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INTRODUCTION

Modern nuclear reactor concepts make use of passive safety features [START_REF] Iaea | Safety related terms for advanced nuclear plant[END_REF], which do not need external input (especially energy) to operate and, thus, are expected to improve the safety of nuclear power plants because of simplicity and reduction of both human interactions and hardware failures [START_REF] Mathews | Integration of functional reliability analysis with hardware reliability: An application to safety grade decay heat removal system of Indian 500 MWe PFBR[END_REF]. However, the aleatory and epistemic uncertainties involved in the operation and modeling of passive systems are usually larger than for active systems [START_REF] Helton | Alternative representations of epistemic uncertainties[END_REF], [START_REF] Burgazzi | Addressing the uncertainties related to passive system reliability[END_REF]. Due to these uncertainties, there is a nonzero probability that the physical phenomena involved in the operation of a passive system (e.g., natural circulation) do not occur as expected, thus leading to the failure of performing the intended safety function (e.g., decay heat removal) even if i) safety margins have been dimensioned and ii) no hardware failures occur [START_REF] Burgazzi | Addressing the uncertainties related to passive system reliability[END_REF]. In the analysis of such functional failure behavior, the passive system is usually modeled by a detailed, mechanistic T(H system code and the probability of failing to perform the required function is estimated based on a Monte Carlo (MC) sample of code runs which propagate the epistemic (state(of(knowledge) uncertainties in the model and in the numerical values of its parameters/variables [START_REF] Mathews | Integration of functional reliability analysis with hardware reliability: An application to safety grade decay heat removal system of Indian 500 MWe PFBR[END_REF], [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF]( [START_REF] Fong | Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor[END_REF].

Since the probabilities of functional failure of passive systems are generally very small (e.g., of the order of 10 (4 ), a large number of samples is necessary for acceptable estimation accuracy [START_REF] Schueller | Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis / recent advances[END_REF]; given that the time required for each run of the detailed, mechanistic T(H system code is typically of the order of several hours [START_REF] Fong | Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor[END_REF], the MC simulation(based procedure typically requires considerable computational efforts.

To tackle the computational issue, efficient sampling techniques can be adopted for obtaining robust estimations with a limited number of input samples. Techniques like Importance Sampling (IS) [START_REF] Au | Probabilistic failure analysis by Importance Sampling Markov Chain Monte Carlo[END_REF], Stratified Sampling [START_REF] Cacuci | A comparative review of sensitivity and uncertainty analysis of large scale systems -II: Statistical methods[END_REF] and Latin Hypercube Sampling (LHS) [START_REF] Helton | Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[END_REF] have been widely used in reliability analysis and risk assessment [START_REF] Helton | Computational implementation of sampling/based approaches to the calculation of expected dose in performance assessments for the proposed high/level radioactive waste repository at Yucca Mountain, Nevada[END_REF]. Recently, advanced sampling methods such as Subset Simulation (SS) [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] and Line Sampling (LS) [START_REF] Pradlwarter | Realistic and efficient reliability estimation for aerospace structures[END_REF] have been proposed for structural reliability assessment and subsequently applied to the estimation of the functional failure probability of a T(H passive system [START_REF] Zio | Estimation of the functional failure probability of a thermal/hydraulic passive systems by means of Subset Simulation[END_REF], [START_REF] Zio | Functional failure analysis of a thermal/hydraulic passive system by means of Line Sampling[END_REF]. These methods have been shown to improve the computational efficiency although there is no indication yet that the number of model evaluations can be reduced to below a few hundreds, which may be mandatory in the presence of computer codes requiring several hours to run a single simulation. In such cases, the only viable alternative seems that of resorting to fast(running, surrogate regression models, also called response surfaces or meta(models, to approximate the input/output function implemented in the long(running T(H model code, and then substitute it in the passive system functional failure analysis. The construction of such regression models entails running the T(H model code a predetermined, reduced number of times (e.g., 50(100) for specified values of the uncertain input parameters/variables and collecting the corresponding values of the output of interest; then, statistical techniques are employed for fitting the response surface of the regression model to the input/output data generated in the previous step. Several kinds of surrogate meta(models have been recently applied to safety related nuclear, structural and hydrogeological problems, including polynomial RSs [START_REF] Liel | Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings[END_REF], Gaussian meta(models [START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF] and learning statistical models such as ANNs, Radial Basis Functions (RBFs) and Support Vector Machines (SVMs) [START_REF] Cardoso | Structural reliability analysis using Monte Carlo simulation and neural networks[END_REF].

In this work, the possibility of using ANNs and quadratic RSs to reduce the computational burden associated to the functional failure analysis of a natural convection(based decay heat removal system of a GFR [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF] is investigated. To keep the practical applicability in sight, a small set of input/output data examples is considered available for constructing the ANN and quadratic RS models: different sizes of the (small) data sets are considered to show the effects of this relevant practical aspect. The comparison of the potentials of the two regression techniques in the case at hand is made with respect to the estimation of the functional failure probability of the passive system.

Actually, the use of regression models in safety critical applications like nuclear power plants still raises concerns with regards to the control of their accuracy; in this paper, the bootstrap method is used for quantifying, in terms of confidence intervals, the uncertainty associated to the estimates provided by the ANNs and quadratic RSs [START_REF] Efron | An introduction to the bootstrap[END_REF]( [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF].

The paper organization is as follows. In Section 2, a snapshot on the functional failure analysis of T(H passive systems is given. Section 3 is devoted to the detailed presentation of the bootstrap(based method for quantifying, in terms of confidence intervals, the model uncertainty associated to the estimates of safety parameters computed by ANN and quadratic RS regression models. In Section 4, the case study of literature concerning the passive cooling of a GFR is presented. In Section 5, the results of the application of bootstrapped ANNs and quadratic RSs to the functional failure probability estimations are compared. Finally, conclusions are provided in the last Section.

FUNCTIONAL FAILURE ANALYSIS OF T H PASSIVE SYSTEMS

The basic steps of the quantitative phase of the functional failure analysis of a T(H passive system are [START_REF] Bassi | Reliability assessment of 2400 MWth gas/cooled fast reactor natural circulation decay heat removal in pressurized situations[END_REF]:

1. Detailed modeling of the passive system response by means of a deterministic, best(estimate (typically long(running) T(H code. 2. Identification of the parameters/variables, models and correlations (i.e., the inputs to the T(H code) which contribute to the uncertainty in the results (i.e., the outputs) of the best estimate T(H calculations. 3. Propagation of the uncertainties through the deterministic, long(running T(H code in order to estimate the functional failure probability of the passive system.

Step 3. above relies on multiple (e.g., many thousands) evaluations of the T(H code for different combinations of system inputs; this can render the associated computing cost prohibitive, when the running time for each T(H code simulation takes several hours (which is often the case for T(H passive systems). The computational issue may be tackled by replacing the long(running, original T(H model code by a fast(running, surrogate regression model (properly built to approximate the output from the true system model). In this paper, classical three(layered feed(forward ANNs [START_REF] Bishop | Neural Networks for pattern recognition[END_REF] and quadratic RSs [START_REF] Liel | Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings[END_REF] are considered for this task. The accuracy of the estimates obtained is analyzed by computing a confidence interval by means of the bootstrap method [START_REF] Efron | An introduction to the bootstrap[END_REF]; a description of this technique is provided in the following Section. 

BOOTSTRAPPED EMPIRICAL REGRESSION MODELING FOR POINT AND CONFIDENCE INTERVAL EVALUATION
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Notice that in the present case of T(H passive system functional failure assessment, the nonlinear deterministic function ( )
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in (1) is represented by the complex, long(running T(H mechanistic system code (e.g., RELAP5(3D) and the noise ( )
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in (1) could be represented by the error introduced by the numerical methods employed to calculate ( )

x y [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF]; however, for simplicity the model assumption in the following is ( )
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= 0. The objective of the regression task is to estimate ( ) 1) by means of a regression function f(x, w * ) depending on a set of parameters w * to be properly determined on the basis of the available set of data D train ; the algorithm used to identify the set of parameters w * is obviously dependent on the nature of the regression model adopted, but in general it aims at minimizing the mean error between the real outputs of the T(H code, y p , p = 1, 2, ..., N train , and the outputs of the regression model ( ) * , ˆw x f y p p = corresponding to the inputs x p , p = 1, 2, ..., N train ; for example, the Root Mean Squared Error (RMSE) can be considered to this purpose [START_REF] Zio | A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes[END_REF]:
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Once a regression model f(x, w * ) is built, it can be used as a simplified, quick(running surrogate of the original, long(running T(H system code, which can significantly reduce the computational burden associated to uncertainty propagation for the estimation of the functional failure of T(H passive systems. In this work, both quadratic RSs and ANNs are considered. Quadratic RSs are polynomials containing linear terms, squared terms and possibly two(factors interactions between the input variables [START_REF] Liel | Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings[END_REF]. ANNs instead are computing devices inspired by the function of the nerve cells in the brain [START_REF] Bishop | Neural Networks for pattern recognition[END_REF]. They are composed of many parallel computing units (called neurons or nodes) interconnected by weighed connections (called synapses). Each of these computing units performs a few simple operations and communicates the results to its neighbouring units. From the mathematical point of view, ANNs consist of a set of nonlinear (i.e., sigmoidal) basis functions with unknown parameters that are adjusted by a process of training on many different input/output examples, i.e., an iterative process of regression error minimization [START_REF] Rumelhart | Learning internal representations by error back/ propagation[END_REF]. The particular type of ANN employed in this paper is the classical three(layered feed(forward ANN trained by the error back(propagation algorithm. The details of these two regression models are not reported here for brevity: the interested reader may refer to the cited references and the copious literature in the field.

The bootstrap method

When using the approximation of the system output provided by an ANN empirical regression model, an additional source of uncertainty is introduced which needs to be evaluated, particularly in safety critical applications like those related to nuclear power plant technology. One way to do this by resorting to bootstrapped ANN regression models [START_REF] Efron | An introduction to the bootstrap[END_REF], i.e., an ensemble of ANN regression models, constructed on different data sets bootstrapped from the original one [START_REF] Zio | A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes[END_REF], [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF]. The bootstrap method is a distribution(free inference method which requires no prior knowledge about the distribution function of the underlying population [START_REF] Efron | An introduction to the bootstrap[END_REF]. The basic idea is to generate a sample from the observed data by sampling with replacement from the original data set [START_REF] Efron | An introduction to the bootstrap[END_REF]. From the theory and practice of ensemble empirical models, it can be shown that the estimates given by bootstrapped ANN regression models is in general more accurate than the estimate of the best ANN regression model in the bootstrap ensemble of ANN regression models [START_REF] Zio | A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes[END_REF], [START_REF] Secchi | Quantifying uncertainties in the estimation of safety parameters by using bootstrapped artificial neural networks[END_REF].

In what follows, the steps of the bootstrap(based technique of evaluation of the so(called Bootstrap Bias Corrected (BBC) point estimate BBC Q ˆ of a generic quantity Q (e.g., a safety parameter) by a regression model f(x, w * ), and the calculation of the associated BBC Confidence Interval (CI) are reported [START_REF] Zio | A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes[END_REF], [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF] 

Calculate the so(called Bootstrap Bias Corrected (BBC) point estimate
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An important advantage of the bootstrap method is that it provides confidence intervals for a given quantity without making any model assumptions (e.g., normality); a disadvantage is that the computational cost could be high when the set D train and the number of adaptable parameters w * in the regression models are large.

CASE STUDY

The case study considered in this work concerns the natural convection cooling function in a GFR under a post(Loss Of Coolant Accident (LOCA) condition [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF]. The reactor is a 600(MW GFR cooled by helium flowing through separate channels in a silicon carbide matrix core whose design has been the subject of study in the past several years at the Massachussets Institute of Technology (MIT) [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF].

A GFR decay heat removal configuration is shown schematically in Figure 1; in the case of a LOCA, the long(term heat removal is ensured by natural circulation in a given number N loops of identical and parallel loops; only one of the N loops loops is reported for clarity of the picture: the flow path of the cooling helium gas is indicated by the black arrows. The loop has been divided into N sections = 18 sections for numerical calculation; technical details about the geometrical and structural properties of these sections are not reported here for brevity: the interested reader may refer to [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF].

Figure 1: Schematic representation of one loop of the 600 MW GFR passive decay heat removal system [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF] In the present analysis, the average core power to be removed is assumed to be 18.7 MW, equivalent to about 3% of full reactor power (600 MW): to guarantee natural circulation cooling at this power level, a pressure of 1650 kPa in the loops is required in nominal conditions. Finally, the secondary side of the heat exchanger (i.e., item 12 in Figure 1) is assumed to have a nominal wall temperature of 90 °C [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF].

Uncertainties

Uncertainties affect the modeling of passive systems. There are unexpected events, e.g. the failure of a component or the variation of the geometrical dimensions and material properties, which are random in nature. This kind of uncertainty, often termed aleatory [START_REF]EPRI/NRC/RES Fire PRA methodology for nuclear power facilities, Volume 2: detailed methodology[END_REF], is not considered in this work. There is also incomplete knowledge on the properties of the system and the conditions in which the passive phenomena develop (i.e., natural circulation). This kind of uncertainty, often termed epistemic, affects the model representation of the passive system behavior, in terms of both (model) uncertainty in the hypotheses assumed and (parameter) uncertainty in the values of the parameters of the model [START_REF] Patalano | Risk/informed design changes in a passive decay heat removal system[END_REF].

Only epistemic uncertainties are considered in this work. Epistemic parameter uncertainties are associated to the reactor power level, the pressure in the loops after the LOCA and the cooler wall temperature; epistemic model uncertainties are associated to the correlations used to calculate the Nusselt numbers and friction factors in the forced, mixed and free convection regimes. The consideration of these uncertainties leads to the definition of a vector x of nine uncertain inputs of the

model x = { } 9 ..., , 2 , 1 : = j x j
, assumed described by normal distributions of known means and standard deviations (Table 1, [START_REF] Pagani | The impact of uncertainties on the performance of passive systems[END_REF]).

Table 1: Epistemic uncertainties considered for the 600 MW GFR passive decay heat removal system of Figure 1 [5]

Failure criteria of the T H passive system

The passive decay heat removal system of Figure 1 is considered failed whenever the temperature of the coolant helium leaving the core (item 4 in Figure 1) exceeds either 1200 °C in the hot channel or 850 °C in the average channel. Indicating by x the vector of the 9 uncertain system parameters of Table 1 (Section 4.1) and by ( )

x hot core out T , and 
( )

x avg core out T ,
the coolant outlet temperatures in the hot and average channels, respectively, the failure region F can be written as follows:

( ) { } ( ) { } 850 : 1200 : , , > ∪ > = x x x x avg core out hot core out T T F . (6) 
Notice that, in the notation of the preceding Section 3, ( )

x hot core out T , = y 1 (x) and
( )

x avg core out T , = y 2 (x) are the two target outputs of the T(H model.

RESULTS

In this Section, the results of the application of bootstrapped ANNs and quadratic RSs for the estimation of the functional failure probability of the passive system in Figure 1 are illustrated. Some details about the construction of the ANN and quadratic RS regression models are given in Section 5.1; the estimation of the probability of functional failure of the system is addressed in Section 5.2. The uncertainties associated to the calculated quantities are estimated by bootstrapping of the regression models, as explained in Section 3. thereby obtained has been used to calibrate the adjustable parameters w * of the regression models, for best fitting the T(H model code data. More specifically, the straightforward least squares method has been used to find the parameters of the quadratic RSs [START_REF] Liel | Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings[END_REF] and the common error back(propagation algorithm has been applied to train the ANNs [START_REF] Rumelhart | Learning internal representations by error back/ propagation[END_REF]. Note that a single ANN can be trained to estimate both outputs of the model here of interest, whereas a specific quadratic RS must be developed for each output to be estimated. The choice of the ANN architecture is critical for the regression accuracy. In particular, the number of neurons in the network determines the number of adjustable parameters available to optimally fit the 

Building the regression models

Model uncertainty

Friction factor in free convection, x 9 1 1.5% The ANN outperforms the RS in all the cases considered: for example, for N train = 100, the coefficients of determination R 2 produced by the ANN and the quadratic RS models for the hot(channel coolant outlet temperature hot core out T , are 0.9897 and 0.9305, respectively, whereas the corresponding RMSEs are 12.0 °C and 31.2 °C, respectively. This result is due to the higher flexibility in modeling complex nonlinear input/output relationships offered by the ANN with respect to the quadratic RS: the ANN structure made of a large number of adaptable connections (i.e., the synapses) among nonlinear operating units (i.e., the neurons) allows fitting complex nonlinear functions with an accuracy which is superior to that of a plain quadratic regression model. Actually, if the original T(H model is not quadratic (which is often the case in practice), a second(order polynomial RS cannot be a consistent estimator, i.e., the quadratic RS estimates may never converge to the true values of the original T(H model outputs, even for a very large number of input/output data examples, in the limit for N train → ∞. On the contrary, ANNs have been demonstrated to be universal approximants of continuous nonlinear functions (under mild mathematical conditions) [START_REF] Cybenko | Approximation by superposition of sigmoidal functions[END_REF], i.e., in principle, an ANN model with a properly selected architecture can be a consistent estimator of any continuous nonlinear function, e.g. any nonlinear T(H code simulating the system of interest.

Functional failure probability estimation

In this Section, the bootstrapped ANNs and quadratic RSs are compared in the task of estimating the functional failure probability of the 600(MW GFR passive decay heat removal system of Figure 1. For illustration purposes, a configuration with N loops = 3 loops is considered for the passive system of Figure 1.

Table 3 reports the values of the Bootstrap Bias Corrected (BBC) point estimates ( ) BBC F P ˆ of the functional failure probability P(F) obtained with N T = 500000 estimations from the bootstrapped ANNs and quadratic RSs built on N train = 20, 30, 50 ,70 and 100 data examples; the corresponding Bootstrap Bias Corrected (BBC) 95% Confidence Intervals (CIs) are also reported. Notice that the "true" (i.e., reference) value of the functional failure probability P(F) (i.e., P(F) = 3.34K10 (4 ) has been obtained with a very large number N T (i.e., N T = 500000) of simulations of the original T(H code to provide a robust term of comparison. Actually, the T(H code here employed runs fast enough to allow repetitive calculations (one code run lasts on average 3 seconds on a Pentium 4 CPU 3.00GHz): the computational time required by this reference analysis is thus 500000K3 s = 1500000 s ≈ 417 h. RS models (e.g., the BBC point estimates ( ) BBC F P ˆ for P(F) lie between 9.81K10 (5 and 2.45K10 (4 ) and the associated uncertainties are quite large (e.g., the widths of the corresponding BBC 95% CIs are between 3.47K10 (4 and 7.91K10 (4 ). Two considerations seem in order with respect to these results. First, in these cases of small data sets available the analyst would still be able to correctly estimate the order of magnitude of a small failure probability (i.e., P(F) ~ 10 (4 ), in spite of the low number of runs of the T(H code performed to generate the N train = 20, 30 or 50 input/output examples; second, the accuracy of an estimate should be evaluated in relation to the requirements of the specific application; for example, although the confidence interval provided by the bootstrapped ANNs trained with N train = 50 samples ranges from 8.03K10 (5 to 4.27K10 (4 , this variability might be acceptable for demonstrating that the system satisfies the target safety goals. It is worth noting that although bootstrapped ANNs provide better estimates and lower model uncertainties than quadratic RSs, the difference in the performances of the two regression models is less evident than in the case of coolant temperature estimation (Table 2). This may be due to the fact that estimating the value of the functional failure probability P(F) is a simpler task than estimating the exact values of the corresponding coolant outlet temperatures. For example, let the true value of the hot channel coolant outlet temperature be 1250 °C and the corresponding estimate by the regression model be 1500 °C: in such a case, the estimate is absolutely inaccurate in itself, but "exact" for the purpose of functional failure probability estimation with respect to a failure threshold of 1200 °C.

Finally, the computational times associated to the calculation of the BBC point estimates ( ) BBC F P ˆ for P(F), and the corresponding BBC 95% CIs, are compared for the two bootstrapped regression models with reference to the case of N train = 100, by way of example: the overall CPU times required by the use of bootstrapped ANNs and RSs are on average 2.22 h and 0.43 h, respectively. These values include the time required for: i) generating the N train + N val + N test input/output examples, by running the T(H code: the corresponding CPU times are on average (100 + 20 + 20)•3 = 420 s = 7 min ≈ 0.12 h and (100 + 0 + 20)•3 = 360 s = 6 min ≈ 0.10 h for the ANNs and the RSs, respectively; ii) training the bootstrapped ensemble of B = 1000 ANN and RS regression models by means of the error back( propagation algorithm and the least squares method, respectively: the corresponding CPU times are on average 2 h and 0.25 h for the ANNs and the RSs, respectively; iii) performing N T = 500000 evaluations of each of the B = 1000 bootstrapped ANN and RS regression models: the corresponding CPU times are on average 6 min (i.e., 0.1 h) and 4.5 min (i.e., about 0.08 h) for the ANNs and the RSs, respectively. The overall CPU times required by the use of bootstrapped ANNs (i.e., approximately 2.22 h) and quadratic RSs (i.e., approximately 0.43 h) is about 188 and 970 times, respectively, lower than that required by the use of the original T(H model code (i.e., approximately 417 h). The CPU time required by the ANNs is about 5 times larger than that required by the quadratic RSs, mainly due to the elaborate training algorithm needed to build the structurally complex neural model.

CONCLUSIONS

In this paper, ANNs and quadratic RSs have been compared when used within a MC simulation scheme for estimating the probability of functional failure of a T(H passive system. A case study involving the natural convection cooling function in a GFR after a LOCA has been taken as reference. ANN and quadratic RS models have been constructed on the basis of sets of data of limited, varying sizes, which represent examples of the nonlinear relationships between 9 uncertain inputs and 2 relevant outputs of the T(H model code (i.e., the hot( and average(channel coolant outlet temperatures). Once built, such models have been used, in place of the original T(H model code, to estimate the functional failure probability of the system. In all the cases considered, the results have demonstrated that ANNs outperform quadratic RSs in terms of estimation accuracy. Due to their flexibility in nonlinear modeling, ANNs have been shown to provide more reliable estimates than quadratic RSs even when they are trained with very low numbers of data examples (e.g., 20, 30 or 50) from the original T(H model code. The bootstrap method has been employed to estimate confidence intervals on the quantities computed: this uncertainty quantification is of paramount importance in safety critical applications, in particular when few data examples are used. In this regard, bootstrapped ANNs have been shown to produce narrower confidence intervals than bootstrapped quadratic RSs in all the analyses performed. On the basis of the results obtained, bootstrapped ANNs can be considered more effective than quadratic RSs in the estimation of the functional failure probability of T(H passive systems (while quantifying the uncertainty associated to the results) because they provide more accurate (i.e., estimates are closer to the true values) and precise (i.e., confidence intervals are narrower) estimates than quadratic RSs; on the other hand, the computational time required by bootstrapped ANNs is somewhat longer than that required by quadratic RSs, due to the elaborate training algorithm for building the structurally complex neural model.
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	[ ˆα ⋅ ( B Q	/	2	]	)

  RS and ANN models have been built with training sets data examples of different sizes N train= 20, 30, 50, 70, 100; this has allowed extensive testing of the capability of the regression models to reproduce the outputs of the nonlinear T(H model code, based on different (small) numbers of example data. For each size N train of data set, a Latin Hypercube Sample (LHS) of the 9 uncertain inputs has been drawn, x p = {x 1,p , x 2,p , …, x j,p , …, 9, p x }, p = 1, 2, …., N train . Then, the T(H model code has been run with each of the input vectors x p , p = 1, 2, …, N train , to obtain the corresponding bidimensional output vectors y p = y (x p ) = {y 1,p , y 2,p }, p = 1, 2, …, N train (in the present case study, the number n o of outputs is equal to 2, i.e., the hot( and average( channel coolant outlet temperatures, as explained in Section 4.2). The training data set

												train D	=	( {	x	p	,	y	p	) ,	p	=	, 1	, 2	...,	N	train	}	of
	input/output ( { p train D , = x	y	p	) ,	p	=	, 1	, 2	...,	N	train	}						

Table 2 :

 2 Coefficient of determination R 2 and RMSE associated to the estimates of the hot and average channel coolant outlet temperatures hot

	out,core

Table 3 :

 3 Bootstrap Bias Corrected (BBC) point estimates ( ) BBCIt can be seen that as the size of the training sample N train increases, both the ANN and quadratic RS provide increasingly accurate estimates of the true functional failure probability P(F), as one would expect. On the other hand, in the cases of small training sets (e.g., N train = 20, 30 and 50) the functional failure probabilities are significantly underestimated by both the bootstrapped ANN and the quadratic

	P ˆ	F	and BBC 95% Confidence

; the number of adjustable parameters w * included in the two regression models is also reported for comparison purposes.