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Abstract:	 In	 this	 paper,	 bootstrapped	 Artificial	 Neural	 Network	 (ANN)	 and	 quadratic	 Response	

Surface	(RS)	empirical	 regression	models	are	used	as	fast(running	surrogates	of	a	 thermal(hydraulic	

(T(H)	system	code	to	reduce	the	computational	burden	associated	with	the	estimation	of	the	functional	

failure	probability	of	a	T(H	passive	system.	

The	ANN	and	quadratic	RS	models	are	built	on	few	data	representative	of	the	input/output	nonlinear	

relationships	underlying	the	T(H	code.	Once	built,	these	models	are	used	for	performing,	in	reasonable	

computational	 time,	 the	 numerous	 system	 response	 calculations	 required	 for	 failure	 probability	

estimation.	 A	 bootstrap	 of	 the	 regression	 models	 is	 implemented	 for	 quantifying,	 in	 terms	 of	

confidence	intervals,	the	uncertainties	associated	with	the	estimates	provided	by	ANNs	and	RSs.	

The	alternative	empirical	models	are	compared	on	a	case	study	of	an	emergency	passive	decay	heat	

removal	system	of	a	Gas(cooled	Fast	Reactor	(GFR).	

	

Keywords:	 epistemic	 uncertainties,	 passive	 system	 reliability,	 artificial	 neural	 network,	 quadratic	
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1.	INTRODUCTION	
Modern	nuclear	reactor	concepts	make	use	of	passive	safety	features	[1],	which	do	not	need	external	

input	 (especially	 energy)	 to	 operate	 and,	 thus,	 are	 expected	 to	 improve	 the	 safety	 of	 nuclear	 power	

plants	because	of	simplicity	and	reduction	of	both	human	interactions	and	hardware	failures	[2].	

However,	the	aleatory	and	epistemic	uncertainties	involved	in	the	operation	and	modeling	of	passive	

systems	 are	 usually	 larger	 than	 for	 active	 systems	 [3],	 [4].	 Due	 to	 these	 uncertainties,	 there	 is	 a	

nonzero	probability	that	 the	physical	phenomena	involved	in	the	operation	of	a	passive	system	(e.g.,	

natural	 circulation)	do	not	occur	 as	 expected,	 thus	 leading	 to	 the	 failure	of	performing	 the	 intended	

safety	function	(e.g.,	decay	heat	removal)	even	if	i)	safety	margins	have	been	dimensioned	and	ii)	no	

hardware	failures	occur	[4].	In	the	analysis	of	such	functional�failure	behavior,	the	passive	system	is	

usually	modeled	by	a	detailed,	mechanistic	T(H	system	code	and	the	probability	of	failing	to	perform	

the	required	function	is	estimated	based	on	a	Monte	Carlo	(MC)	sample	of	code	runs	which	propagate	

the	 epistemic	 (state(of(knowledge)	 uncertainties	 in	 the	 model	 and	 in	 the	 numerical	 values	 of	 its	

parameters/variables	[2],	[5]([10].	

	

Since	 the	probabilities	of	 functional	 failure	of	passive	systems	are	generally	very	small	 (e.g.,	of	 the	

order	of	10
(4
),	a	large	number	of	samples	is	necessary	for	acceptable	estimation	accuracy	[11];	given	

that	 the	 time	 required	 for	each	 run	of	 the	detailed,	mechanistic	T(H	 system	code	 is	 typically	of	 the	

order	 of	 several	 hours	 [10],	 the	 MC	 simulation(based	 procedure	 typically	 requires	 considerable	

computational	efforts.	

	

To	tackle	the	computational	issue,	efficient	sampling	techniques	can	be	adopted	for	obtaining	robust	

estimations	with	a	limited	number	of	input	samples.	Techniques	like	Importance	Sampling	(IS)	[12],	

Stratified	 Sampling	 [13]	 and	 Latin	 Hypercube	 Sampling	 (LHS)	 [14]	 have	 been	 widely	 used	 in	

reliability	 analysis	 and	 risk	 assessment	 [16].	 Recently,	 advanced	 sampling	methods	 such	 as	 Subset	

Simulation	 (SS)	 [17]	 and	 Line	 Sampling	 (LS)	 [18]	 have	 been	 proposed	 for	 structural	 reliability	

assessment	and	subsequently	applied	 to	 the	estimation	of	 the	functional	 failure	probability	of	a	T(H	

passive	system	[19],	[20].	These	methods	have	been	shown	to	improve	 the	computational	efficiency	

although	there	is	no	indication	yet	that	the	number	of	model	evaluations	can	be	reduced	to	below	a	few	
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hundreds,	which	may	be	mandatory	in	the	presence	of	computer	codes	requiring	several	hours	to	run	a	

single	simulation.	

In	such	cases,	the	only	viable	alternative	seems	that	of	resorting	to	fast(running,	surrogate	regression	

models,	 also	 called	 response	 surfaces	 or	 meta(models,	 to	 approximate	 the	 input/output	 function	

implemented	 in	 the	 long(running	 T(H	 model	 code,	 and	 then	 substitute	 it	 in	 the	 passive	 system	

functional	failure	analysis.	The	construction	of	such	regression	models	entails	running	the	T(H	model	

code	 a	 predetermined,	 reduced	 number	 of	 times	 (e.g.,	 50(100)	 for	 specified	 values	 of	 the	 uncertain	

input	 parameters/variables	 and	 collecting	 the	 corresponding	 values	 of	 the	 output	 of	 interest;	 then,	

statistical	 techniques	 are	 employed	 for	 fitting	 the	 response	 surface	 of	 the	 regression	 model	 to	 the	

input/output	data	generated	 in	 the	previous	 step.	Several	kinds	of	 surrogate	meta(models	have	been	

recently	 applied	 to	 safety	 related	 nuclear,	 structural	 and	 hydrogeological	 problems,	 including	

polynomial	 RSs	 [21],	 Gaussian	 meta(models	 [22]	 and	 learning	 statistical	 models	 such	 as	 ANNs,	

Radial	Basis	Functions	(RBFs)	and	Support	Vector	Machines	(SVMs)	[23].	

	

In	 this	work,	 the	 possibility	 of	 using	ANNs	 and	 quadratic	RSs	 to	 reduce	 the	 computational	 burden	

associated	to	the	functional	failure	analysis	of	a	natural	convection(based	decay	heat	removal	system	

of	a	GFR	[5]	 is	 investigated.	To	keep	 the	practical	applicability	 in	 sight,	a	small	 set	of	 input/output	

data	examples	 is	considered	available	for	constructing	 the	ANN	and	quadratic	RS	models:	different	

sizes	of	the	(small)	data	sets	are	considered	to	show	the	effects	of	this	relevant	practical	aspect.	The	

comparison	of	the	potentials	of	the	two	regression	techniques	in	the	case	at	hand	is	made	with	respect	

to	the	estimation	of	the	functional	failure	probability	of	the	passive	system.	

	

Actually,	 the	 use	 of	 regression	models	 in	 safety	 critical	 applications	 like	 nuclear	 power	 plants	 still	

raises	 concerns	with	 regards	 to	 the	 control	 of	 their	 accuracy;	 in	 this	 paper,	 the	 bootstrap	method	 is	

used	 for	 quantifying,	 in	 terms	 of	 confidence� intervals,	 the	 uncertainty	 associated	 to	 the	 estimates	

provided	by	the	ANNs	and	quadratic	RSs	[24]([27].	

	

The	paper	organization	is	as	follows.	In	Section	2,	a	snapshot	on	the	functional	failure	analysis	of	T(H	

passive	 systems	 is	 given.	 Section	 3	 is	 devoted	 to	 the	 detailed	 presentation	 of	 the	 bootstrap(based	

method	 for	 quantifying,	 in	 terms	 of	 confidence	 intervals,	 the	 model	 uncertainty	 associated	 to	 the	

estimates	of	safety	parameters	computed	by	ANN	and	quadratic	RS	regression	models.	In	Section	4,	

the	 case	 study	of	 literature	 concerning	 the	passive	 cooling	of	a	GFR	 is	presented.	 In	Section	5,	 the	

results	of	the	application	of	bootstrapped	ANNs	and	quadratic	RSs	to	the	functional	failure	probability	

estimations	are	compared.	Finally,	conclusions	are	provided	in	the	last	Section.	

	

2.	FUNCTIONAL	FAILURE	ANALYSIS	OF	T�H	PASSIVE	SYSTEMS	
The	basic	steps	of	the	quantitative	phase	of	the	functional	failure	analysis	of	a	T(H	passive	system	are	

[6]:	

1.� Detailed	modeling	of	the	passive	system	response	by	means	of	a	deterministic,	best(estimate	

(typically	long(running)	T(H	code.	

2.� Identification	of	the	parameters/variables,	models	and	correlations	(i.e.,	the	inputs	to	the	T(H	

code)	which	contribute	to	the	uncertainty	in	the	results	(i.e.,	the	outputs)	of	the	best	estimate	

T(H	calculations.	

3.� Propagation	of	the	uncertainties	through	the	deterministic,	long(running	T(H	code	in	order	to	

estimate	the	functional	failure	probability	of	the	passive	system.	

	

Step	 3.	 above	 relies	 on	 multiple	 (e.g.,	 many	 thousands)	 evaluations	 of	 the	 T(H	 code	 for	 different	

combinations	of	 system	 inputs;	 this	 can	 render	 the	associated	 computing	cost	prohibitive,	when	 the	

running	 time	 for	 each	 T(H	 code	 simulation	 takes	 several	 hours	 (which	 is	 often	 the	 case	 for	 T(H	

passive	systems).	

The	computational	issue	may	be	tackled	by	replacing	the	long(running,	original	T(H	model	code	by	a	

fast(running,	 surrogate	 regression	 model	 (properly	 built	 to	 approximate	 the	 output	 from	 the	 true	

system	model).	In	this	paper,	classical	three(layered	feed(forward	ANNs	[28]	and	quadratic	RSs	[21]	

are	 considered	 for	 this	 task.	 The	 accuracy	 of	 the	 estimates	 obtained	 is	 analyzed	 by	 computing	 a	



confidence	interval	by	means	of	the	bootstrap	method	[24];	a	description	of	this	technique	is	provided	

in	the	following	Section.	

	

3.	BOOTSTRAPPED	EMPIRICAL	REGRESSION	MODELING	FOR	POINT	AND	

CONFIDENCE	INTERVAL	EVALUATION	

	
3.1.	Empirical	regression	modeling	

As	 discussed	 in	 the	 previous	 Section,	 the	 computational	 burden	 posed	 by	 the	 functional	 failure	

analysis	of	T(H	passive	systems	can	be	 tackled	by	 replacing	 the	original,	 long(running,	T(H	system	

code	by	a	surrogate	regression	model.	Because	calculations	with	the	surrogate	model	can	be	typically	

performed	quickly,	the	problem	of	long	simulation	times	is	circumvented.	

Let	us	consider	a	generic	meta(model	to	be	built	for	performing	the	task	of	nonlinear	regression,	i.e.,	

estimating	the	nonlinear	relationship	between	a	vector	of	input	variables	x	=	{x1,	x2,	...,	xj,	...,	xni}	and	a	

vector	of	output	targets	y	=	{y1,	y2,	...,	yl,	...,	yno}	on	the	basis	of	a	finite	(and	possibly	reduced)	set	of	

input/output	data	examples	 (i.e.,	patterns),	 ( ){ }
trainpptrain

NpD ...,,2,1,, == yx 	[25].	 It	 can	be	assumed	

that	the	target	vector	y	is	related	to	the	input	vector	x	by	an	unknown	nonlinear	deterministic	function	

( )x�
y

	corrupted	by	a	noise	vector	 ( )xε ,	i.e.,	

	 ( ) ( ) ( )xεx�xy
y

+= .	 (1)	

Notice	 that	 in	 the	 present	 case	 of	 T(H	 passive	 system	 functional	 failure	 assessment,	 the	 nonlinear	

deterministic	 function	 ( )x�
y

	in	 (1)	 is	 represented	 by	 the	 complex,	 long(running	 T(H	 mechanistic	

system	code	(e.g.,	RELAP5(3D)	and	the	noise	 ( )xε 	in	(1)	could	be	represented	by	the	error	introduced	

by	 the	 numerical	 methods	 employed	 to	 calculate	 ( )x�
y

	[27];	 however,	 for	 simplicity	 the	 model	

assumption	in	the	following	is	 ( )xε 	=	0.	

The	objective	of	the	regression	task	is	to	estimate	 ( )x�
y

	in	(1)	by	means	of	a	regression	function	f(x,	

w
*
)	depending	on	a	set	of	parameters	w

*
	to	be	properly	determined	on	the	basis	of	the	available	set	of	

data	Dtrain;	the	algorithm	used	to	identify	the	set	of	parameters	w
*
	is	obviously	dependent	on	the	nature	

of	the	regression	model	adopted,	but	in	general	it	aims	at	minimizing	the	mean	error	between	the	real	

outputs	of	the	T(H	code,	yp,	p	=	1,	2,	...,	Ntrain,	and	the	outputs	of	the	regression	model	 ( )*,ˆ wxfy
pp

= 	

corresponding	to	the	inputs	xp,	p	=	1,	2,	...,	Ntrain;	for	example,	the	Root	Mean	Squared	Error	(RMSE)	

can	be	considered	to	this	purpose	[25]:	

	 ( )∑∑
= =

−
⋅

=
train oN

p

n

l

lplp

otrain

yy
nN

RMSE
1 1

2

,,
ˆ

1
.	 (2)	

Once	a	regression	model	f(x,	w
*
)	is	built,	it	can	be	used	as	a	simplified,	quick(running	surrogate	of	the	

original,	 long(running	 T(H	 system	 code,	 which	 can	 significantly	 reduce	 the	 computational	 burden	

associated	 to	 uncertainty	 propagation	 for	 the	 estimation	 of	 the	 functional	 failure	 of	 T(H	 passive	

systems.	

In	this	work,	both	quadratic	RSs	and	ANNs	are	considered.	Quadratic	RSs	are	polynomials	containing	

linear	 terms,	 squared	 terms	 and	 possibly	 two(factors	 interactions	 between	 the	 input	 variables	 [21].	

ANNs	instead	are	computing	devices	inspired	by	the	function	of	the	nerve	cells	in	the	brain	[28].	They	

are	composed	of	many	parallel	computing	units	(called	neurons	or	nodes)	interconnected	by	weighed	

connections	(called	 synapses).	Each	of	 these	computing	units	performs	a	 few	simple	operations	and	

communicates	 the	 results	 to	 its	 neighbouring	 units.	 From	 the	 mathematical	 point	 of	 view,	 ANNs	

consist	 of	 a	 set	 of	 nonlinear	 (i.e.,	 sigmoidal)	 basis	 functions	 with	 unknown	 parameters	 that	 are	

adjusted	by	a	process	of	training	on	many	different	input/output	examples,	i.e.,	an	iterative	process	of	

regression	error	minimization	[29].	The	particular	type	of	ANN	employed	in	this	paper	is	the	classical	

three(layered	feed(forward	ANN	trained	by	the	error	back(propagation	algorithm.	

The	details	of	these	two	regression	models	are	not	reported	here	for	brevity:	the	interested	reader	may	

refer	to	the	cited	references	and	the	copious	literature	in	the	field.	



3.2.	The	bootstrap	method	

When	using	the	approximation	of	the	system	output	provided	by	an	ANN	empirical	regression	model,	

an	additional	 source	of	uncertainty	 is	 introduced	which	needs	 to	be	evaluated,	particularly	 in	 safety	

critical	 applications	 like	 those	 related	 to	 nuclear	 power	 plant	 technology.	 One	 way	 to	 do	 this	 by	

resorting	to	bootstrapped	ANN	regression	models	[24],	i.e.,	an	ensemble	of	ANN	regression	models,	

constructed	on	different	data	sets	bootstrapped	from	the	original	one	[25],	[27].	The	bootstrap	method	

is	 a	 distribution(free	 inference	 method	 which	 requires	 no	 prior	 knowledge	 about	 the	 distribution	

function	of	the	underlying	population	[24].	The	basic	idea	is	to	generate	a	sample	from	the	observed	

data	by	 sampling	with	 replacement	 from	 the	original	data	 set	 [24].	From	 the	 theory	 and	practice	of	

ensemble	empirical	models,	it	can	be	shown	that	the	estimates	given	by	bootstrapped	ANN	regression	

models	 is	 in	 general	 more	 accurate	 than	 the	 estimate	 of	 the	 best	 ANN	 regression	 model	 in	 the	

bootstrap	ensemble	of	ANN	regression	models	[25],	[26].	

	
In	what	 follows,	 the	 steps	of	 the	bootstrap(based	 technique	of	evaluation	of	 the	 so(called	Bootstrap	

Bias	 Corrected	 (BBC)	 point	 estimate	
BBC

Q̂ 	of	 a	 generic	 quantity	Q	 (e.g.,	 a	 safety	 parameter)	 by	 a	

regression	model	 f(x,	w
*
),	 and	 the	 calculation	 of	 the	 associated	 BBC	Confidence	 Interval	 (CI)	 are	

reported	[25],	[27]:	

1.� Generate	 a	 set	 Dtrain	 of	 input/output	 data	 examples	 by	 sampling	 Ntrain	 independent	 input	

parameters	values	xp,	p	=	1,	2,	...,	Ntrain,	and	calculating	the	corresponding	set	of	Ntrain	output	

vectors	yp	=	�y(xp)	through	the	mechanistic	T(H	system	code.	

2.� Build	 a	 regression	 model	 f(x,	 w
*
)	 on	 the	 basis	 of	 the	 entire	 data	 set	

( ){ }
trainpptrain

NpD ...,,2,1,, == yx 	(step	 1.	 above)	 in	 order	 to	 obtain	 a	 simple,	 fast(running	

surrogate	of	the	original	T(H	system	code	represented	by	the	unknown	nonlinear	deterministic	

function	�y(x)	in	(1).	

3.� Use	the	regression	model	f(x,	w
*
)	(step	2.	above)	in	place	of	the	original	T(H	code	to	provide	a	

point	estimate	 ( )FP̂ 	for	P(F).	

4.� Build	 an	 ensemble	 of	B	 (e.g.,	B	 =	 500(1000)	 regression	models	 ( ){ }Bb
bb

...,,2,1,, * =wxf 	by	

resorting	to	the	bootstrap	method	based	on	random	sampling	with	replacement	and	use	each	of	

the	regression	models	fb(x,	wb
*
),	b	=	1,	2,	...,	B,	to	calculate	an	estimate	

b
Q̂ ,	b	=	1,	2,	...,	B,	for	

the	quantity	Q	of	interest:	by	so	doing,	a	bootstrap(based	empirical	probability	distribution	for	

the	 quantity	 Q	 is	 produced	 which	 is	 the	 basis	 for	 the	 construction	 of	 the	 corresponding	

confidence	intervals.	In	particular,	repeat	the	following	steps	for	b	=	1,	2,	...,	B:	

a.� Generate	a	bootstrap	data	set	 ( ){ }
trainbpbpbtrain

NpD ...,,2,1,,
,,,

== yx ,	b	=	1,	2,	...,	B,	by	

performing	 random	 sampling	 with	 replacement	 from	 the	 original	 data	 set	 of	Ntrain	

input/output	 patterns	 ( ){ }
trainpptrain

NpD ...,,2,1,, == yx 	(steps	 1.	 and	 2.	 above).	 The	

data	set	Dtrain,b	 is	 thus	constituted	by	 the	same	number	Ntrain	of	 input/output	patterns	

drawn	among	those	in	Dtrain	although,	due	to	the	sampling	with	replacement,	some	of	

the	 patterns	 in	Dtrain	 will	 appear	 more	 than	 once	 in	Dtrain,b,	 whereas	 some	 will	 not	

appear	at	all.	

b.� Build	a	regression	model	fb(x,	wb
*
),	b	=	1,	2,	...,	B,	on	the	basis	of	the	bootstrap	data	

set	 ( ){ }
trainbpbpbtrain

NpD ...,,2,1,,
,,,

== yx 	(step	3.a.	above).	

c.� Use	the	regression	model	fb(x,	wb
*
)	(step	4.b.	above)	in	place	of	the	original	T(H	code	

to	provide	a	point	estimate	
b

Q̂ 	of	the	quantity	of	interest	Q.	

5.� Calculate	the	so(called	Bootstrap	Bias	Corrected	(BBC)	point	estimate	
BBC

Q̂ 	for	Q	as	

	 	
bootBBC

QQQ ˆˆ2ˆ −= 	 (3)	

where	 Q̂ 	is	the	estimate	obtained	with	the	regression	model	f(x,	w
*
)	trained	with	the	original	

data	set	Dtrain	(steps	2.	and	3.	above)	and	 boot
Q̂ 	is	the	average	of	the	B	estimates	

b
Q̂ 	obtained	

with	the	B	regression	models	fb(x,	wb
*
),	b	=	1,	2,	...,	B	(step	4.c.	above),	i.e.,	



	 	 ∑
=

=
B

b

bboot
Q

B
Q

1

ˆ1
.	 (4)	

The	 BBC	 estimate	
BBC

Q̂ 	is	 taken	 as	 the	 final	 point	 estimate	 for	 Q.	 The	 explanation	 for	

expression	 (3)	 is	 as	 follows.	 It	 can	 be	 demonstrated	 that	 if	 there	 is	 a	 bias	 in	 the	 bootstrap	

average	estimate	
boot

Q̂ 	in	(4)	compared	to	the	estimate	Q̂ ,	obtained	with	the	single	regression	

model	f(x,	w
*
)	(step	3.	above),	then	the	same	bias	exists	in	the	single	estimate	 Q̂ 	compared	to	

the	true	value	Q	of	 the	quantity	of	 interest.	Thus,	in	order	to	obtain	an	appropriate,	i.e.	bias(

corrected,	 estimate	
BBC

Q̂ 	of	 the	 quantity	 of	 interest	Q,	 the	 estimate	 Q̂ 	must	 be	 adjusted	 by	

subtracting	 the	 corresponding	 bias	 (
boot

Q̂ 	(	 Q̂ ):	 as	 a	 consequence,	 the	 final,	 bias(corrected	

estimate	
BBC

Q̂ 	is	
BBC

Q̂ 	=	 Q̂ 	(	(
boot

Q̂ 	(	 Q̂ )	=	2 Q̂ 	(	
boot

Q̂ .	

6.� Calculate	 the	 two(sided	 Bootstrap	 Bias	 Corrected	 (BBC)	 100K(1	 (	 α)%	 Confidence	 Interval	

(CI)	for	the	BBC	point	estimate	in	(3)	by	performing	the	following	steps:	

a.� Order	 the	 bootstrap	 estimates	
b

Q̂ ,	 b	 =	 1,	 2,	 ...,	 B,	 (step	 4.c.	 above)	 by	 increasing	

values,	such	that	
bi

QQ ˆˆ
)(
= 	for	some	b	=	1,	2,	...,	B,	and	

)1(
Q̂ 	<	

)2(
Q̂ 	<	...	<	

)(
ˆ
b

Q 	<	...	<	

)(
ˆ
B

Q .	

b.� Identify	 the	 100Kα/2
th
	 and	 100K(1	 –	 α/2)

th
	 quantiles	 of	 the	 bootstrapped	 empirical	

probability	distribution	of	Q	(step	4.	above)	as	the	[BKα/2]
th
	and	[B(1	–	α/2)]

th
	elements	

[ ]( )2/
ˆ

α⋅BQ 	and	 ( )[ ]( )2/1
ˆ

α−⋅BQ ,	respectively,	in	the	ordered	list	
)1(

Q̂ 	<	
)2(

Q̂ 	<	...	<	
)(

ˆ
b

Q 	<	...	<	

)(
ˆ
B

Q ;	notice	that	the	symbol	[K]	stands	for	“closest	integer”.	

c.� Calculate	the	two(sided	BBC	100K(1	(	α)%	CI	for	 BBCQ̂ 	as	

	 	 [ ]( )( ) ( )[ ]( )( )[ ]
bootBBBCBbootBBC

QQQQQQ ˆˆˆ,ˆˆˆ
2/12/
−+−− −⋅⋅ αα .	 (5)	

	
An	 important	advantage	of	 the	bootstrap	method	 is	 that	 it	provides	confidence	 intervals	 for	a	given	

quantity	 without	 making	 any	 model	 assumptions	 (e.g.,	 normality);	 a	 disadvantage	 is	 that	 the	

computational	cost	could	be	high	when	the	set	Dtrain	and	the	number	of	adaptable	parameters	w
*
	in	the	

regression	models	are	large.	

	

4.	CASE	STUDY	
The	case	 study	 considered	 in	 this	work	 concerns	 the	 natural	 convection	 cooling	 function	 in	 a	GFR	

under	a	post(Loss	Of	Coolant	Accident	(LOCA)	condition	[5].	The	reactor	is	a	600(MW	GFR	cooled	

by	helium	flowing	through	separate	channels	in	a	silicon	carbide	matrix	core	whose	design	has	been	

the	subject	of	study	in	the	past	several	years	at	the	Massachussets	Institute	of	Technology	(MIT)	[5].	

A	GFR	decay	heat	removal	configuration	is	shown	schematically	in	Figure	1;	in	the	case	of	a	LOCA,	

the	long(term	heat	removal	is	ensured	by	natural	circulation	in	a	given	number	Nloops	of	identical	and	

parallel	 loops;	only	one	of	 the	Nloops	 loops	 is	 reported	for	clarity	of	 the	picture:	 the	flow	path	of	 the	

cooling	 helium	 gas	 is	 indicated	 by	 the	 black	 arrows.	 The	 loop	 has	 been	 divided	 into	Nsections	 =	 18	

sections	for	numerical	calculation;	technical	details	about	the	geometrical	and	structural	properties	of	

these	sections	are	not	reported	here	for	brevity:	the	interested	reader	may	refer	to	[5].	



	

Figure	1:	Schematic	representation	of	one	loop	of	the	600�MW	GFR	passive	decay	heat	removal	

system	[5]	

	
	

In	the	present	analysis,	the	average	core	power	to	be	removed	is	assumed	to	be	18.7	MW,	equivalent	

to	about	3%	of	 full	 reactor	power	(600	MW):	 to	guarantee	natural	circulation	cooling	at	 this	power	

level,	a	pressure	of	1650	kPa	in	the	loops	is	required	in	nominal	conditions.	Finally,	the	secondary	side	

of	the	heat	exchanger	(i.e.,	item	12	in	Figure	1)	is	assumed	to	have	a	nominal	wall	temperature	of	90	

°C	[5].	

	

4.1.	Uncertainties	

Uncertainties	affect	the	modeling	of	passive	systems.	There	are	unexpected	events,	e.g.	the	failure	of	a	

component	or	the	variation	of	the	geometrical	dimensions	and	material	properties,	which	are	random	

in	nature.	This	kind	of	uncertainty,	often	termed	aleatory	[30],	is	not	considered	in	this	work.	There	is	

also	 incomplete	knowledge	on	 the	properties	of	 the	system	and	 the	 conditions	 in	which	 the	passive	

phenomena	develop	(i.e.,	natural	circulation).	This	kind	of	uncertainty,	often	termed	epistemic,	affects	

the	model	representation	of	the	passive	system	behavior,	in	terms	of	both	(model)	uncertainty	in	the	

hypotheses	assumed	and	(parameter)	uncertainty	in	the	values	of	the	parameters	of	the	model	[8].	

	

Only	 epistemic	 uncertainties	 are	 considered	 in	 this	 work.	 Epistemic	 parameter	 uncertainties	 are	

associated	 to	 the	 reactor	power	 level,	 the	pressure	 in	 the	 loops	 after	 the	LOCA	and	 the	cooler	wall	

temperature;	 epistemic	 model	 uncertainties	 are	 associated	 to	 the	 correlations	 used	 to	 calculate	 the	

Nusselt	 numbers	 and	 friction	 factors	 in	 the	 forced,	 mixed	 and	 free	 convection	 regimes.	 The	

consideration	of	these	uncertainties	leads	to	the	definition	of	a	vector	x	of	nine	uncertain	inputs	of	the	

model	x	=	{ }9...,,2,1: =jx
j

,	assumed	described	by	normal	distributions	of	known	means	and	standard	

deviations	(Table	1,	[5]).	



	

Table	1:	Epistemic	uncertainties	considered	for	the	600�MW	GFR	passive	decay	heat	removal	

system	of	Figure	1	[5]	

	

4.2.	Failure	criteria	of	the	T�H	passive	system	

The	passive	decay	heat	removal	system	of	Figure	1	is	considered	failed	whenever	the	temperature	of	

the	coolant	helium	leaving	the	core	(item	4	in	Figure	1)	exceeds	either	1200	°C	in	the	hot	channel	or	

850	°C	in	the	average	channel.	

Indicating	 by	 x 	the	 vector	 of	 the	 9	 uncertain	 system	 parameters	 of	 Table	 1	 (Section	 4.1)	 and	 by	

( )xhot

coreout
T

,
	and	 ( )xavg

coreout
T

,
	the	coolant	outlet	temperatures	in	the	hot	and	average	channels,	respectively,	

the	failure	region	F	can	be	written	as	follows:	

	 ( ){ } ( ){ }850:1200:
,,

>∪>= xxxx
avg

coreout

hot

coreout
TTF .	 (6)	

Notice	that,	in	the	notation	of	the	preceding	Section	3,	 ( )xhot

coreout
T

,
	=	y1(x)	and	 ( )xavg

coreout
T

,
	=	y2(x)	are	the	

two	target	outputs	of	the	T(H	model.	

	

5.	RESULTS	
In	 this	 Section,	 the	 results	 of	 the	 application	 of	 bootstrapped	 ANNs	 and	 quadratic	 RSs	 for	 the	

estimation	of	the	functional	failure	probability	of	the	passive	system	in	Figure	1	are	illustrated.	Some	

details	about	 the	construction	of	 the	ANN	and	quadratic	RS	 regression	models	are	given	 in	Section	

5.1;	 the	estimation	of	 the	probability	of	 functional	 failure	of	 the	system	is	addressed	in	Section	5.2.	

The	 uncertainties	 associated	 to	 the	 calculated	 quantities	 are	 estimated	 by	 bootstrapping	 of	 the	

regression	models,	as	explained	in	Section	3.	

	

5.1	Building	the	regression	models	

RS	 and	 ANN	 models	 have	 been	 built	 with	 training	 sets	 ( ){ }
trainpptrain

NpD ...,,2,1,, == yx 	of	

input/output	data	examples	of	different	 sizes	Ntrain	=	20,	30,	50,	70,	100;	 this	has	allowed	extensive	

testing	of	the	capability	of	the	regression	models	to	reproduce	the	outputs	of	the	nonlinear	T(H	model	

code,	 based	 on	 different	 (small)	 numbers	 of	 example	 data.	 For	 each	 size	Ntrain	 of	 data	 set,	 a	 Latin	

Hypercube	Sample	(LHS)	of	the	9	uncertain	inputs	has	been	drawn,	xp	=	{x1,p,	x2,p,	…,	xj,p,	…,	 9, px },	p	

=	1,	2,	….,	Ntrain.	Then,	the	T(H	model	code	has	been	run	with	each	of	the	input	vectors	xp,	p	=	1,	2,	

…,	Ntrain,	to	obtain	the	corresponding	bidimensional	output	vectors	yp	=	�y(xp)	=	{y1,p,	y2,p},	p	=	1,	2,	

…,	Ntrain	(in	the	present	case	study,	the	number	no	of	outputs	is	equal	to	2,	i.e.,	the	hot(	and	average(

channel	 coolant	 outlet	 temperatures,	 as	 explained	 in	 Section	 4.2).	 The	 training	 data	 set	

( ){ }
trainpptrain

NpD ...,,2,1,, == yx 	thereby	 obtained	 has	 been	 used	 to	 calibrate	 the	 adjustable	

parameters	w
*
	of	 the	regression	models,	for	best	fitting	the	T(H	model	code	data.	More	specifically,	

the	 straightforward	 least	 squares	method	has	been	used	 to	 find	 the	parameters	of	 the	quadratic	RSs	

[21]	and	the	common	error	back(propagation	algorithm	has	been	applied	to	train	the	ANNs	[29].	Note	

that	 a	 single	ANN	can	 be	 trained	 to	 estimate	 both	 outputs	of	 the	model	 here	 of	 interest,	whereas	 a	

specific	quadratic	RS	must	be	developed	for	each	output	to	be	estimated.	

The	choice	of	the	ANN	architecture	is	critical	for	the	regression	accuracy.	In	particular,	the	number	of	

neurons	in	the	network	determines	the	number	of	adjustable	parameters	available	to	optimally	fit	the	

	 Name	 Mean,	�	 Standard	deviation,	σ	(%	

of	�)	

Power	(MW),	x1	 18.7	 1%	

Pressure	(kPa),	x2	 1650	 7.5%	

Parameter	uncertainty	

Cooler	wall	temperature	(°C),	x3	 90	 5%	

Nusselt	number	in	forced	convection,	x4	 1	 5%	

Nusselt	number	in	mixed	convection,	x5	 1	 15%	

Nusselt	number	in	free	convection,	x6	 1	 7.5%	

Friction	factor	in	forced	convection,	x7	 1	 1%	

Friction	factor	in	mixed	convection,	x8	 1	 10%	

Model	uncertainty	

Friction	factor	in	free	convection,	x9	 1	 1.5%	



complicated,	 nonlinear	 T(H	model	 code	 response	 surface	 by	 interpolation	 of	 the	 available	 training	

data.	 The	 number	 of	 neurons	 in	 the	 input	 layer	 is	 ni	 =	 9,	 equal	 to	 the	 number	 of	 uncertain	 input	

parameters;	the	number	no	of	outputs	is	equal	to	2,	the	outputs	of	interest;	the	number	nh	of	nodes	in	

the	hidden	layer	is	4	for	Ntrain	=	20,	30,	70	and	100,	whereas	it	is	5	for	Ntrain	=	50,	determined	by	trial(

and(error.		

A	validation	data	set	 ( ){ }
valppval

NpD ...,,2,1,, == yx 	(different	from	the	training	set	Dtrain)	is	used	to	

monitor	the	accuracy	of	the	ANN	model	during	the	training	procedure:	 in	practice,	the	RMSE	(2)	is	

computed	on	Dval	at	different	phases	of	the	training	procedure.	At	the	beginning,	the	RMSE	computed	

on	 the	 validation	 set	Dval	 typically	 decreases	 together	with	 the	RMSE	computed	 on	 the	 training	 set	

Dtrain;	 then,	when	 the	ANN	regression	model	starts	overfitting	 the	data,	 the	RMSE	calculated	on	the	

validation	set	Dval	starts	increasing:	this	is	the	time	to	stop	the	training	algorithm	[28].	In	this	work,	the	

size	Nval	 of	 the	 validation	 set	 is	 set	 to	 20	 for	 all	 sizes	Ntrain	 of	 the	 data	 set	Dtrain	 considered,	which	

means	20	additional	runs	of	the	T(H	model	code.	On	the	contrary,	it	is	worth	noting	that,	to	the	best	of	

the	authors’	knowledge,	no	method	of	this	kind	is	available	for	polynomial	RSs.	

	

As	measures	of	the	ANN	and	RS	model	accuracy,	the	commonly	adopted	coefficient	of	determination	

R
2
	 and	 RMSE	 have	 been	 computed	 for	 each	 output	 yl,	 l	 =	 1,	 2,	 on	 a	 new	 data	 set	

( ){ }
testpptest

NpD ...,,2,1,, == yx 	of	 size	 Ntest	 =	 20,	 purposely	 generated	 for	 testing	 the	 regression	

models	built	[22],	and	thus	different	from	those	used	during	training	and	validation.	

Table	2	reports	the	values	of	the	coefficient	of	determination	
2R 	and	of	the	RMSE	associated	to	the	

estimates	 of	 the	 hot(	 and	 average(	 channel	 coolant	 outlet	 temperatures	 hot

coreout
T

,
	and	 avg

coreout
T

,
,	

respectively,	 computed	on	 the	 test	 set	Dtest	 by	 the	ANN	and	quadratic	RS	models	built	 on	data	 sets	

Dtrain	of	different	sizes	Ntrain	=	20,	30,	50,	70,	100;	the	number	of	adjustable	parameters	w
*
	included	in	

the	two	regression	models	is	also	reported	for	comparison	purposes.	

	

Table	2:	Coefficient	of	determination	R
2
	and	RMSE	associated	to	the	estimates	of	the	hot�	and	

average�channel	coolant	outlet	temperatures	 hot

out,core
T 	and	 avg

out,core
T ,	respectively,	computed	on	the	

test	set	Dtest	of	size	Ntest	=	20	by	the	ANN	and	quadratic	RS	models	built	on	data	sets	Dtrain	of	

different	sizes	Ntrain	=	20,	30,	50,	70,	100;	the	number	of	adjustable	parameters	w*	included	in	the	

two	regression	models	is	also	reported	for	comparison	purposes	

	

The	ANN	outperforms	the	RS	in	all	the	cases	considered:	for	example,	for	Ntrain	=	100,	the	coefficients	

of	determination	R
2
	produced	by	 the	ANN	and	 the	quadratic	RS	models	 for	the	hot(channel	coolant	

outlet	temperature	 hot

coreout
T

,
	are	0.9897	and	0.9305,	respectively,	whereas	the	corresponding	RMSEs	are	

Artificial	Neural	Network	(ANN)	

	 	 R
2
� RMSE	[°C]	

Ntrain	 Nval	 Ntest	
Number	of	adjustable	

parameters	w*	

hot

coreout,
T 	

avg

coreout,
T 	

hot

coreout,
T 	

avg

coreout,
T 	

20	 20	 20	 50	 0.8937	 0.8956	 38.5	 18.8	

30	 20	 20	 50	 0.9140	 0.8982	 34.7	 18.6	

50	 20	 20	 62	 0.9822	 0.9779	 15.8	 8.7	

70	 20	 20	 50	 0.9891	 0.9833	 12.4	 6.8	

100	 20	 20	 50	 0.9897	 0.9866	 12.0	 6.3	

Quadratic	Response	Surface	(RS)	

	 	 R
2
� RMSE	[°C]	

Ntrain	 Nval	 Ntest	
Number	of	adjustable	

parameters	w*	

hot

coreout,
T 	

avg

coreout,
T 	

hot

coreout,
T 	

avg

coreout,
T 	

20	 0	 20	 55	 0.5971	 0.7914	 75.0	 26.6	

30	 0	 20	 55	 0.8075	 0.9348	 51.9	 14.8	

50	 0	 20	 55	 0.9280	 0.9353	 31.7	 14.6	

70	 0	 20	 55	 0.9293	 0.9356	 31.4	 14.3	

100	 0	 20	 55	 0.9305	 0.9496	 31.2	 13.1	



12.0	 °C	 and	 31.2	 °C,	 respectively.	 This	 result	 is	 due	 to	 the	 higher	 flexibility	 in	modeling	 complex	

nonlinear	 input/output	 relationships	offered	by	 the	ANN	with	 respect	 to	 the	quadratic	RS:	 the	ANN	

structure	 made	 of	 a	 large	 number	 of	 adaptable	 connections	 (i.e.,	 the	 synapses)	 among	 nonlinear	

operating	units	(i.e.,	the	neurons)	allows	fitting	complex	nonlinear	functions	with	an	accuracy	which	is	

superior	 to	 that	 of	 a	 plain	 quadratic	 regression	 model.	 Actually,	 if	 the	 original	 T(H	 model	 is	 not	

quadratic	(which	is	often	the	case	in	practice),	a	second(order	polynomial	RS	cannot	be	a	consistent	

estimator,	i.e.,	 the	quadratic	RS	estimates	may	never	converge	to	the	true	values	of	the	original	T(H	

model	outputs,	even	for	a	very	large	number	of	input/output	data	examples,	in	the	limit	for	Ntrain	→	∞.	

On	the	contrary,	ANNs	have	been	demonstrated	to	be	universal	approximants	of	continuous	nonlinear	

functions	(under	mild	mathematical	conditions)	[31],	i.e.,	in	principle,	an	ANN	model	with�a�properly�

selected� architecture	 can	 be	 a	 consistent	 estimator	 of	 any	 continuous	 nonlinear	 function,	 e.g.	 any	

nonlinear	T(H	code	simulating	the	system	of	interest.	

	

5.2	Functional	failure	probability	estimation	

In	this	Section,	the	bootstrapped	ANNs	and	quadratic	RSs	are	compared	in	the	task	of	estimating	the	

functional	failure	probability	of	the	600(MW	GFR	passive	decay	heat	removal	system	of	Figure	1.	For	

illustration	 purposes,	 a	 configuration	 with	Nloops	 =	 3	 loops	 is	 considered	 for	 the	 passive	 system	 of	

Figure	1.	

	

Table	 3	 reports	 the	 values	 of	 the	 Bootstrap	 Bias	 Corrected	 (BBC)	 point	 estimates	 ( )
BBCFP̂ 	of	 the	

functional	 failure	 probability	 P(F)	 obtained	 with	 NT	 =	 500000	 estimations	 from	 the	 bootstrapped	

ANNs	and	quadratic	RSs	built	 on	Ntrain	=	20,	 30,	 50	 ,70	 and	100	data	 examples;	 the	 corresponding	

Bootstrap	Bias	Corrected	 (BBC)	 95%	Confidence	 Intervals	 (CIs)	 are	 also	 reported.	Notice	 that	 the	

“true”	(i.e.,	reference)	value	of	the	functional	failure	probability	P(F)	(i.e.,	P(F)	=	3.34K10
(4
)	has	been	

obtained	with	a	very	large	number	NT	 (i.e.,	NT	=	500000)	of	simulations	of	the	original	T(H	code	to	

provide	a	robust	term	of	comparison.	Actually,	the	T(H	code	here	employed	runs	fast	enough	to	allow	

repetitive	calculations	(one	code	run	lasts	on	average	3	seconds	on	a	Pentium	4	CPU	3.00GHz):	 the	

computational	time	required	by	this	reference	analysis	is	thus	500000K3	s	=	1500000	s	≈	417	h.	

	

Table	3:	Bootstrap	Bias	Corrected	(BBC)	point	estimates	 ( )BBCFP̂ 	and	BBC	95%	Confidence	

Intervals	(CIs)	for	the	functional	failure	probability	P(F)	(i.e.,	P(F)	=	3.34•10
�4
)	obtained	with	NT	

=	500000	estimations	from	bootstrapped	ANNs	(left)	and	RSs	(right)	built	on	Ntrain	=	20,	30,	50,	

70	and	100	data	examples	

	

It	can	be	seen	that	as	the	size	of	the	training	sample	Ntrain	increases,	both	the	ANN	and	quadratic	RS	

provide	 increasingly	accurate	estimates	of	 the	 true	 functional	 failure	probability	P(F),	as	one	would	

expect.	On	the	other	hand,	in	the	cases	of	small	training	sets	(e.g.,	Ntrain	=	20,	30	and	50)	the	functional	

failure	probabilities	are	significantly	underestimated	by	both	the	bootstrapped	ANN	and	the	quadratic	

Failure	probability	(“True”	value,	P(F)	=	3.34M10
�4
;	CPU	time	≈	417	h)	

Bootstrapped	Artificial	Neural	Networks	(ANNs)	

Ntrain	 Nval	 Ntest	 BBC	point	estimate,	 ( )ˆ
BBC

P F 	 BBC�95%	CI	

20	 20	 20	 1.01K10
(4
	 [0,	7.91K10

(4
]	

30	 20	 20	 1.53K10
(4
	 [0,	6.70K10

(4
]	

50	 20	 20	 2.45K10
(4
	 [8.03K10

(5
,	4.27K10

(4
]	

70	 20	 20	 3.01K10
(4
	 [2.00K10

(4
,	4.20K10

(4
]	

100	 20	 20	 3.59K10
(4
	 [2.55K10

(4
,	4.12K10

(4
]	

Bootstrapped	Quadratic	Response	Surface	(RS)	

Ntrain	 Nval	 Ntest	 BBC	point	estimate,	 ( )ˆ
BBC

P F 	 BBC�95%	CI	

20	 0	 20	 9.81K10
(5
	 [0,	8.39K10

(4
]	

30	 0	 20	 1.00K10
(4
	 [0,	7.77K10

(4
]	

50	 0	 20	 2.15K10
(4
	 [7.43K10

(5
,	5.07K10

(4
]	

70	 0	 20	 2.39K10
(4
	 [1.16K10

(4
,	4.61K10

(4
]	

100	 0	 20	 3.17K10
(4
	 [2.20K10

(4
,	4.40K10

(4
]	



RS	models	(e.g.,	 the	BBC	point	estimates	 ( )BBCFP̂ 	for	P(F)	lie	between	9.81K10
(5
	and	2.45K10

(4
)	and	

the	associated	uncertainties	are	quite	 large	 (e.g.,	 the	widths	of	 the	corresponding	BBC	95%	CIs	are	

between	3.47K10
(4
	and	7.91K10

(4
).	Two	considerations	seem	in	order	with	respect	to	these	results.	First,	

in	these	cases	of	small	data	sets	available	the	analyst	would	still	be	able	to	correctly	estimate	the	order	

of	magnitude	of	a	small	failure	probability	(i.e.,	P(F)	~	10
(4
),	in	spite	of	the�low	number	of	runs	of	the	

T(H	code	performed	to	generate	the	Ntrain	=	20,	30	or	50	input/output	examples;	second,	the	accuracy	

of	 an	 estimate	 should	 be	 evaluated	 in	 relation	 to	 the	 requirements	 of	 the	 specific	 application;	 for	

example,	although	the	confidence	interval	provided	by	the	bootstrapped	ANNs	trained	with	Ntrain	=	50	

samples	ranges	from	8.03K10
(5
	to	4.27K10

(4
,	this	variability	might	be	acceptable	for	demonstrating	that	

the	system	satisfies	the	target	safety	goals.	

It	 is	 worth	 noting	 that	 although	 bootstrapped	 ANNs	 provide	 better	 estimates	 and	 lower	 model	

uncertainties	 than	quadratic	RSs,	 the	difference	in	the	performances	of	the	two	regression	models	 is	

less	evident	than	in	the	case	of	coolant	temperature	estimation	(Table	2).	This	may	be	due	to	the	fact	

that	estimating	the	value	of	the	functional	failure	probability	P(F)	is	a	simpler	task	than	estimating	the	

exact	values	of	the	corresponding	coolant	outlet	 temperatures.	For	example,	 let	the	true	value	of	the	

hot	channel	coolant	outlet	temperature	be	1250	°C	and	the	corresponding	estimate	by	the	regression	

model	be	1500	°C:	in	such	a	case,	the	estimate	is	absolutely	 inaccurate	in	itself,	but	“exact”	for	the	

purpose	of	functional	failure	probability	estimation	with	respect	to	a	failure	threshold	of	1200	°C.	

	

Finally,	the	computational	times	associated	to	the	calculation	of	the	BBC	point	estimates	 ( )BBCFP̂ 	for	

P(F),	and	the	corresponding	BBC	95%	CIs,	are	compared	for	the	two	bootstrapped	regression	models	

with	reference	to	the	case	of	Ntrain	=	100,	by	way	of	example:	the	overall	CPU	times	required	by	the	

use	 of	 bootstrapped	 ANNs	 and	 RSs	 are	 on	 average	 2.22	 h	 and	 0.43	 h,	 respectively.	 These	 values	

include	the	time	required	for:	i)	generating	the	Ntrain	+	Nval	+	Ntest	 input/output	examples,	by	running	

the	T(H	code:	the	corresponding	CPU	times	are	on	average	(100	+	20	+	20)•3	=	420	s	=	7	min	≈	0.12	h	

and	(100	+	0	+	20)•3	=	360	s	=	6	min	≈	0.10	h	for	the	ANNs	and	the	RSs,	respectively;	ii)	training	the	

bootstrapped	 ensemble	 of	B	 =	 1000	 ANN	 and	 RS	 regression	models	 by	 means	 of	 the	 error	 back(

propagation	algorithm	and	the	least	squares	method,	respectively:	the	corresponding	CPU	times	are	on	

average	 2	 h	 and	 0.25	 h	 for	 the	 ANNs	 and	 the	 RSs,	 respectively;	 iii)	 performing	 NT	 =	 500000	

evaluations	of	each	of	the	B	=	1000	bootstrapped	ANN	and	RS	regression	models:	the	corresponding	

CPU	times	are	on	average	6	min	(i.e.,	0.1	h)	and	4.5	min	(i.e.,	about	0.08	h)	for	the	ANNs	and	the	RSs,	

respectively.	

The	overall	CPU	 times	 required	 by	 the	 use	 of	 bootstrapped	ANNs	 (i.e.,	 approximately	 2.22	 h)	 and	

quadratic	RSs	(i.e.,	 approximately	0.43	h)	 is	about	188	and	970	 times,	 respectively,	 lower	 than	 that	

required	by	the	use	of	the	original	T(H	model	code	(i.e.,	approximately	417	h).	The	CPU	time	required	

by	 the	 ANNs	 is	 about	 5	 times	 larger	 than	 that	 required	 by	 the	 quadratic	 RSs,	 mainly	 due	 to	 the	

elaborate	training	algorithm	needed	to	build	the	structurally	complex	neural	model.	

	

6.	CONCLUSIONS	
In	 this	 paper,	 ANNs	 and	 quadratic	 RSs	 have	 been	 compared	 when	 used	 within	 a	 MC	 simulation	

scheme	 for	 estimating	 the	 probability	 of	 functional	 failure	 of	 a	 T(H	 passive	 system.	 A	 case	 study	

involving	the	natural	convection	cooling	function	in	a	GFR	after	a	LOCA	has	been	taken	as	reference.	

ANN	and	quadratic	RS	models	have	been	constructed	on	the	basis	of	sets	of	data	of	limited,	varying	

sizes,	 which	 represent	 examples	 of	 the	 nonlinear	 relationships	 between	 9	 uncertain	 inputs	 and	 2	

relevant	 outputs	 of	 the	 T(H	 model	 code	 (i.e.,	 the	 hot(	 and	 average(channel	 coolant	 outlet	

temperatures).	Once	built,	such	models	have	been	used,	 in	place	of	 the	original	T(H	model	code,	 to	

estimate	the	functional	failure	probability	of	the	system.	In	all	 the	cases	considered,	the	results	have	

demonstrated	 that	 ANNs	 outperform	 quadratic	 RSs	 in	 terms	 of	 estimation	 accuracy.	 Due	 to	 their	

flexibility	 in	 nonlinear	modeling,	 ANNs	 have	 been	 shown	 to	 provide	more	 reliable	 estimates	 than	

quadratic	RSs	even	when	they	are	trained	with	very	low	numbers	of	data	examples	(e.g.,	20,	30	or	50)	

from	the	original	T(H	model	code.	

The	bootstrap	method	has	been	employed	to	estimate	confidence	intervals	on	the	quantities	computed:	

this	uncertainty	quantification	is	of	paramount	importance	in	safety	critical	applications,	in	particular	



when	 few	data	 examples	 are	used.	 In	 this	 regard,	 bootstrapped	ANNs	have	been	 shown	 to	produce	

narrower	confidence	intervals	than	bootstrapped	quadratic	RSs	in	all	the	analyses	performed.	

On	 the	 basis	 of	 the	 results	 obtained,	 bootstrapped	 ANNs	 can	 be	 considered	 more	 effective	 than	

quadratic	RSs	 in	 the	 estimation	 of	 the	 functional	 failure	 probability	 of	T(H	 passive	 systems	 (while	

quantifying	 the	 uncertainty	 associated	 to	 the	 results)	 because	 they	 provide	 more	 accurate	 (i.e.,	

estimates	are	closer	to	the	true	values)	and	precise	(i.e.,	confidence	intervals	are	narrower)	estimates	

than	 quadratic	 RSs;	 on	 the	 other	 hand,	 the	 computational	 time	 required	 by	 bootstrapped	 ANNs	 is	

somewhat	 longer	 than	 that	 required	 by	 quadratic	 RSs,	 due	 to	 the	 elaborate	 training	 algorithm	 for	

building	the	structurally	complex	neural	model.	
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