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INTRODUCTION

In the performance based design and operation of modern engineered systems, the accurate assessment of reliability is of paramount importance, particu larly for civil, nuclear, aerospace and chemical sys tems and plants which are safety critical and must be designed and operated within a risk informed ap proach [START_REF] Patalano | Risk in formed design changes in a passive decay heat removal sys tem[END_REF]. The reliability assessment requires the realistic mod elling of the structural/mechanical components of the system and the characterization of their material constitutive behaviour, loading conditions and mechanisms of deterioration and failure that are an ticipated to occur during the working life of the sys tem [START_REF] Schueller | Benchmark study on reliability estimation in higher dimension of structural sys tems -An overview[END_REF]. In practice, not all the characteristics of the system under analysis can be fully captured in the model. This is due to: i) the intrinsically random nature of several of the phenomena occurring during the sys tem life; ii) the incomplete knowledge about some of these phenomena. Thus, uncertainty is always pre sent in the hypotheses underpinning the model (model uncertainty) and in the values of its parame ters (parameter uncertainty); this leads to uncertainty in the model output, which must be quantified for a realistic assessment of the system [START_REF] Nutt | Evaluations of nuclear safety from the outputs of computer codes in the presence of un certainties[END_REF]. In mathematical terms, the probability of system failure can be expressed as a multi dimensional inte gral of the form

( ) = F P P(x ∈ F) = ∫I F (x)q(x)dx (1) 
where x = {x 1 , x 2 , ..., x j , ...,

x n } n ℜ ∈
is the vector of the random states of the components, i.e. the random configuration of the system, with multidimensional probability density function (PDF)

) , 0 [ : ∞ → ℜ n q , n F ℜ ⊂ is the failure region and I F :

{ } 1 , 0 → ℜ n
is an indicator function such that I F (x) = 1, if x ∈ F and I F (x) = 0, otherwise. The failure domain F is com monly defined by a so called Performance Function (PF) or Limit State Function (LSF) ( )

x g x
which is lower than or equal to zero if F x ∈ and greater than zero, otherwise. In practical cases, the multi dimensional integral (1) can not be easily evaluated by analytical methods nor by numerical schemes. On the other hand, Monte Carlo Simulation (MCS) offers an effective means for estimating the integral, because the method does not suffer from the complexity and dimension of the domain of integration, albeit it implies the nontrivial task of sampling from the multidimensional PDF.

The MCS solution to (1) entails that a large number of samples of the values of the uncertain parameters x be drawn from ) (x q and that these be used to compute an unbiased and consistent estimate of the system failure probability as the fraction of the num ber of samples that lead to failure. However, a large number of samples (inversely proportional to the failure probability) is necessary to achieve an ac ceptable estimation accuracy: in terms of the integral Subset Simulation and Line Sampling for Advanced Monte Carlo Reliability Analysis
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in (1) this can be seen as due to the high dimension ality n of the problem and the large dimension of the relative sample space compared to the failure region of interest [START_REF] Schueller | On the treatment of uncertainties in struc tural mechanics and analysis[END_REF]. This calls for new simu lation techniques for performing robust estimations with a limited number of input samples (and associ ated low computational time). In this respect, effective approaches are offered by Subset Simulation (SS) (Au and[START_REF] Au | Estimation of small failure prob abilities in high dimensions by subset simulation[END_REF][START_REF] Au | Subset Simulation and its appli cation to seismic risk based on dynamic analysis[END_REF] and Line Sampling (LS) [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algo rithms and application[END_REF][START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]). In the SS method, the failure probability is expressed as a product of conditional failure probabilities of some chosen intermediate events, whose evaluation is obtained by simulation of more frequent events. The evaluation of small failure probabilities in the original probability space is thus tackled by a se quence of simulations of more frequent events in the conditional probability spaces. The necessary condi tional samples are generated through successive Markov Chain Monte Carlo (MCMC) simulations [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF], gradually populating the in termediate conditional regions until the final target failure region is reached. In the LS method, lines, instead of random points, are used to probe the failure domain of the high dimensional problem under analysis [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]). An "important direction" is optimally de termined to point towards the failure domain of in terest and a number of conditional, one dimensional problems are solved along such direction, in place of the high dimensional problem [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]. The approach has been shown to perform al ways better than standard MCS; furthermore, if the boundaries of the failure domain of interest are not too rough (i.e., almost linear) and the "important di rection" is almost perpendicular to them, the vari ance of the failure probability estimator could be ideally reduced to zero [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algo rithms and application[END_REF]. In this paper, SS and LS schemes are developed for application to a structural reliability model of litera ture, i.e., the cracked plate model (Ardillon & Ven turini 1995). The problem is rather challenging as it entails estimating failure probabilities of the order of 10 7 . The benefits gained by the use of SS and LS are demonstrated by comparison with respect to stan dard MCS. The remainder of the paper is organized as follows. General presentations of the SS and LS schemes im plemented for this study are given in Sections 2 and 3, respectively. In Section 4, the results of the appli cation of SS and LS to the cracked plate model are reported. Finally, some conclusions are proposed in the last Section.

THE SUBSET SIMULATION METHOD

The basic principles

For a given target failure event F of interest, let F 1 ⊃ F 2 ⊃ ... ⊃ F m be a sequence of intermediate failure events, so that

F k = k i 1 = ∩ F i , k = 1, 2, …, m.
By sequentially conditioning on the event F i , the failure probability P(F) can be written as

∏ - = + = = 1 1 1 1 ) | ( ) ( ) ( ) ( m i i i m F F P F P F P F P (2) 
Notice that even if P(F) is small, the conditional probabilities involved in (2) can be made sufficiently large by appropriately choosing m and the intermedi ate failure events {F i , i = 1, 2, …, m -1}.

The original idea of SS is to estimate the failure probability P(F) by estimating P(F 1 ) and {P(F i+1 |F i ): i = 1, 2, ..., m 1}. Considering for example P(F) ≈ 10 5 and choosing m = 5 intermediate failure events such that P(F 1 ) and {P(F i+1 |F i ): i = 1, 2, 3, 4} ≈ 0.1, the conditional probabilities can be evaluated effi ciently by simulation of the relatively frequent fail ure events [START_REF] Au | Estimation of small failure prob abilities in high dimensions by subset simulation[END_REF].

Standard MCS can be used to estimate P(F 1 ). On the contrary, computing the conditional failure prob abilities in (2) by MCS entails the non trivial task of sampling from the conditional distributions of x given that it lies in F i , i = 1, 2, ..., m -1, i.e. from q(x|F i ) = q(x)I Fi (x)/P(F). In this regard, Markov Chain Monte Carlo (MCMC) simulation provides a powerful method for generating samples conditional on the failure region F i , i = 1, 2, ..., m -1 [START_REF] Au | Subset Simulation and its appli cation to seismic risk based on dynamic analysis[END_REF]. The related algorithm is not reported here for brevity; the interested reader may refer to [START_REF] Au | Subset Simulation and its appli cation to seismic risk based on dynamic analysis[END_REF] for details.

The algorithm

In the actual SS implementation, with no loss of generality it is assumed that the failure event of in terest can be defined in terms of the value of a criti cal response variable Y of the system under analysis (e.g., its output performance) being lower than a specified threshold level y, i.e., F = {Y < y}. The se quence of intermediate failure events {F i : i = 1, 2, ..., m} can then be correspondingly defined as [START_REF] Au | Estimation of small failure prob abilities in high dimensions by subset simulation[END_REF]. Notice that since these intermediate threshold values (i.e., failure regions) are introduced purely for computational rea sons in SS, they may not have a strict physical inter pretation and may not be connected to known degra dation processes. The choice of the sequence {y i : i = 1, 2, ..., m} af fects the values of the conditional probabilities {P(F i+1 |F i ): i = 1, 2, ..., m 1} in (2) and hence the efficiency of the SS procedure. In particular, choos ing the sequence {y i : i = 1, 2, ..., m} arbitrarily a pri ori makes it difficult to control the values of the conditional probabilities {P(F i+1 |F i ): i = 1, 2, ..., m 1} in the application to real systems. For this reason, in this work, the intermediate threshold values are chosen adaptively in such a way that the estimated conditional failure probabilities are equal to a fixed value p 0 : the value p 0 is chosen to be 0.1 which is empirically found to yield good efficiency [START_REF] Au | Estimation of small failure prob abilities in high dimensions by subset simulation[END_REF].

F i = {Y < y i }, i = 1, 2, ..., m, where y 1 > y 2 > ... > y i > ... > y m = y > 0 is a decreasing sequence of intermediate threshold values
The SS algorithm proceeds as follows (Figure 1). First, N vectors {x 0 k : k = 1, 2, …, N} are sampled by standard MCS, i.e., from the original probability density function q(P). The subscript '0' denotes the fact that these samples correspond to 'Conditional Level 0'. The corresponding values of the response variable {Y(x 0 k ): k = 1, 2, …, N} are then computed (Figure 1a) and the first intermediate threshold value y 1 is chosen as the (1p 0 )N th value in the decreasing list of values {Y(x 0 k ): k = 1, 2, …, N}. By so doing, the sample estimate of P(F 1 ) = P(Y < y 1 ) is equal to p 0 (note that it has been implicitly assumed that p 0 N is an integer value) (Figure 1b). With this choice of y 1 , there are now p 0 N samples among {x 0 k : k = 1, 2, …, N} whose response Y lies in F 1 = {Y < y 1 }. These samples are at 'Conditional level 1' and distributed as q(P|F 1 ). Starting from each one of these samples, MCMC simulation is used to generate (1p 0 )N ad ditional conditional samples distributed as q(P|F 1 ), so that there are a total of N conditional samples {x 1 k : k = 1, 2, …, N} ∈ F 1 , at 'Conditional level 1' (Figure 1c). Then, the intermediate threshold value y 2 is cho sen as the (1p 0 )N th value in the descending list of {Y(x 1 k ): k = 1, 2, …, N} to define F 2 = {Y < y 2 } so that, again, the sample estimate of P(F 2 |F 1 ) = P(Y < y 2 |Y < y 1 ) is equal to p 0 (Figure 1d). The p 0 N samples lying in F 2 are conditional values from q(P|F 2 ) and function as 'seeds' for sampling (1p 0 )N additional conditional samples distributed as q(P|F 2 ), making up a total of N conditional samples {x 2 k : k = 1, 2, …, N} at 'Conditional level 2'. This procedure is repeated for the remaining conditional levels until the sam ples at 'Conditional level (m -1)' are generated to yield y m < y as the (1p 0 )N th value in the descend ing list of {Y(x m 1 k ): k = 1, 2, …, N}, so that there are enough samples for estimating P(Y < y) [START_REF] Au | Subset Simulation and its appli cation to seismic risk based on dynamic analysis[END_REF].

3 THE LINE SAMPLING METHOD Line Sampling (LS) was also originally developed for the reliability analysis of complex structural sys tems with small failure probabilities [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algo rithms and application[END_REF]). The underlying idea is to employ lines instead of random points in order to probe the failure domain of the high dimensional system under analy sis [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]. In extreme synthesis, the problem of computing the multidimensional failure probability integral (1) in the original "physical" space is transformed into the so called "standard normal space", where each random variable is represented by an independent central unit Gaussian distribution. In this space, a unit vector α (hereafter also called "important unit vector" or "important direction") is determined, pointing towards the failure domain F of interest (for illustration purposes, two different failure domains, F 1 and F 2 , are visually represented in Figure 2, left and right, respectively, in a two dimensional uncer tain parameter space). The problem of computing the high dimensional failure probability integral (1) is then reduced to a number of conditional one dimensional problems, which are solved along the "important direction" α in the standard normal space. The conditional one dimensional failure probabili ties (associated to the conditional one dimensional problems) are readily computed by using the stan dard normal cumulative distribution function [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]. 3.1 Transformation of the physical space into the standard normal space Let x = {x 1 , x 2 , ..., x j , ..., x n } ∈ n ℜ be the vector of uncertain parameters defined in the original physical space x ∈ n ℜ . For problems where the dimension n is not so small, the parameter vector x can be trans formed into the vector θ ∈ n ℜ , where each element of the vector θ j , j = 1, 2, …, n, is associated with a central unit Gaussian standard distribution (Schuel ler et al. 2004). The joint probability density function of the random parameters {θ j : j = 1, 2, ..., n} is, then, φ(θ) = Π n j 1 = φ j (θ j ), where φ j (θ j ) = 1/ π 2 Pexp( θ j 2 /2), j = 1, 2, ..., n. The mapping from the original, physical vector of random variables x ∈ n ℜ to the standard normal vector θ ∈ n ℜ is denoted by T xθ (P) and its inverse by T θx (P), i.e., θ = T xθ (x) and x = T θx (θ), respectively. These transformations are in general nonlinear and are obtained by applying Rosenblatt's or Nataf's transformations, respectively [START_REF] Huang | A robust design method using vari able transformation and Gauss Hermite integration[END_REF]. They are linear only if the random vector x is jointly Gaussian distributed. By transformation θ = T xθ (x), also the Performance Function (PF) or Limit State Function (LSF) g x (P) defined in the physical space (Section 1) can be transformed into g θ (P) in the stan dard normal space:

( ) ( ) ( ) ( ) θ θ θ θ x x x T g x g g = =
(3)

Since in most cases of practical interest the function g θ (P) is not known analytically, it can be evaluated only point wise. According to (3), the evaluation of the system performance function g θ (P) at a given point θ k , k = 1, 2, ..., N T , in the standard normal space requires i) a transformation into the original space, ii) a complete simulation of the system re sponse and iii) the computation of the system re sponse from the model. The computational cost of evaluating the failure probability is governed by the number of system performance analyses that have to be carried out [START_REF] Schueller | A critical appraisal of reliability estimation proce dures for high dimensions[END_REF]).

3.2

The important direction α for Line Sampling

Three methods have been proposed to estimate the important direction α for Line Sampling. In (Kout sourelakis et al. 2004), the important unit vector α is taken as pointing in the direction of the "design point" in the standard normal space. According to a geometrical interpretation, the "design point" is de fined as the vector point θ * on the limit state surface g θ (θ) which is closest to the origin in the standard normal space. Then, the unit important vector α can be easily obtained by normalizing θ * , i.e., α = θ * /||θ * || 2 , where ||P|| 2 denotes the usual Euclidean measure of a vector.

In [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF], the direction of α is identified as the normalized gradient of the perform ance function in the standard normal space. Finally, the important unit vector α can also be computed as the normalized "center of mass" of the failure do main F of interest [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algo rithms and application[END_REF] 3). This direction is by no means optimal, but it is clear that it provides a good approximation of the important regions of the failure domain (at least as the sample size N s is large). On the other hand, it should be noticed that the procedure implies N s additional system analyses by the deterministic model simulating the system, which substantially in crease the computational cost associated to the simu lation method.

= 1/N s P∑ s N u 1 = θ u /||θ u || 2 (Figure
In the implementation of LS for this work, the method based on the normalized "center of mass" of the failure domain F has been employed, because it relies on a "map" approximating the failure domain F under analysis (given by the failure samples gener ated through a Markov chain) and thus it provides in principle the most realistic and reliable estimate for the LS important direction α.

For completeness, a thorough description of the Line Sampling algorithm and its practical implementation issues is given in the Appendix at the end of the pa per. 

APPLICATION: THE CRACKED PLATE

MODEL The cracked plate model is a classical example in Fracture Mechanics and its relative simplicity allows a detailed and complete study of different simulation techniques. A thorough description of this model can be found in [START_REF] Ardillon | Measures de sensibilitè dans les approaches probabilistes[END_REF].

The mechanical model

A metal plate of infinite length with a defect of ini tial length equal to a [m] is considered. The plate is supposed to be subject to a uniform normal loading (i.e., stress) s ∞ [MPa]. The intensity factor K [MPa m ], determined by the uniform loading in the neighborhood of the defect is defined as follows:

a Fs K π ∞ = ( 4 
)
where F is the shape factor of the defect. The plate is supposed to break (i.e., fail) when the intensity fac tor K in (4) becomes greater than or equal to a criti cal value K c , i.e.:

c K a Fs K ≥ = ∞ π (5)

The structural reliability model

From the point of view of a structural reliability analysis, the cracked plate mechanical model of Sec tion 4.1 is analyzed within a probabilistic framework in which the variables K c , a, F and s ∞ are uncertain (for simplicity of illustration with respect to the no tation of the previous Sections, the four variables are hereafter named x 1 , x 2 , x 3 and x 4 , respectively).

Referring to (5), the performance function g x ( x ) of the system is ( ) ( )

2 4 3 1 4 3 2 1 , , , x x x x x x x x g x g x x π - = = (6)
The failure region F is then expressed as

( ) { } ( ) { } 2 4 3 1 4 3 2 1 : , , , 0 : x x x x x x x x x g x F x π ≤ = ≤ = (7)
Finally, the probability of system failure P(F) is written as follows:

( ) ( ) [ ] (
)

2 4 3 1 0 x x x x P x g P F P x π ≤ = ≤ = . ( 8 
)

Case studies

Four case studies, namely Case 0 (Reference case), 1, 2 and 3, are considered with respect to the struc tural reliability model of the previous Section 4.2. Each case study is characterized by different PDFs for the uncertain variables x 1 , x 2 , x 3 and x 4 and by different failure probabilities P(F): these features are summarized in Table 1. It is worth noting that the exact (i.e., analytically computed) failure probabili ties P(F) approximately range from 10 3 to 10 7 , al lowing a deep exploration of the capabilities of the simulation algorithms considered and a meaningful comparison between them [START_REF] Gille | Probabilistic numerical methods used in the ap plications of the structural reliability domain[END_REF]. Finally, no tice that the uncertain variables in Table 1 are inde pendent and most of the corresponding PDFs are Gaussian. Although this is one of the most favour able cases for the transformation of the physical space into the standard normal space, the application of Rosenblatt's or Nataf's transformations to possi bly correlated, non Gaussian variables would add only little computational burden to the method [START_REF] Huang | A robust design method using vari able transformation and Gauss Hermite integration[END_REF]. x N(5·10 3 , 10 3 ) N(5·10 3 , 10 3 ) N(5·10 3 , 10 3 )

LG(5·10 3 , 10 3 )

x N(0.99, 0.01) N(0.99, 0.01) N(0.99, 0.01)

LG(0.99, 0.01)

x N(600, 60) N(300, 30) N(500, 45)

LG(600, 60)

P F

1.165·10 3 4.500·10 7 4.400·10 7 3.067·10 4

Results

In this Section, the results of the application of SS and LS for the reliability analysis of the cracked plate model of Section 4.1 are illustrated with refer ence to Case studies 0, 1, 2 and 3 described in the previous Section 4.3. For fair comparison, all methods have been run with a total of N T = 50000 samples in all four cases. The efficiency of the simulation methods under analysis is evaluated in terms of four quantities: the failure probability estimate P ˆ(F), the sample standard de viation σˆ of the failure probability estimate P ˆ(F), the coefficient of variation (c.o.v.) δ of P ˆ(F) (de fined as the ratio of the sample standard deviation σˆ to the estimate P ˆ(F)) and the Figure Of Merit (FOM) of the method (defined as 1/( 2 σ Pt comp ), where t comp is the computational time required by the simulation method). The closer is the estimate P ˆ(F) to the exact (i.e., analytically computed) failure probability P(F), the more accurate is the simulation method. However, since P ˆ(F) is a statistical estima tion of the exact result, it could happen that a less accurate result leads to an estimate closer to the ex act solution; thus, the estimate P ˆ(F) has to be com bined to the standard deviation (and/or other quality indicators) to play this role. The sample standard de viation σˆ and the c.o.v. δ of P ˆ(F) are used to quan tify the variability of the failure probability estima tor; in particular, the lower are the values of σˆ and δ, the lower is the variability of the corresponding failure probability estimator and thus the higher is the efficiency of the simulation method adopted. Finally, the FOM is introduced to take into account the computational time required by the method. The value of the FOM increases as the sample variance 2 σ of the failure probability estimate P ˆ(F) and the computational time t comp required by the method de crease; thus, in this case the higher is the value of the index, the higher is the efficiency of the method [START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF]. The different simulation methods are also compared with respect to two direct performance indicators relative to standard MCS. First, the ratio of the sam ple standard deviation σˆM C obtained by Standard MCS to that obtained by the simulation method un der analysis σˆm eth is computed. This ratio only quan tifies the improvement in the precision of the esti mate achieved by using a given simulation method instead of standard MCS. Then, the ratio of the FOM of the simulation method in object, namely FOM meth , to that of standard MCS, namely FOM MC , is consid ered to quantify the overall improvement in effi0 ciency achieved by a given simulation method with respect to standard MCS, since it takes into account also the computational time required. Obviously, the higher are the values of these two indices for a given method, the higher is the efficiency of that method [START_REF] Gille | Probabilistic numerical methods used in the ap plications of the structural reliability domain[END_REF].

Table 2 reports the values of ( ) F P ˆ, σˆ, δ, FOM, σˆM C /σˆm eth and FOM meth /FOM MC obtained by Stan dard MCS, SS and LS in Cases 0, 1, 2 and 3 (Section 4.3); the actual number N sys of system response analyses (i.e., model evaluations) is also reported. Notice that for both SS and LS the actual number N sys of system analyses does not coincide with the total number N T of random samples drawn (i.e., N T = 50000). In particular, in the SS method, the presence of repeated conditional samples in each Markov chain (used to gradually populate the intermediate event regions) allows a reduction in the number of model evaluations required: actually, one evaluation is enough for all identical samples. In the LS method, instead, the actual number N sys of system analyses is given by N sys = N s + 2PN T : in particular, N s = 2000 analyses are performed to generate the Markov chain used to compute the important unit vector α as the normalized "center of mass" of the failure domain F (Section 3.2); the 2PN T analyses are carried out to compute the N T conditional one dimensional probability estimates { P ˆk(F): k = 1, 2, …, N T } by linear interpolation (equation (3') in the Appendix). It can be seen that SS performs consistently better than standard MCS and its performance significantly grows as the failure probability to be estimated de creases: for instance, in Case 0 (Reference), where P(F) ~ 10 3 , the FOM of SS, namely FOM SS , is only four times larger than that of Standard MCS, namely FOM MC ; whereas in Case 1, where P(F) ~ 10 7 , the ratio FOM SS /FOM MC is about 557. On the other hand, LS outperforms SS with respect to bothσˆM C /σˆm eth and FOM meth /FOM MC in all the Cases considered. For instance, in Case 2, where the failure probability P(F) to be estimated is very small, i.e., P(F) = 4.4P10 7 , the ratio σˆM C /σˆL S is 155 times larger than the ratio σˆM C /σˆS S , whereas the ratio FOM LS /FOM MC is 11750 times larger than the ratio FOM SS /FOM MC . Notice that for the LS method even though the determination of the sampling important direction α (Section 3.2) and the calculations of the conditional one dimensional failure probability es timates { P ˆk(F): k = 1, 2, …, N T } (equation (3') in the Appendix) require much more than N T system analyses by the model, this is significantly over weighed by the accelerated convergence rate that can be attained by the LS method with respect to SS. Finally, it is also worth noting that the use of prefer ential lines (instead of random points) to probe the failure domain F of interest makes the effectiveness of the LS method almost independent of the target failure probability P(F) to be estimated: for example, the value of the c.o.v. δ is almost the same for values of the target failure probability P(F) which change by four orders of magnitude (in particular, δ = 4.399P10 4 , 3.986P10 4 , 1.015P10 3 and 5.923P10 4 for P(F) ~ 1.169·10 3 , 4.493·10 7 , 4.381P10 7 and 3.068·10 4 , respectively). 5 CONCLUSIONS One of the major obstacles in applying simulation methods for the reliability analysis of engineered systems and structures is the challenge posed by the estimation of small failure probabilities: the simula tion of the rare events of failure occurrence implies a significant computational burden [START_REF] Schueller | On the treatment of uncertainties in struc tural mechanics and analysis[END_REF].

In this paper, the Subset Simulation (SS) and Line Sampling (LS) methods have been considered for improving the efficiency of Monte Carlo Simulation (MCS) in the estimation of system failure probabil ity. A structural reliability model of literature, i.e. the cracked plate model, has been taken as benchmark to test the two methods.

The results of SS and LS have been compared to those of standard MCS in the estimation of failure probabilities as small as 10 7 . The results have dem onstrated that SS becomes more and more efficient over standard MCS as the target probability of fail ure gets smaller. On the other hand, LS has been found to significantly outperform SS, in particular in the task of estimating very small failure probabilities (i.e., around 10 7 ). Further, it has been shown that the use of preferen tial lines (instead of random points) to probe the failure domain of interest makes the effectiveness of the LS methodology almost independent of the fail ure probability to be estimated: this renders LS the most suitable method for an extremely wide range of real world reliability problems.

APPENDIX: THE LINE SAMPLING ALGORITHM

The LS algorithm proceeds as follows [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]):

1 Determine the unit important direction α = {α 1 , α 2 , ..., α j , ..., α n }. Any of the methods summarized in Section 3.2 can be employed to this purpose.

Notice that the computation of α implies addi tional system analyses, which substantially in crease the computational cost associated to the simulation method (Section 3.2). 2 From the original multidimensional joint prob ability density function q(P): In (2'), θ k , k = 1, 2, ..., N T , denotes a random realization of the input variables in the stan dard normal space of dimension n and 〈 α, θ k 〉 is the scalar product between α and θ k , k = 1, 2, ..., N T . Finally, it is worth noting that since the standard Gaussian space is iso tropic, both the scalar c k and the vector θ k, ⊥ are also standard normally distributed [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF]). b. Compute the value k c as the intersection be tween the limit state function g θ (θ ~k) = g θ (c k α + θ k, ⊥ ) = 0 and the line l k (c k , α) passing through θ k and parallel to α (Figure 1'). The value of k c can be approximated by evaluat ing the performance function g θ (P) at two or three different values of c k (e.g., c 1 k , c 2 k and c 3 k in Figure 1'), fitting a first or second or der polynomial and determining its root (Fig ure 1 (5')

n ℜ → [0, ∞), sample N T vectors {x k : k = 1, 2, …, N T }, with x k = {x 1 k , x 2 k , …, x j k , …,
Figure 1'. The Line Sampling procedure [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF] 

Figure 1 .

 1 Figure 1. Illustration of the SS procedure: a) Conditional level 0: Standard Monte Carlo simulation; b) Conditional level 0: adaptive selection of y 1 ; c) Conditional level 1: Markov Chain Monte Carlo simulation; d) Conditional level 1: adaptive selec tion of y 2 .

Figure 2 .

 2 Figure 2. Examples of possible important unit vectors α 1 (left) and α 2 (right) pointing towards the corresponding failure do mains F 1 (left) and F 2 (right) in a two dimensional uncertain parameter space.

Figure 3 .

 3 Figure 3. Line Sampling important unit vector α taken as the normalized "center of mass" of the failure domain F in the standard normal space. The "center of mass" of F is computed as an average of N s failure points generated by means of a Markov chain starting from an initial failure point θ 0 (Kout sourelakis et al. 2004).

  x n k } by standard MCS. 3 Transform the N T sample vectors {x k : k = 1, 2, …, N T } defined in the original (i.e., physical) space of possibly dependent, non normal random variables (step 2. above) into N T samples {θ k : k = 1, 2, …, N T } defined in the standard normal space where each component of the vector θ k = {θ 1 k , θ 2 k , …, θ j k , …, θ n k }, k = 1, 2, ..., N T , is associated with an independent central unit Gaussian standard distri bution (Section 3.1). 4 Estimate N T conditional "one dimensional" fail ure probabilities { P ˆk(F): k = 1, 2, …, N T }, corre sponding to each one of the standard normal sam ples {θ k : k = 1, 2, ..., N T } obtained in step 3. above. In particular, for each random sample θ k , k = 1, 2, …, N T , perform the following steps (Figure 1') (Schueller et al. 2004, Pradlwarter et al. 2005): a. Define the sample vector k θ ~, k = 1, 2, ..., N T , as the sum of a deterministic multiple of α and a vector ⊥ , k θ , k = 1, 2, ..., N T , perpen dicular to the direction α, i.e.,

  '). c. Solve the conditional one dimensional reli ability problem associated to each random sample θ k , k = 1, 2, …, N T , in which the only (standard normal) random variable is c k . The associated conditional failure probability P ˆk(F), k = 1, 2, …, N T , is given by standard normal cu mulative distribution function. 5 Using the independent conditional "one dimensional" failure probability estimates { P ˆk(F): k = 1, 2, …, N T } in (3') (step 4.c. above), compute the unbiased estimator P ˆk(F) for the failure probability P(F) as

  . A point θ 0 is taken in the failure domain F. This can be done by traditional Monte Carlo sampling or by en gineering judgment when possible. Subsequently, θ 0 is used as the initial point of a Markov chain which lies entirely in the failure domain F. For that purpose a MCMC Metropolis Hastings algorithm is em ployed to generate a sequence of N s points {θ

u : u = 1, 2, …, N s } lying in the failure domain F

(Metropo lis et al. 1956[START_REF] Au | Subset Simulation and its appli cation to seismic risk based on dynamic analysis[END_REF]

: in extreme synthe sis, a candidate point θ ~u+1 is generated from the cur rent point θ u by random sampling from a user defined 'proposal' probability distribution; then, ei ther the candidate point θ ~u+1 or the current point θ u is taken as the next point of the Markov chain, de pending on whether the candidate θ ~u+1 lies in the failure region F or not. The unit vectors θ u /||θ u || 2 , u = 1, 2, …, N s , are then averaged in order to obtain the LS important unit vector as α
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 1 

	. Probability distributions and parameters (i.e., means and standard deviations) of the uncertain variables x 1 , x 2 , x 3 , and x 4 of the cracked plate model of Section 4.2 for the four case studies considered (i.e., Cases 0, 1, 2 and 3); the last row reports the values of the corresponding exact (i.e., analytically computed) failure probabilities, P(F) (Gille 1999).
	x	N(149.3, 22.2)	N(149.3, 22.2)	N(160, 18)	LG(149.3, 22.2)

Table 2 .

 2 Results of the application of standard MCS, SS and LS to the reliability analysis of Cases 0 (Reference), 1, 2 and 3 of the cracked plate model of Section 4.2; the values of the performance indicators used to compare the effectiveness of the methods (i.e., σˆM C / σˆm eth and FOM meth /FOM MC ) are highlighted in bold.

	( ) F 1.120P10 3 P ˆ 1.274P10 3 1.169P10 3	σ ˆ 1.496P10 4 7.136P10 5 5.142P10 7	Case 0 (Reference) δ N sys 1.336P10 1 50000 5.597P10 2 49929 4.399P10 4 102000	893.65 3936.67 3.782P10 7	σ ˆ	MC	σ /	meth	FOM meth /FOM MC
	( ) F 0 4.624P10 7 P ˆ 4.493P10 7	σ ˆ 3.000P10 6 7.295P10 8 1.791P10 10	Case 1 δ 6.667 50000 N sys 1.578P10 1 49937 3.986P10 4 102000	2.222P10 6 3.762P10 9 3.117P10 14	σ ˆ	MC	σ /	meth	FOM meth /FOM MC
	( ) F 0 4.679P10 7 P ˆ 4.381P10 7	σ ˆ 3.000P10 6 6.890P10 8 4.447P10 10	Case 2 δ 6.667 50000 N sys 1.473P10 1 49888 1.015P10 3 102000	2.222P10 6 4.222P10 9 4.959P10 13	σ ˆ	MC	σ /	meth	FOM meth /FOM MC
	( ) F 3.000P10 4 P ˆ 3.183P10 4 3.068P10 4	σ ˆ 7.745P10 5 2.450P10 5 1.817P10 7	Case 3 δ 2.582P10 1 7.697P10 2 5.923P10 4 102000 N sys 50000 49907	3.334P10 3 3.339P10 4 3.028P10 8	σ ˆ		MC	σ /	meth	FOM meth /FOM MC