trajectorieshware

most similar to the most recent segment of lengtlof the currently developing failure
trajectory should be more informative in the extdagon of the occurring trajectory to

failure.
To assign the weighty , the minimum distance;’ along the™ row of the matrix of

Eq. (3) is first identified:
d = min,_ d(i, j), 1=12,..N (6)

The weightw is then computed as:
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w = ( —q*)E(Li_;d;j i=1,2,...N @)

and normalized:

w=w/ D W (8)

Note that the smaller the minimum distance thedathe weight given to thieth trajectory

[Zio et al., 2009].

Step 5: RTj(t) and RT(t) estimation. With respect to the geneiiith trajectory in the library

for which t, >t, the valueRT (1) is determined as:
RT()=t -t ,i=12..N 9)

wheret; = nmjnax( arg(é'(i ,j) :di*)) is the final time index of the latest-in-life segm of

the i-th trajectory among those with minimum distande from the developing test

trajectory ( is the test trajectory pattern length am;hx( argid(i ,j):di* )) gives the
J

largest column indek of r(i,-) whose element is equal iy ). Thus, RT (1) is the time

available before reaching the failure thresholdioa reference trajectory starting from the
end time of the latest-in-life segment of minimumstance from the developing trajectory

(Figure 4).
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Figure 4 The RT (1) for the i-th bidimensional reference trajectory starts fromthe end time of the latest-in-life segment of
minimum distance from the occurring trajectory

This allows a conservative RT estimation, biasedatds “pessimistic” predictions of the
available RT, because in the case that more thansegment along thieth reference
trajectory is closest to the developing test triajgc the latest one is taken, i.e., the one
closest to failure.

Then, the estimaté?l’(t) of the remaining useful life along the developingjectory is

simply computed as in Eq. (5), with weights evaluated by Eq. (8).

3. The LBE-XADS

The Lead-Bismuth Eutectic eXperimental Accelerdboiven System (LBE-XADS) is a
sub-critical, fast reactor in which the fission gess for providing thermal powét(t) is sustained
by an external neutron source through spallatiactien by a proton bear@(t) accelerated by a

synchrotron on a lead-bismuth eutectic target [Bawrat al., 1992Carminati et al., 1993; Rubbia
et al., 1995; Van Tuyle et al., 1993; Venneri et &D93]. A simplified scheme of the plant is

sketched in Figure 5. The primary cooling systenofigpool-type with Lead-Bismuth Eutectic
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(LBE) liquid metal coolant leaving the top of there, at full power nominal conditions, at
temperaturer;” equal to 400 °C and then re-entering the core fiteerbottom through the down-
comer at temperature’,® equal to 300 °C. The average in-core temperattitheoLBE T3 is
taken as the mean of;® and 7r[;°. The secondary cooling system is a flow of an wiga
diathermic oil at 290-320 °C, at full power condits. Cooling of the diathermic oil in each loop is

obtained through an air flow, (t) provided by three air coolers connected in series.

.................. ,5 Feedback

¢ Control Block !

Feedforward !
:

Figure 5 LBE-XADS simplified schematics. A = Accelermr; C = core; P = primary heat exchanger; S = secwary heat
exchanger

A dedicated, dynamic simulation model has beenemginted in SIMULINK for providing
a simplified, lumped and zero-dimensional desaiptof the coupled neutronic and thermo-
hydraulic evolution of the system [Cammi et al.08D The model allows the simulation of the
system controlled dynamics as well as of the fngsachics when the control module is deactivated
and the air cooler flow is kept constant.

Both feedforward and feedback digital control scherhave been adopted for the operation
of the system. The control is set to keep a stetate value of approximately 300 °C of the average

temperature of the diathermic of*®: this value represents the optimal working poihtthe

14



diathermic oil at the steady state, full nominawpo of 80 MWth. On the contrary, an oil

temperature beyond the upper threshid =340 °C would lead to degradation of its physicad a
chemical properties, whereas a temperature beleviotier thresholdr™' =280 °C could result in

thermal shocks for the primary fluid and, eventydibr the structural components [Cammi et al.,
2006]. Conservatively, no dependence on the duratfoexposition to temperatures beyond the
threshold values has been assumed: in other wdhndssystem is considered to fail at such
temperatures regardless of the time during whietxéeeds the thresholds.

Multiple component failures can occur during theteyn life. To simulate this, the model
has been embedded within a Monte Carlo (MC) sammiocedure for injecting faults at random
times and of random magnitudes. Samples of compdagumres are drawn within a mission time

of 3000 [s]. The set of faults considered are:

* The PID controller fails stuck, with a random floate output valuem sampled from a

uniform distribution in [0,797] [kg/s].

* The air coolers fail stuck in a random positiont theovides a corresponding air flow mass

m, uniformly distributed in [0,1000] [kg/s].

» The feedforward controller fails stuck with a cepending flow rate valuen, uniformly

distributed in [0,797] [kg/s].

» The communication between air coolers actuatorsRdBdcontroller fails so that the PID is

provided with the same input value of the previbone step.

The first three faults are applicable to both agaad digital systems, whereas the last one is
typical of digital systems. Furthermore, the fanlignitude probability distributions are assumed to
be uniform, even if the components may more likialy in a certain mode than in others. This
includes also rare multiple events in the set dtifa scenarios and further tests the robustness of

the RT prediction procedure.
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The sequence of multiple failures is generated dyding the first failure time from the
uniform distribution [0,3000] [s] and the successfailure times from the conditional distributions,
uniform from the last sampled time to 3000 [s]. STRssumption is conservative, favoring larger
number of failures in the sequence.

The evolution of the failure scenarios may leadtheee different end states, within the
mission time of 3000 [s]:

1. Low-temperature failure modg{"°<T"")
2. Safe mode "' <T5<T;™)
3. High-temperature failure moda{ *>T."")

The following three signals are taken for the eation of the available RT:

* Mean in-core LBE temperaturg;y:©
» Mean oil temperature of the secondary heat exchamgeside ,T"°
+ Mean air flow rate at the secondary heat exchacgerside,r, (t)

It is important to underline that the procedure lenpented in this work for sampling the fault
events is not intended to reproduce the actuahasiic failure behavior of the system components;
rather, the choices and hypotheses for modelingahks (i.e., the mission time, the number and
typology of faults, the distributions of failurentes and magnitudes) have been arbitrarily made
with the aim of favoring multiple failures. In aegse, the components considered subjected to fault
and their types are not intended to provide a cetmgmsive description of the system fault behavior
but are only taken as exemplary for generatinglm&amic failure scenarios to be used as reference

and test patterns.
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4. Results

4.1 Application of the procedure for RT(t) prediction

A database o#Z=3-dimensional reference trajectories (i.€%°, T**® and I (t)) for N =

6400 failure scenarios (differing in faulty compaote time of faults occurrence and faults

magnitude) is organized in the reference StrUCémka] , Where k :I=30. The generic element
n

r(i N ,z) of the reference structure will be compared fonisirity with the z-th signal of the test

trajectory pattern containing the values of thedatl00 time steps of the trajectory. For eachhef t
test trajectories the procedural steps are perfodm@sdollows:

Step 1: fault detection.

The signal f (x1 X5, x3,t) is monitored starting from time=1 [s] to the mission tim& =

3000 [s], with time steps of 1 [s]. At each timest, its value is appended and stored in the matrix
containing then—-1=99 values of the 3 signals collected at the previbmes. The Mean Time to

Failure MTTF(t) is calculated resorting to Eq. (1) alhfgl'(t) is set equal taMTTF(t) for each

time step, until any component failure is detecti@; fault detection activates the on-line fuzzy-
based data-driven algorithm for RT prediction.

Step 2: pointwise difference computation of multidimensional trajectory patterns.

The total pointwise differencé(i, j) is evaluated by resorting to Eq. (2), watfd,2,3.

Step 3: computation of trajectory pointwise similarity and corresponding distance score.

The pointwise difference®(i,j) are mapped into values of membershifi,j) of the

“approximately zero” FS. The bell-shaped functiodnEm. (4) is taken with parameters values

a =0.2 and £ =0.01, implying strong sharpness in the FS and thufensimilarity requirement.

The distance scored(i, j) are then computed by Eq. (3%1,2,...,640(, j=1,2,...,3C.
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Step 4: weight definition.

The minimum distanced, are evaluated (Eq. (6)), and the relative norredlizeightsw
calculated through Eqgs. (7) and (8%1, 2,...,640C(

Step 5: RTj(t) and RT(t) estimation.

For each reference trajectory in the library, atineste RT, (t) for the test trajectory is
computed (Eq. (9)i =1, 2,...,640(); then, theR‘Ii'(t) are aggregated in the weighted sum (Eqg. (5))
with the weightsw previously calculated.

The estimates of thMTTF(t) for five 3-D test pattern trajectories taken fr@gmo et al.,
2009] are plotted in Figures 6-10, in thin continsdines with the bars of one standard deviation of
the samples(tfi —tt, >t), wheret, is the time at which the diathermic oil temperatprofile of
thei-th reference trajectory exceeds either threshajtis or T™', with corresponding system loss
of functionality. The fﬁ'(t) estimates obtained based on trajectory segments=df00 [s] are

plotted in bold circles; at the beginning of thstteajectories, the predictions match Mé’TF(t);

then, once a component failure is detected, @\Te( t) estimate moves away from tf‘MTTF(t)

values towards the re®T(t) (dashed thick line). In the Figures, the boldticat line indicates the
time of diathermic oil threshold exceedance. Notltat none of the estimates exceeds the actual

failure time.
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4.2 Performance evaluation of the RT(t) estimation procedure
The performance of the available RT estimation @doce has been tested extensively on a
batch ofP=1280 multidimensional test trajectories, differéoim the reference trajectories. Figure

11 shows theﬁ'(t) predictions (continuous line with dark bullets)mgmared to the actual

remaining lives for 25 failure trajectories (gragadly appended in sequence), after the fault has
been detected (i.e., starting from step 2 of thgorghm). After fault detection, the initial
predictions for each test trajectory tend to beilaimregardless of the eventual length of the test

trajectory life duration because the initial dematfrom the nominal evolution is little sensitiaad

only slightly moves theRT(t) prediction away from theMTTF(t) value; this results in a

conservative trend of initial anticipation of theadable RT associated to trajectories whose failur
actually occurs late in life. The largest availaBIE estimation errors occur for those trajectonres

which the component failure is of low-magnitude,ost effect only slowly drives the system to

failure and the prediction away froMTTF(t) towards the trueRT(1).
To globally quantify the performance of the proaeduhe mean relative error (RE) at time

t, between the estima@'(t) and its true valueRT(t), is introduced:

RT» ()~ RT(})

RE(t):%,; RT.(9

(10)

where RT, (1) is the actual available recovery time at titnef test patterrp, and F/ﬁ'p(t) its

estimate,p=1,2,...,P.

Figure 12 shows the empirical probability densityndtion of the mean relative error

evaluated ISISHGNSO0ONSIGHEVEINTCRIGIMENIPESRREEIE < The distibution is skewed

towards small error values, with mean and mediaraletp 0.07 and 0.02, respectively. This proves

that the procedure most frequently makes smaltivel@stimation errors.
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The computational time required for the estimattong one complete test trajectory of 3000 [s] is

of few seconds on an InfeCeleron M of 900 MHz.
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Figure 12 Empirical probability density function of the relative errors on the 3000 [s] of the 1280 tetrajectories



Figure 13 compares the RE evaluated at time step8 [3] in the last 600 [s] when all three
monitored signals are used or when only the meah tdnperature is used [Zio et al., 2009] with
L£=0.01in Egs. (4) and (7). It is seen that:

- the accuracy in the estimation is worst when using the mean LBE temperature;

- the accuracy in the estimation of the availableiRproves over time: as the available RT
decreases, the relative errors approximate thesnmalues of 0.02 and 0.05, respectively.

- the accuracy in the estimation of the available vidlen all 3 monitored signals are used

never exceeds a RE value of 0.1.

—F— 3 signals: LBE temperature, oil temperature, air flow
—S— 1 signal: LBE temperature

03F-----

Relative Error

I
I
|
7
R

UL x50 [s]

Figure 13 Relative Error evaluated each 50 [s] staimg from 600 [s] before failure, for 1280 test tragctories, using all three
monitored signals (squares) or only the mean LBE termgyature (circles)

Figure 14 shows the RE evaluated at time step®dgpin the last 600 [s] for different
groups of the three simultaneously monitored sgmaih £ =0.01in Egs. (4) and (7); the smaller
number of monitored signals used for the pattemmlarity evaluation, the worse the accuracy in
the estimation of the available RT but the lar¢persavings in computing times. In the case of only
1 monitored signal, the performances for LBE terapge and oil temperature are almost the
same; the performance for air flow signal is muarse than those for LBE and oil temperature,

whose values evolving in time are a consequenem alverall contribution of the parametérd,,
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t3, t4, M andny; on the contrary, after a failure directly affectithe air flow, since its value is
stuck tomg, this signal loses any physical meaning relatethéosystem behavior without carrying

any additional information for the RT prediction.

I I I I I I I I
: —1— 3 signals: LBE temperature, oil temperature, air flow
: —#—— 2 signals: LBE temperature, oil temperature
05F----- } —e— 2 signals: oil temperature, air flow H
: —=—— 2 signals: LBE temperature, air flow

1| —©— 1 signal: LBE temperature
0.4F---- H—e—1 signal: oil temperature H

!| —<— 1 signal: air flow

Relative Error
- — -

Figure 14 Relative Error evaluated each 50 [s] staimg from 600 [s] before failure, for 1280 test tragctories, using different
combinations of the three monitored signals

5. Conclusions

This paper extends to the multidimensional casendasity-based prediction method for
estimating the available Recovery Time (RT) of ateg, as a computerized support tool to be
embedded in an operator support system for emeygamuwdent management. The capability of the
staff to effectively carry out corrective actiors directly influenced by the availability of the
information about the RT after the detection of faalt. In fact, poor decisions may be taken
because of the supposed short time available fdingoout the relevant information; on the
contrary, timely and correct decisions can prewnevent from developing into a severe accident
or mitigate its undesired consequences.

The extended method of RT prediction allows for tomsideration of the information
carried out by multiple signals of multidimensiot@jectories. Data from different transient fadur

scenarios are used to create a library of referpaterns of evolution; for estimating the avaiéabl
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RT of a test pattern, its evolution data are matdoethe patterns in the library and their known
residual life times are used for the estimationseldaon a multidimensional fuzzy pointwise
similarity concept.

The RT estimation procedure involves four main stefl) computing the pointwise
difference between test and reference patterns;e{@luating their multidimensional fuzzy
pointwise similarity and distance score; (3) defgnithe weights of the individual RT estimates
provided by the reference patterns; and (4) aggrepthese to evaluate the system residual RT.

A literature case study regarding the RT predictmmna large number of fault scenarios of
the Lead Bismuth Eutectic eXperimental Acceleratoriven System (LBE-XADS) has
demonstrated the promising potential of the contpurtal procedure and the improvements in
prediction accuracy obtained by extending it to trdithensional pattern analysis. The results are
very satisfactory from the point of view of bothcacacy of the estimation and computing time;
these are two objectives which can be optimized pyoper selection of the monitored signals upon
which to base the pointwise similarity evaluatidime procedure may be used to allow predicting
the available RT with sufficient accuracy and tigifor proactive maintenance/safety procedures

purposes.
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