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1� INTRODUCTION

In
 the
 performance�based
 design
 and
 operation
 of

modern
engineered
systems,
the
accurate
assessment

of
 reliability
 is
 of
 paramount
 importance,
 particu�
larly
 for
 civil,
 nuclear,
 aerospace
and
chemical
 sys�
tems
and
plants
which
are
safety�critical
and
must
be

designed
 and
 operated
 within
 a
 risk�informed
 ap�
proach
(Patalano
et
al.
2008).

The
reliability
assessment
requires
the
realistic
mod�
elling
 of
 the
 structural/mechanical
 components
 of

the
system
and
the
characterization
of
their
material

constitutive
 behaviour,
 loading
 conditions
 and

mechanisms
of
deterioration
and
failure
that
are
an�
ticipated
to
occur
during
the
working
life
of
the
sys�
tem
(Schueller
&
Pradlwarter
2007).

In
 practice,
 not
 all
 the
 characteristics
 of
 the
 system

under
 analysis
 can
 be
 fully
 captured
 in
 the
 model.

This
 is
 due
 to:
 i)
 the
 intrinsically
 random
nature
of

several
 of
 the
phenomena
occurring
during
 the
 sys�
tem
life;
ii)
the
incomplete
knowledge
about
some
of

these
 phenomena.
 Thus,
 uncertainty
 is
 always
 pre�
sent
 in
 the
 hypotheses
 underpinning
 the
 model

(model
uncertainty)
and
in
the
values
of
its
parame�
ters
(parameter
uncertainty);
this
leads
to
uncertainty

in
the
model
output,
which
must
be
quantified
for
a

realistic
 assessment
 of
 the
 system
 (Nutt
 &
 Wallis

2004).

In
 mathematical
 terms,
 the
 probability
 of
 system

failure
can
be
expressed
as
a
multi�dimensional
inte�
gral
of
the
form


( ) =FP P(x
∈ 
F)
=
∫IF(x)q(x)dx
 (1)


where
x
=
{x1,
x2,
...,
xj,
...,
xn}

nℜ∈ 
is
the
vector
of


the
random
states
of
the
components,
i.e.
the
random

configuration
 of
 the
 system,
 with
multidimensional

probability
 density
 function
 (PDF)
 ),0[: ∞→ℜnq ,


nF ℜ⊂ 
 is
 the
 failure
 region
 and
 IF: { }1,0→ℜn 
 is

an
indicator
function
such
that
IF(x)
=
1,
if
x
∈ 
F
and

IF(x)
 =
 0,
 otherwise.
 The
 failure
 domain
F
 is
 com�
monly
defined
by
a
so�called
Performance
Function

(PF)
or
Limit
State
Function
 (LSF)
 ( )xg x 
which
 is

lower
than
or
equal
to
zero
if
 Fx∈ 
and
greater
than

zero,
otherwise.

In
practical
cases,
the
multi�dimensional
integral
(1)

can
not
be
easily
evaluated
by
analytical
methods
nor

by
 numerical
 schemes.
 On
 the
 other
 hand,
 Monte

Carlo
 Simulation
 (MCS)
 offers
 an
 effective
 means

for
estimating
the
integral,
because
the
method
does

not
suffer
from
the
complexity
and
dimension
of
the

domain
of
integration,
albeit
it
implies
the
nontrivial

task
 of
 sampling
 from
 the
 multidimensional
 PDF.

The
MCS
solution
to
(1)
entails
that
a
large
number

of
samples
of
the
values
of
the
uncertain
parameters

x
 be
 drawn
 from
 )(xq 
 and
 that
 these
 be
 used
 to

compute
an
unbiased
and
consistent
estimate
of
 the

system
failure
probability
as
the
fraction
of
the
num�
ber
of
samples
that
lead
to
failure.
However,
a
large

number
 of
 samples
 (inversely
 proportional
 to
 the

failure
 probability)
 is
 necessary
 to
 achieve
 an
 ac�
ceptable
estimation
accuracy:
in
terms
of
the
integral
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ABSTRACT:
 In
 this
 paper,
 the
 recently
 developed
 Subset
 Simulation
 (SS)
 and
 Line
 Sampling
 (LS)
 tech�
niques
are
considered
for
improving
the
efficiency
of
Monte
Carlo
Simulation
(MCS)
in
the
estimation
of
sys�
tem
failure
probability.
The
SS
method
is
founded
on
the
idea
that
a
small
failure
probability
can
be
expressed

as
a
product
of
larger
conditional
probabilities
of
some
intermediate
events:
with
a
proper
choice
of
the
inter�
mediate
events,
the
conditional
probabilities
can
be
made
sufficiently
large
to
allow
accurate
estimation
with
a

small
number
of
samples.
The
LS
method
employs
lines
instead
of
random
points
in
order
to
probe
the
failure

domain
of
interest.
An
“important
direction”
is
determined,
which
points
towards
the
failure
domain
of
inter�
est;
 the
 high�dimensional
 reliability
 problem
 is
 then
 reduced
 to
 a
 number
 of
 conditional
 one�dimensional

problems
which
are
solved
along
the
“important
direction”.

The
 two
methods
 are
 applied
 on
 a
 structural
 reliability
model
 of
 literature.
The
 efficiency
 of
 the
 proposed

techniques
is
evaluated
in
comparison
to
the
commonly
adopted
standard
MCS.




in
(1)
this
can
be
seen
as
due
to
the
high
dimension�
ality
n
of
the
problem
and
the
large
dimension
of
the

relative
sample
space
compared
to
the
failure
region

of
interest
(Schueller
2007).
This
calls
for
new
simu�
lation
 techniques
 for
 performing
 robust
 estimations

with
a
limited
number
of
input
samples
(and
associ�
ated
low
computational
time).

In
 this
 respect,
 effective
 approaches
 are
 offered
 by

Subset
 Simulation
 (SS)
 (Au
 and
Beck
 2001,
Au
&

Beck
2003)
and
Line
Sampling
(LS)
(Koutsourelakis

et
al.
2004,
Pradlwarter
et
al.
2005).

In
the
SS
method,
the
failure
probability
is
expressed

as
 a
 product
 of
 conditional
 failure
 probabilities
 of

some
 chosen
 intermediate
 events,
whose
 evaluation

is
 obtained
 by
 simulation
 of
 more
 frequent
 events.

The
 evaluation
 of
 small
 failure
 probabilities
 in
 the

original
 probability
 space
 is
 thus
 tackled
 by
 a
 se�
quence
of
simulations
of
more
frequent
events
in
the

conditional
probability
spaces.
The
necessary
condi�
tional
 samples
 are
 generated
 through
 successive

Markov
 Chain
 Monte
 Carlo
 (MCMC)
 simulations

(Metropolis
et
al.
1953),
gradually
populating
the
in�
termediate
 conditional
 regions
 until
 the
 final
 target

failure
region
is
reached.

In
 the
 LS
method,
 lines,
 instead
 of
 random
 points,

are
 used
 to
 probe
 the
 failure
 domain
 of
 the
 high�
dimensional
 problem
under
 analysis
 (Pradlwarter
 et

al.
2005).
An
“important
direction”
is
optimally
de�
termined
 to
point
 towards
 the
 failure
domain
of
 in�
terest
and
a
number
of
conditional,
one�dimensional

problems
are
solved
along
such
direction,
in
place
of

the
 high�dimensional
 problem
 (Pradlwarter
 et
 al.

2005).
The
approach
has
been
shown
to
perform
al�
ways
 better
 than
 standard
MCS;
 furthermore,
 if
 the

boundaries
 of
 the
 failure
domain
of
 interest
 are
not

too
rough
(i.e.,
almost
linear)
and
the
“important
di�
rection”
 is
 almost
 perpendicular
 to
 them,
 the
 vari�
ance
 of
 the
 failure
 probability
 estimator
 could
 be

ideally
reduced
to
zero
(Koutsourelakis
et
al.
2004).

In
this
paper,
SS
and
LS
schemes
are
developed
for

application
to
a
structural
reliability
model
of
litera�
ture,
 i.e.,
 the
cracked
plate
model
(Ardillon
&
Ven�
turini
1995).
The
problem
is
rather
challenging
as
it

entails
estimating
failure
probabilities
of
the
order
of

10�7.

The
 benefits
 gained
 by
 the
 use
 of
 SS
 and
 LS
 are

demonstrated
 by
 comparison
 with
 respect
 to
 stan�
dard
MCS.

The
remainder
of
 the
paper
 is
organized
as
follows.

General
presentations
of
the
SS
and
LS
schemes
im�
plemented
for
this
study
are
given
in
Sections
2
and

3,
respectively.
In
Section
4,
the
results
of
the
appli�
cation
of
SS
and
LS
 to
 the
cracked
plate
model
are

reported.
Finally,
 some
conclusions
are
proposed
 in

the
last
Section.


2� THE
SUBSET
SIMULATION
METHOD


2.1� The�basic�principles�

For
 a
given
 target
 failure
event
F
of
 interest,
 let
F1

⊃ 
 F2
 ⊃ 
 ...
 ⊃ 
 Fm
 be
 a
 sequence
 of
 intermediate

failure
events,
so
that
Fk
=


k

i 1=∩ Fi,
k
=
1,
2,
…,
m.
By

sequentially
conditioning
on
the
event
Fi,
the
failure

probability
P(F)
can
be
written
as


∏
−

=

+==
1

1
11 )|()()()(

m

i

iim FFPFPFPFP 
 (2)


Notice
 that
 even
 if
 P(F)
 is
 small,
 the
 conditional

probabilities
involved
in
(2)
can
be
made
sufficiently

large
by
appropriately
choosing
m
and
the
intermedi�
ate
failure
events
{Fi,
i
=
1,
2,
…,
m
–
1}.

The
 original
 idea
 of
 SS
 is
 to
 estimate
 the
 failure

probability
P(F)
by
estimating
P(F1)
and
{P(Fi+1|Fi):

i
=
1,
2,
...,
m
�
1}.
Considering
for
example
P(F)
 ≈ 

10�5
and
choosing
m
=
5
intermediate
failure
events

such
that
P(F1)
and
{P(Fi+1|Fi):
i
=
1,
2,
3,
4}
 ≈ 
0.1,

the
 conditional
 probabilities
 can
 be
 evaluated
 effi�
ciently
 by
 simulation
of
 the
 relatively
 frequent
 fail�
ure
events
(Au
&
Beck
2001).

Standard
MCS
can
be
used
to
estimate
P(F1).
On
the

contrary,
 computing
 the
 conditional
 failure
 prob�
abilities
in
(2)
by
MCS
entails
the
non�trivial
task
of

sampling
 from
 the
 conditional
 distributions
 of
 x

given
 that
 it
 lies
 in
Fi,
 i
=
1,
2,
 ...,
m
–
1,
 i.e.
 from

q(x|Fi)
 =
 q(x)IFi(x)/P(F).
 In
 this
 regard,
 Markov

Chain
Monte
Carlo
 (MCMC)
simulation
provides
a

powerful
method
for
generating
samples
conditional

on
 the
 failure
 region
Fi,
 i
 =
 1,
 2,
 ...,
m
 –
 1
 (Au
&

Beck
 2003).
 The
 related
 algorithm
 is
 not
 reported

here
 for
 brevity;
 the
 interested
 reader
 may
 refer
 to

(Au
&
Beck
2003)
for
details.


2.2� The�algorithm�

In
 the
 actual
 SS
 implementation,
 with
 no
 loss
 of

generality
 it
 is
 assumed
 that
 the
 failure
event
of
 in�
terest
can
be
defined
in
terms
of
the
value
of
a
criti�
cal
response
variable
Y
of
the
system
under
analysis

(e.g.,
 its
 output
 performance)
 being
 lower
 than
 a

specified
threshold
level
y,
i.e.,
F
=
{Y
<
y}.
The
se�
quence
of
intermediate
failure
events
{Fi:
i
=
1,
2,
...,

m}
can
then
be
correspondingly
defined
as
Fi
=
{Y
<

yi},
i
=
1,
2,
...,
m,
where
y1
>
y2
>
...
>
yi
>
...
>
ym
=

y
 >
 0
 is
 a
 decreasing
 sequence
 of
 intermediate

threshold
 values
 (Au
 &
 Beck
 2001).
 Notice
 that

since
these
intermediate
threshold
values
(i.e.,
failure

regions)
are
introduced
purely
for
computational
rea�
sons
in
SS,
they
may
not
have
a
strict
physical
inter�
pretation
and
may
not
be
connected
to
known
degra�
dation
processes.

The
 choice
of
 the
 sequence
{yi:
 i
=
1,
2,
 ...,
m}
af�
fects
 the
 values
 of
 the
 conditional
 probabilities

{P(Fi+1|Fi):
 i
=
1,
2,
 ...,
m
 �
1}
in
(2)
and
hence
the

efficiency
of
 the
SS
procedure.
In
particular,
choos�



ing
the
sequence
{yi:
i
=
1,
2,
...,
m}
arbitrarily
a
pri�
ori
 makes
 it
 difficult
 to
 control
 the
 values
 of
 the

conditional
probabilities
{P(Fi+1|Fi):
i
=
1,
2,
...,
m
�

1}
in
the
application
to
real
systems.
For
this
reason,

in
 this
 work,
 the
 intermediate
 threshold
 values
 are

chosen
 adaptively
 in
 such
 a
way
 that
 the
 estimated

conditional
 failure
probabilities
are
equal
 to
a
 fixed

value
p0:
 the
 value
p0
 is
 chosen
 to
 be
 0.1
which
 is

empirically
 found
 to
 yield
 good
 efficiency
 (Au
 &

Beck
2001).

The
 SS
 algorithm
 proceeds
 as
 follows
 (Figure
 1).

First,
N
vectors
{x0

k:
k
=
1,
2,
…,
N}
are
sampled
by

standard
 MCS,
 i.e.,
 from
 the
 original
 probability

density
 function
 q(P).
 The
 subscript
 ‘0’
 denotes
 the

fact
 that
 these
 samples
 correspond
 to
 ‘Conditional

Level
0’.
The
 corresponding
values
of
 the
 response

variable
{Y(x0

k):
k
=
1,
2,
…,
N}
are
then
computed

(Figure
1a)
and
the
first
intermediate
threshold
value

y1
is
chosen
as
the
(1
–
p0)N

th
value
in
the
decreasing

list
of
values
{Y(x0

k):
k
=
1,
2,
…,
N}.
By
so
doing,

the
sample
estimate
of
P(F1)
=
P(Y
<
y1)
is
equal
to

p0
(note
that
it
has
been
implicitly
assumed
that
p0N

is
an
integer
value)
(Figure
1b).
With
this
choice
of

y1,
 there
are
now
p0N
samples
among
{x0

k:
k
=
1,
2,

…,
N}
whose
response
Y
lies
in
F1
=
{Y
<
y1}.
These

samples
 are
 at
 ‘Conditional
 level
1’
and
distributed

as
q(P|F1).
Starting
 from
each
one
of
 these
 samples,

MCMC
simulation
is
used
to
generate
(1
–
p0)N
ad�
ditional
conditional
samples
distributed
as
q(P|F1),
so

that
there
are
a
total
of
N
conditional
samples
{x1

k:
k

=
1,
2,
…,
N}
∈ 
F1,
at
‘Conditional
level
1’
(Figure

1c).
Then,
the
intermediate
threshold
value
y2
is
cho�
sen
as
the
(1
–
p0)N

th
value
in
the
descending
list
of

{Y(x1

k):
k
=
1,
2,
…,
N}
to
define
F2
=
{Y
<
y2}
so

that,
again,
the
sample
estimate
of
P(F2|F1)
=
P(Y
<

y2|Y
<
y1)
is
equal
to
p0
(Figure
1d).
The
p0N
samples

lying
 in
F2
 are
 conditional
 values
 from
 q(P|F2)
 and

function
as
‘seeds’
for
sampling
(1
–
p0)N
additional

conditional
samples
distributed
as
q(P|F2),
making
up

a
total
of
N
conditional
samples
{x2

k:
k
=
1,
2,
…,
N}

at
 ‘Conditional
 level
 2’.
This
 procedure
 is
 repeated

for
 the
 remaining
 conditional
 levels
 until
 the
 sam�
ples
 at
 ‘Conditional
 level
 (m
 –
1)’
 are
generated
 to

yield
ym
<
y
as
the
(1
–
p0)N

th
value
in
the
descend�
ing
list
of
{Y(xm�1

k):
k
=
1,
2,
…,
N},
so
that
there
are

enough
samples
for
estimating
P(Y
<
y)
(Au
&
Beck

2003).


3� THE
LINE
SAMPLING
METHOD

Line
 Sampling
 (LS)
 was
 also
 originally
 developed

for
the
reliability
analysis
of
complex
structural
sys�
tems
with
small
failure
probabilities
(Koutsourelakis

et
 al.
2004).
The
underlying
 idea
 is
 to
employ
 lines

instead
of
random
points
in
order
to
probe
the
failure

domain
of
the
high�dimensional
system
under
analy�
sis
(Pradlwarter
et
al.
2005).

In
extreme
synthesis,
 the
problem
of
computing
 the

multidimensional
 failure
 probability
 integral
 (1)
 in


the
original
“physical”
space
is
transformed
into
the

so�called
“standard
normal
space”,
where
each














Figure
1.
Illustration
of
the
SS
procedure:
a)
Conditional
level

0:
 Standard
 Monte
 Carlo
 simulation;
 b)
 Conditional
 level
 0:

adaptive
selection
of
y1;
c)
Conditional
level
1:
Markov
Chain

Monte
Carlo
simulation;
d)
Conditional
level
1:
adaptive
selec�
tion
of
y2.



random
 variable
 is
 represented
 by
 an
 independent

central
 unit
 Gaussian
 distribution.
 In
 this
 space,
 a

unit
 vector
 α
 (hereafter
 also
 called
 “important
 unit

vector”
 or
 “important
 direction”)
 is
 determined,

pointing
towards
the
failure
domain
F
of
interest
(for

illustration
 purposes,
 two
 different
 failure
 domains,�



F
1
 and
F2,
 are
visually
 represented
 in
Figure
2,
 left


and
 right,
 respectively,
 in
a
 two�dimensional
uncer�
tain
parameter
space).
The
problem
of
computing
the

high�dimensional
 failure
 probability
 integral
 (1)
 is

then
 reduced
 to
 a
 number
 of
 conditional
 one�
dimensional
 problems,
 which
 are
 solved
 along
 the

“important
direction”
α
in
the
standard
normal
space.

The
 conditional
 one�dimensional
 failure
 probabili�
ties
 (associated
 to
 the
 conditional
 one�dimensional

problems)
 are
 readily
 computed
 by
 using
 the
 stan�
dard
 normal
 cumulative
 distribution
 function

(Pradlwarter
et
al.
2005).




Figure
2.
Examples
of
possible
important
unit
vectors
α1
 (left)

and
 α2
 (right)
 pointing
 towards
 the
 corresponding
 failure
 do�
mains
F1
 (left)
 and
F2
 (right)
 in
 a
 two�dimensional
 uncertain

parameter
space.


3.1� Transformation�of�the�physical�space�into�the�
standard�normal�space�

Let
x
=
{x1,
x2,
...,
xj,
...,
xn}
∈ 

nℜ 
be
the
vector
of


uncertain
parameters
defined
in
the
original
physical

space
x
∈ 
 nℜ .
For
problems
where
the
dimension
n

is
not
so
small,
the
parameter
vector
x
can
be
trans�
formed
into
the
vector
θ
∈ 
 nℜ ,
where
each
element

of
 the
vector
θj,
 j
=
1,
2,
…,
n,
 is
associated
with
a

central
 unit
Gaussian
 standard
 distribution
 (Schuel�
ler
et
al.
2004).
The
joint
probability
density
function

of
the
random
parameters
{θj:
j
=
1,
2,
...,
n}
is,
then,

φ(θ)
 =
 Π n

j 1= φ j(θj),
 where
 φ j(θj)
 =
 1/ π2 Pexp(�
θj

2/2),
j
=
1,
2,
...,
n.

The
 mapping
 from
 the
 original,
 physical
 vector
 of

random
 variables
 x
 ∈ 
 nℜ 
 to
 the
 standard
 normal

vector
θ
∈ 
 nℜ 
is
denoted
by
Txθ(P)
and
its
inverse
by

Tθx(P),
i.e.,
θ
=
Txθ(x)
and
x
=
Tθx(θ),
respectively.

These
 transformations
 are
 in
 general
 nonlinear
 and

are
 obtained
 by
 applying
 Rosenblatt’s
 or
 Nataf’s

transformations,
 respectively
 (Huang
 &
 Du
 2006).

They
are
linear
only
if
the
random
vector
x
is
jointly

Gaussian
 distributed.
 By
 transformation
 θ
 =
Txθ(x),

also
 the
 Performance
 Function
 (PF)
 or
 Limit
 State

Function
 (LSF)
 gx(P)
 defined
 in
 the
 physical
 space

(Section
1)
can
be
transformed
into
gθ(P)
in
the
stan�
dard
normal
space:


( ) ( ) ( )( )θθ θθ xxx Tgxgg == 
 (3)


Since
in
most
cases
of
practical
interest
the
function

gθ(P)
 is
 not
 known
 analytically,
 it
 can
 be
 evaluated

only
point�wise.
According
 to
 (3),
 the
evaluation
of

the
 system
 performance
 function
 gθ(P)
 at
 a
 given

point
 θk,
 k
 =
 1,
 2,
 ...,
 NT,
 in
 the
 standard
 normal


space
 requires
 i)
 a
 transformation
 into
 the
 original

space,
 ii)
 a
 complete
 simulation
 of
 the
 system
 re�
sponse
 and
 iii)
 the
 computation
 of
 the
 system
 re�
sponse
 from
 the
 model.
 The
 computational
 cost
 of

evaluating
the
failure
probability
 is
governed
by
the

number
of
system
performance
analyses
that
have
to

be
carried
out
(Schueller
et
al.
2004).


3.2� The�important�direction�α�for�Line�Sampling�

Three
methods
 have
 been
 proposed
 to
 estimate
 the

important
 direction
α
 for
 Line
 Sampling.
 In
 (Kout�
sourelakis
et
al.
2004),
the
important
unit
vector
α
is

taken
 as
 pointing
 in
 the
 direction
 of
 the
 “design

point”
 in
 the
standard
normal
space.
According
to
a

geometrical
 interpretation,
 the
 “design
point”
 is
 de�
fined
as
the
vector
point
θ*
on
the
limit
state
surface

gθ(θ)
 which
 is
 closest
 to
 the
 origin
 in
 the
 standard

normal
space.
Then,
the
unit
important
vector
α
can

be
 easily
 obtained
 by
 normalizing
 θ*,
 i.e.,
 α
 =

θ
*/||θ*||2,
 where
 ||P||2
 denotes
 the
 usual
 Euclidean

measure
of
a
vector.

In
 (Pradlwarter
 et
 al.
 2005),
 the
 direction
 of
 α
 is

identified
as
the
normalized
gradient
of
the
perform�
ance
function
in
the
standard
normal
space.
Finally,

the
important
unit
vector
α
can
also
be
computed
as

the
 normalized
 “center
 of
 mass”
 of
 the
 failure
 do�
main
 F
 of
 interest
 (Koutsourelakis
 et
 al.
 2004).
 A

point
θ0
is
taken
in
the
failure
domain
F.
This
can
be

done
by
traditional
Monte
Carlo
sampling
or
by
en�
gineering
judgment
when
possible.
Subsequently,
θ0

is
used
as
the
initial
point
of
a
Markov
chain
which

lies
entirely
in
the
failure
domain
F.
For
that
purpose

a
 MCMC
 Metropolis�Hastings
 algorithm
 is
 em�
ployed
 to
generate
a
sequence
of
Ns
points
{θ

u:
u
=

1,
2,
…,
Ns}
lying
in
the
failure
domain
F
(Metropo�
lis
et
al.
1956,
Au
&
Beck
2003):
in
extreme
synthe�
sis,
a
candidate
point
θ

~ u+1
is
generated
from
the
cur�
rent
 point
 θu
 by
 random
 sampling
 from
 a
 user�
defined
 ‘proposal’
 probability
 distribution;
 then,
 ei�
ther
the
candidate
point
θ

~ u+1
or
the
current
point
θu

is
 taken
 as
 the
next
point
 of
 the
Markov
chain,
 de�
pending
 on
 whether
 the
 candidate
 θ

~ u+1
 lies
 in
 the

failure
region
F
or
not.
The
unit
vectors
θu/||θu||2,
u
=

1,
2,
…,
Ns,
are
then
averaged
in
order
to
obtain
the

LS
 important
 unit
 vector
 as
 α
 =
 1/NsP∑ sN

u 1= θ
u/||θu||2


(Figure
 3).
 This
 direction
 is
 by
 no
 means
 optimal,

but
 it
 is
clear
 that
 it
provides
a
good
approximation

of
 the
 important
 regions
 of
 the
 failure
 domain
 (at

least
 as
 the
 sample
 size
Ns
 is
 large).
 On
 the
 other

hand,
it
should
be
noticed
that
the
procedure
implies

Ns
 additional
 system
 analyses
 by
 the
 deterministic

model
simulating
the
system,
which
substantially
in�
crease
the
computational
cost
associated
to
the
simu�
lation
method.


In
 the
 implementation
 of
 LS
 for
 this
 work,
 the

method
based
on
the
normalized
“center
of
mass”
of

the
 failure
domain
F
has
been
employed,
because
it

relies
on
a
“map”
approximating
the
failure
domain




F
under
analysis
(given
by
the
failure
samples
gener�
ated
through
a
Markov
chain)
and
thus
it
provides
in

principle
 the
most
 realistic
and
reliable
estimate
for

the
LS
important
direction
α.



For
completeness,
a
thorough
description
of
the
Line

Sampling
algorithm
and
its
practical
implementation

issues
is
given
in
the
Appendix
at
the
end
of
the
pa�
per.




Figure
 3.
 Line
 Sampling
 important
 unit
 vector
α
 taken
 as
 the

normalized
 “center
 of
 mass”
 of
 the
 failure
 domain
 F
 in
 the

standard
normal
space.
The
“center
of
mass”
of
F
is
computed

as
 an
 average
 of
 Ns
 failure
 points
 generated
 by
 means
 of
 a

Markov
 chain
 starting
 from
 an
 initial
 failure
 point
 θ0
 (Kout�
sourelakis
et
al.
2004).


4� APPLICATION:
THE
CRACKED
PLATE

MODEL


The
 cracked
 plate
 model
 is
 a
 classical
 example
 in

Fracture
Mechanics
and
its
relative
simplicity
allows

a
detailed
and
complete
study
of
different
simulation

techniques.
A
thorough
description
of
this
model
can

be
found
in
(Ardillon
&
Venturini
1995).


4.1� The�mechanical�model�

A
metal
plate
of
infinite
length
with
a
defect
of
ini�
tial
length
equal
to
a
[m]
is
considered.
The
plate
is

supposed
 to
be
subject
 to
a
uniform
normal
 loading

(i.e.,
 stress)
 s∞
 [MPa].
 The
 intensity
 factor
 K

[MPa m ],
 determined
 by
 the
 uniform
 loading
 in

the
neighborhood
of
the
defect
is
defined
as
follows:


aFsK π∞= 
 (4)


where
F
is
the
shape
factor
of
the
defect.
The
plate
is

supposed
 to
break
(i.e.,
 fail)
when
the
intensity
fac�
tor
K
in
(4)
becomes
greater
than
or
equal
to
a
criti�
cal
value
Kc,
i.e.:


cKaFsK ≥= ∞ π 
 (5)


4.2� The�structural�reliability�model�

From
 the
 point
 of
 view
 of
 a
 structural
 reliability

analysis,
the
cracked
plate
mechanical
model
of
Sec�
tion
4.1
is
analyzed
within
a
probabilistic
framework

in
which
the
variables
Kc,
a,
F
and
s∞
are
uncertain

(for
simplicity
of
 illustration
with
respect
to
the
no�
tation
of
the
previous
Sections,
the
four
variables
are

hereafter
named
x1,
x2,
x3
and
x4,
respectively).

Referring
 to
 (5),
 the
performance
 function
gx( x )
of

the
system
is


( ) ( ) 24314321 ,,, xxxxxxxxgxg xx π−== � (6)�

The
failure
region
F
is
then
expressed
as


( ){ } ( ){ }24314321 :,,,0: xxxxxxxxxgxF x π≤=≤= �(7)�

Finally,
 the
 probability
 of
 system
 failure
 P(F)
 is

written
as
follows:


( ) ( )[ ] ( )24310 xxxxPxgPFP x π≤=≤= .� (8)�

4.3� Case�studies�

Four
 case
 studies,
 namely
Case
 0
 (Reference
 case),

1,
2
and
3,
are
considered
with
respect
 to
 the
struc�
tural
 reliability
 model
 of
 the
 previous
 Section
 4.2.

Each
 case
 study
 is
 characterized
 by
 different
 PDFs

for
 the
 uncertain
 variables
 x1,
 x2,
 x3
 and
 x4
 and
 by

different
failure
probabilities
P(F):
these
features
are

summarized
 in
 Table
 1.
 It
 is
 worth
 noting
 that
 the

exact
 (i.e.,
 analytically
 computed)
 failure
 probabili�
ties
P(F)
 approximately
 range
 from
10�3
 to
10�7,
 al�
lowing
a
deep
 exploration
of
 the
 capabilities
of
 the

simulation
 algorithms
 considered
 and
 a
meaningful

comparison
between
them
(Gille
1999).
Finally,
no�
tice
that
the
uncertain
variables
in
Table
1
are
inde�
pendent
 and
 most
 of
 the
 corresponding
 PDFs
 are

Gaussian.
Although
 this
 is
 one
 of
 the
most
 favour�
able
 cases
 for
 the
 transformation
 of
 the
 physical

space
into
the
standard
normal
space,
the
application

of
Rosenblatt’s
 or
Nataf’s
 transformations
 to
possi�
bly
 correlated,
 non�Gaussian
 variables
 would
 add

only
 little
 computational
 burden
 to
 the
 method

(Huang
&
Du,
2006).



Table
 1.
 Probability
 distributions
 and
 parameters
 (i.e.,
 means

and
 standard
 deviations)
 of
 the
 uncertain
 variables
 x1,
 x2,
 x3,

and
 x4
 of
 the
 cracked
 plate
model
 of
 Section
 4.2
 for
 the
 four

case
studies
considered
(i.e.,
Cases
0,
1,
2
and
3);
the
last
row

reports
 the
values
of
the
corresponding
exact
(i.e.,
analytically

computed)
failure
probabilities,
P(F)
(Gille
1999).

� ������� ������� ������� �����	�

x�� N(149.3,
22.2)
 N(149.3,
22.2)
 N(160,
18)
 LG(149.3,
22.2)

x�� N(5·10�3,
10�3)
 N(5·10�3,
10�3)
 N(5·10�3,
10�3)
 LG(5·10�3,
10�3)

x	� N(0.99,
0.01)
 N(0.99,
0.01)
 N(0.99,
0.01)
 LG(0.99,
0.01)

x
� N(600,
60)
 N(300,
30)
 N(500,
45)
 LG(600,
60)

P�F�� 1.165·10�3
 4.500·10�7� 4.400·10�7� 3.067·10�4�



4.4� Results�

In
 this
 Section,
 the
 results
 of
 the
 application
 of
SS

and
 LS
 for
 the
 reliability
 analysis
 of
 the
 cracked

plate
model
of
Section
4.1
are
illustrated
with
refer�
ence
 to
Case
 studies
 0,
 1,
 2
 and
 3
 described
 in
 the

previous
Section
4.3.

For
fair
comparison,
all
methods
have
been
run
with

a
total
of
NT
=
50000
samples
in
all
four
cases.
The

efficiency
of
 the
 simulation
methods
under
analysis

is
 evaluated
 in
 terms
 of
 four
 quantities:
 the
 failure

probability
 estimate
 P̂ (F),
 the
 sample
 standard
 de�
viation
 σ̂ 
 of
 the
 failure
probability
 estimate
 P̂ (F),

the
 coefficient
 of
 variation
 (c.o.v.)
 δ
 of
 P̂ (F)
 (de�
fined
as
the
ratio
of
the
sample
standard
deviation
σ̂ 

to
 the
 estimate
 P̂ (F))
 and
 the
 Figure
 Of
 Merit

(FOM)
 of
 the
 method
 (defined
 as
 1/( 2σ̂ Ptcomp),

where
tcomp
is
the
computational
time
required
by
the

simulation
method).
The
closer
is
the
estimate
 P̂ (F)

to
 the
 exact
 (i.e.,
 analytically
 computed)
 failure

probability
P(F),
the
more
accurate
is
the
simulation

method.
However,
since
 P̂ (F)
is
a
statistical
estima�
tion
 of
 the
 exact
 result,
 it
 could
 happen
 that
 a
 less

accurate
result
leads
to
an
estimate
closer
to
the
ex�
act
solution;
thus,
the
estimate
 P̂ (F)
has
to
be
com�
bined
to
the
standard
deviation
(and/or
other
quality

indicators)
to
play
this
role.
The
sample
standard
de�
viation
 σ̂ 
and
the
c.o.v.
δ
of
 P̂ (F)
are
used
to
quan�
tify
 the
 variability
 of
 the
 failure
 probability
 estima�
tor;
in
particular,
the
lower
are
the
values
of
 σ̂ 
and

δ,
 the
 lower
 is
 the
 variability
 of
 the
 corresponding

failure
 probability
 estimator
 and
 thus
 the
 higher
 is

the
efficiency
of
the
simulation
method
adopted.

Finally,
 the
FOM
is
 introduced
 to
 take
 into
account

the
computational
time
required
by
the
method.
The

value
 of
 the
FOM
 increases
 as
 the
 sample
variance


2σ̂ 
of
 the
failure
probability
estimate
 P̂ (F)
and
the

computational
time
tcomp
required
by
the
method
de�
crease;
thus,
in
this
case
the
higher
is
the
value
of
the

index,
 the
 higher
 is
 the
 efficiency
 of
 the
 method

(Rubinstein
1981).

The
different
simulation
methods
are
also
compared

with
 respect
 to
 two
 direct
 performance
 indicators

relative
to
standard
MCS.
First,
the
ratio
of
the
sam�
ple
 standard
 deviation
 σ̂ MC
 obtained
 by
 Standard

MCS
to
that
obtained
by
the
simulation
method
un�
der
analysis
σ̂ meth
is
computed.
This
ratio
only
quan�
tifies
 the
 improvement
 in
 the
precision
 of
 the
 esti�
mate
 achieved
 by
 using
 a
 given
 simulation
method

instead
of
standard
MCS.
Then,
the
ratio
of
the
FOM

of
the
simulation
method
in
object,
namely
FOMmeth,

to
that
of
standard
MCS,
namely
FOMMC,
is
consid�
ered
 to
 quantify
 the
 overall
 improvement
 in
 effi0
ciency
 achieved
by
 a
given
 simulation
method
with

respect
to
standard
MCS,
since
it
takes
into
account

also
the
computational
time
required.
Obviously,
the

higher
are
the
values
of
these
two
indices
for
a
given

method,
 the
 higher
 is
 the
 efficiency
 of
 that
method

(Gille
1999).


Table
 2
 reports
 the
 values
 of
 ( )FP̂ ,
 σ̂ ,
 δ,
 FOM,

σ̂ MC/σ̂ meth
 and
FOMmeth/FOMMC
obtained
by
Stan�
dard
MCS,
SS
and
LS
in
Cases
0,
1,
2
and
3
(Section

4.3);
 the
 actual
 number
 Nsys
 of
 system
 response

analyses
 (i.e.,
 model
 evaluations)
 is
 also
 reported.

Notice
 that
 for
 both
 SS
 and
 LS
 the
 actual
 number

Nsys
 of
 system
 analyses
 does
 not
 coincide
 with
 the

total
number
NT
of
random
samples
drawn
(i.e.,
NT
=

50000).
In
particular,
in
the
SS
method,
the
presence

of
 repeated
 conditional
 samples
 in
 each
 Markov

chain
 (used
 to
 gradually
 populate
 the
 intermediate

event
 regions)
 allows
 a
 reduction
 in
 the
 number
 of

model
evaluations
required:
actually,
one
evaluation

is
 enough
 for
 all
 identical
 samples.
 In
 the
 LS

method,
 instead,
 the
 actual
 number
 Nsys
 of
 system

analyses
 is
given
by
Nsys
=
Ns
+
2PNT:
 in
particular,

Ns
 =
 2000
 analyses
 are
 performed
 to
 generate
 the

Markov
 chain
 used
 to
 compute
 the
 important
 unit

vector
α
 as
 the
 normalized
 “center
 of
mass”
 of
 the

failure
domain
F
(Section
3.2);
the
2PNT
analyses
are

carried
 out
 to
 compute
 the
 NT
 conditional
 one�
dimensional
probability
estimates
{ P̂ k(F):
k
=
1,
2,

…,
NT}
by
 linear
 interpolation
 (equation
 (3’)
 in
 the

Appendix).

It
 can
 be
 seen
 that
 SS
 performs
 consistently
 better

than
standard
MCS
and
its
performance
significantly

grows
 as
 the
 failure
 probability
 to
be
 estimated
de�
creases:
 for
 instance,
 in
 Case
 0
 (Reference),
 where

P(F)
~
10�3,
the
FOM
of
SS,
namely
FOMSS,
is
only

four
times
larger
than
that
of
Standard
MCS,
namely

FOMMC;
whereas
 in
Case
1,
where
P(F)
~
10

�7,
 the

ratio
FOMSS/FOMMC
is
about
557.

On
 the
other
hand,
LS
outperforms
SS
with
 respect

to
 bothσ̂ MC/σ̂ meth
 and
 FOMmeth/FOMMC
 in
 all
 the

Cases
considered.
For
instance,
in
Case
2,
where
the

failure
probability
P(F)
to
be
estimated
is
very
small,

i.e.,
P(F)
=
4.4P10�7,
the
ratio
 σ̂ MC/σ̂ LS
is
155
times

larger
 than
 the
 ratio
 σ̂ MC/σ̂ SS,
 whereas
 the
 ratio

FOMLS/FOMMC
 is
11750
 times
 larger
 than
 the
 ratio

FOMSS/FOMMC.
Notice
that
for
the
LS
method
even

though
 the
determination
of
 the
sampling
 important

direction
α
 (Section
3.2)
and
 the
calculations
of
 the

conditional
 one�dimensional
 failure
 probability
 es�
timates
 { P̂ k(F):
k
 =
1,
 2,
…,
NT}
 (equation
 (3’)
 in

the
 Appendix)
 require
 much
 more
 than
NT
 system

analyses
 by
 the
 model,
 this
 is
 significantly
 over�
weighed
by
the
accelerated
convergence
rate
that
can

be
attained
by
the
LS
method
with
respect
to
SS.

Finally,
it
is
also
worth
noting
that
the
use
of
prefer�
ential
 lines
 (instead
 of
 random
points)
 to
 probe
 the

failure
domain
F
of
interest
makes
the
effectiveness

of
 the
 LS
method
 almost
 independent
 of
 the
 target

failure
probability
P(F)
to
be
estimated:
for
example,

the
value
of
the
c.o.v.
δ
is
almost
the
same
for
values

of
 the
 target
 failure
 probability
P(F)
 which
 change

by
 four
 orders
 of
 magnitude
 (in
 particular,
 δ
 =

4.399P10�4,
 3.986P10�4,
 1.015P10�3
 and
 5.923P10�4
 for

P(F)
 ~
 1.169·10�3,
 4.493·10�7,
 4.381P10�7
 and

3.068·10�4,
respectively).






Table
2.
Results
of
the
application
of
standard
MCS,
SS
and
LS
to
the
reliability
analysis
of
Cases
0
(Reference),
1,
2
and
3
of
the

cracked
plate
model
of
Section
4.2;
the
values
of
the
performance
indicators
used
to
compare
the
effectiveness
of
the
methods
(i.e.,

σ̂ MC/ σ̂ meth
and
FOMmeth/FOMMC)
are
highlighted
in
bold.


Case�0�(Reference)�

� ( )FP̂ � σ̂ � 
�������δ� Nsys� ����
methMC
σσ ˆ/ˆ � FOMmeth/FOMMC�

������������� 1.120P10�3
 1.496P10�4
 1.336P10�1
 50000
 893.65
 �� ��

��� 1.274P10�3
 7.136P10�5
 5.597P10�2
 49929
 3936.67
 ����� 
�
��

��� 1.169P10�3
 5.142P10�7
 4.399P10�4
 102000
 3.782P107
 ������� 
�	���



Case�1�

� ( )FP̂ � σ̂ � 
�������δ� Nsys� ����
methMC
σσ ˆ/ˆ � FOMmeth/FOMMC�

������������� 0
 3.000P10�6
 6.667
 50000
 2.222P106
 �� ��

��� 4.624P10�7
 7.295P10�8
 1.578P10�1
 49937
 3.762P109
 
����� ������
	
�

��� 4.493P10�7
 1.791P10�10
 3.986P10�4
 102000
 3.117P1014
 ��� �� ��
���
�
�




Case�2�

� ( )FP̂ � σ̂ � 
�������δ� Nsys� ����
methMC
σσ ˆ/ˆ � FOMmeth/FOMMC�

������������� 0
 3.000P10�6
 6.667
 50000
 2.222P106
 �� ��

��� 4.679P10�7
 6.890P10�8
 1.473P10�1
 49888
 4.222P109
 
	� 
� ������
	
�

��� 4.381P10�7
 4.447P10�10
 1.015P10�3
 102000
 4.959P1013
 ��
���� ������
�
�




Case�3�

� ( )FP̂ � σ̂ � 
�������δ� Nsys� ����
methMC
σσ ˆ/ˆ � FOMmeth/FOMMC�

������������� 3.000P10�4
 7.745P10�5
 2.582P10�1
 50000
 3.334P103
 �� ��

��� 3.183P10�4
 2.450P10�5
 7.697P10�2
 49907
 3.339P104
 	���� ������

��� 3.068P10�4
 1.817P10�7
 5.923P10�4
 102000
 3.028P108
 
������ ������


�




5� CONCLUSIONS

One
 of
 the
 major
 obstacles
 in
 applying
 simulation

methods
 for
 the
 reliability
 analysis
 of
 engineered

systems
and
structures
is
the
challenge
posed
by
the

estimation
of
small
failure
probabilities:
the
simula�
tion
of
the
rare
events
of
failure
occurrence
implies
a

significant
computational
burden
(Schueller
2007).

In
 this
 paper,
 the
 Subset
 Simulation
 (SS)
 and
 Line

Sampling
 (LS)
 methods
 have
 been
 considered
 for

improving
the
efficiency
of
Monte
Carlo
Simulation

(MCS)
 in
 the
estimation
of
system
failure
probabil�
ity.
A
structural
reliability
model
of
literature,
i.e.
the

cracked
plate
model,
has
been
taken
as
benchmark
to

test
the
two
methods.

The
 results
 of
 SS
 and
 LS
 have
 been
 compared
 to

those
 of
 standard
MCS
 in
 the
 estimation
 of
 failure

probabilities
as
small
as
10�7.
The
results
have
dem�
onstrated
 that
 SS
 becomes
more
 and
more
 efficient

over
 standard
MCS
as
 the
 target
probability
of
 fail�
ure
 gets
 smaller.
 On
 the
 other
 hand,
 LS
 has
 been

found
to
significantly
outperform
SS,
in
particular
in

the
task
of
estimating
very
small
failure
probabilities

(i.e.,
around
10�7).

Further,
 it
has
been
shown
 that
 the
use
of
preferen�
tial
 lines
 (instead
 of
 random
 points)
 to
 probe
 the

failure
domain
of
interest
makes
the
effectiveness
of

the
LS
methodology
almost
 independent
of
 the
fail�
ure
 probability
 to
 be
 estimated:
 this
 renders
LS
 the

most
suitable
method
for
an
extremely
wide
range
of

real�world
reliability
problems.
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7� APPENDIX:
THE
LINE
SAMPLING

ALGORITHM


The
LS
 algorithm
 proceeds
 as
 follows
 (Pradlwarter

et
al.,
2005):

1� Determine
 the
 unit
 important
 direction
 α
 =
 {α1,

α2,
...,
αj,
...,
αn}.
Any
of
the
methods
summarized

in
 Section
 3.2
 can
 be
 employed
 to
 this
 purpose.

Notice
 that
 the
 computation
 of
 α
 implies
 addi�
tional
 system
 analyses,
 which
 substantially
 in�
crease
 the
 computational
 cost
 associated
 to
 the

simulation
method
(Section
3.2).


2� From
 the
 original
 multidimensional
 joint
 prob�
ability
density
function
q(P):
 nℜ →
[0,
∞),
sample

NT
vectors
{x

k:
k
=
1,
2,
…,
NT},
with
x
k
=
{x1

k,

x2
k,
…,
xj

k,
…,
xn
k}
by
standard
MCS.


3� Transform
the
NT
sample
vectors
{xk:
k
=
1,
2,
…,

NT}
defined
in
the
original
(i.e.,
physical)
space
of

possibly
dependent,
non�normal
random
variables

(step
2.
above)
into
NT
samples
{θk:
k
=
1,
2,
…,

NT}
 defined
 in
 the
 standard
 normal
 space
where

each
 component
 of
 the
 vector
θk
 =
 {θ1

k,
θ2
k,
…,


θj
k,
…,
θn

k},
k
=
1,
2,
...,
NT,
is
associated
with
an

independent
central
unit
Gaussian
standard
distri�
bution
(Section
3.1).


4� Estimate
 NT
 conditional
 “one�dimensional”
 fail�
ure
probabilities
{ P̂ k(F):
k
=
1,
2,
…,
NT},
corre�
sponding
to
each
one
of
the
standard
normal
sam�
ples
 {θk:
 k
 =
 1,
 2,
 ...,
 NT}
 obtained
 in
 step
 3.

above.
In
particular,
for
each
random
sample
θk,
k

=
1,
2,
…,
NT,
perform
the
following
steps
(Figure

1’)
 (Schueller
 et
 al.
 2004,
 Pradlwarter
 et
 al.

2005):


a.� Define
the
sample
vector

k

θ
~

,
k
=
1,
2,
...,
NT,

as
 the
 sum
 of
 a
 deterministic
 multiple
 of
 α


and
 a
 vector
 ⊥,k
θ ,
 k
 =
 1,
 2,
 ...,
NT,
 perpen�

dicular
to
the
direction
α,
i.e.,
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+=

,~ kkk

c θαθ ,
k
=
1,
2,
...,
NT
 (1’)














where
ck
is
a
real
number
in
[�∞,
+∞]
and














 αθαθθ
kkk ,,

−=
⊥ ,
k
=
1,
2,
...,
NT
 (2’)


In
(2’),
θk,
k
=
1,
2,
...,
NT,
denotes
a
random

realization
of
 the
 input
 variables
 in
 the
 stan�
dard
 normal
 space
 of
 dimension
 n
 and
 〈 α,

θ
k 〉 is
the
scalar
product
between
α
and
θk,
k
=

1,
 2,
 ...,
NT.
 Finally,
 it
 is
 worth
 noting
 that

since
 the
 standard
 Gaussian
 space
 is
 iso�

tropic,
 both
 the
 scalar
ck
 and
 the
vector
θk, ⊥ 

are
 also
 standard
 normally
 distributed

(Pradlwarter
et
al.
2005).


b.� Compute
the
value
 kc 
as
the
intersection
be�

tween
the
limit
state
function
gθ(θ
~ k)
=
gθ(c

k
α


+
 θk, ⊥ )
 =
 0
 and
 the
 line
 lk(ck,
 α)
 passing

through
θk
and
parallel
 to
α
 (Figure
1’).
The

value
of
 kc 
can
be
approximated
by
evaluat�
ing
 the
 performance
 function
gθ(P)
 at
 two
or

three
different
values
of
ck
 (e.g.,
c1

k,
c2
k
 and


c3
k
 in
Figure
1’),
 fitting
a
 first
or
second
or�

der
polynomial
and
determining
its
root
(Fig�
ure
1’).


c.� Solve
 the
 conditional
 one�dimensional
 reli�
ability
 problem
 associated
 to
 each
 random

sample
θk,
k
=
1,
2,
…,
NT,
in
which
the
only

(standard
normal)
random
variable
is
ck.
The

associated
 conditional
 failure
 probability

P̂
k(F),
k
=
1,
2,
…,
NT,
is
given
by
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 (3’)


where
 ( )⋅Φ 
denotes
 the
 standard
normal
cu�
mulative
distribution
function.


5� Using
 the
 independent
 conditional
 “one�
dimensional”
 failure
 probability
 estimates

{ P̂ k(F):
k
=
1,
2,
…,
NT}
in
(3’)
(step
4.c.
above),

compute
 the
 unbiased
 estimator
 P̂ k(F)
 for
 the

failure
probability
P(F)
as
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The
variance
of
the
estimator
(4’)
is
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Figure
 1’.
 The
 Line
 Sampling
 procedure
 (Pradlwarter
 et
 al.

2005)



