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Estimation of the failure probability of a thernfaldraulic passive
system by means of Artificial Neural Networks anddratic Response
Surfaces

E. Zio & N. Pedroni
Politecnico di Milano, Energy Dept., Milano, Italy

G.E. Apostolakis
Massachusetts Institute of Technology, Dept. oléduScience and Engineering, Cambridge (MA), USA

ABSTRACT: In this pape, Artificial Neural Network (ANN) and quadratic Resnse Surface (RS) empiric
regression models are used as fast-running sue®géta thermal-hydraulic (T-H) system code to oedihe
computational burden associated with the estimaifdhe functional failure probability of a T-H mage sys-
tem. The ANN and quadratic RS models are consiulumtea limited-size set of input/output data exasulf

the nonlinear relationships underlying the origiial code; once built, these models are used fdopring,

in an acceptable computational time, the numergsies response calculations needed for an acaumate-
tainty propagation and failure probability estinoati An application to the functional failure anadysf an
emergency passive decay heat removal system imglesisteady-state model of a Gas-cooled Fast Reacto
(GFR) is presented.

1 INTRODUCTION the required function is estimated based on a Monte
Carlo (MC) sample of code runs which propagate
Modern nuclear reactor concepts make use of pa#he epistemic(state-of-knowledge) uncertainties in
sive safety features (Fong et al. 2009), which db n the model and numerical values of its parame-
need external input (especially energy) to operateers/variables (Mackay et al. 2008, Patalano et al.
(IAEA 1991) and, thus, are expected to improve th€008, Arul et al. 2009, Mathews et al. 2009, Fonhg e
safety of nuclear power plants because of simplicital. 2009).
and reduction of both human interactions and hard- Since the probabilities of functional failure of
ware failures (Nayak et al. 2009). passive systems are generally very small (e.gheof
However, the uncertainties involved in the model-order of 10%), a large number of samples is neces-
ling and functioning of passive systems are usuallgary for acceptable estimation accuracy (Schueller
larger than for active systems. This is due tah® 2007); given that the time required for each run of
random nature of several of the physical phenomenhe detailed, mechanistic T-H system code is of the
involved in the functioning of the system (aleatoryorder of several hours (Fong et al. 2009), the MC
uncertainty); ii) the incomplete knowledge on thesimulation-based procedure typically requires consi
physics of some of these phenomena (epistemic underable computational efforts.
certainty) (Apostolakis 1990). A viable approach to overcome the computational
Due to these uncertainties, the physical phenomdsurden associated to the analysis is that of riegprt
na involved in the passive system functioning (e.g.to fast-running, surrogate regression models, also
natural circulation) might develop in such a way tocalled response surfaces or meta-models, to approx-
lead the system to fail its function: actually, dev imate the input/output function implemented in the
tions in the natural forces and in the conditiohs olong-running T-H model code, and then substitute it
the underlying physical principles from the expdcte in the passive system functional failure analyBise
ones can impair the function of the system itseltonstruction of such regression models entails run-
(Burgazzi 2007). ning the T-H model code a predetermined, reduced
In this view, a passive system fails to perform itsnumber of times (e.g., 50-100) for specified values
function when deviations from its expected behavioof the uncertain input parameters/variables and col
lead the load imposed on the system to exceed itscting the corresponding values of the outputnef i
capacity (Burgazzi 2007). In the reliability anasys terest; then, statistical techniques are emploged f
of such functional failure behavior, the passive-sy fitting the response surface of the regression mode
tem is modeled by a detailed, mechanistic T-H systo the input/output data generated in the previous
tem code and the probability of failing to performstep. Several examples can be found in the open lit



rature concerning the application of surrogate meta which contribute to the uncertainty in the results
models in reliability problems. In (Liel et al. 280 (i.e., the outputs) of the best estimate T-H calcu-
polynomial Response Surfaces (RSs) are employed lations.
to evaluate the failure probability of structurgss 3 Propagation of the uncertainties through the de-
tems; in (Arul et al. 2009, Fong et al. 2009, Matke terministic, long-running T-H code in order to es-
et al. 2009)linear and quadratic polynomial RSs timate the functional failure probability of the
are employed for performing the reliability anatysi  passive system.
of T-H passive systems in advanced nuclear reactors
in (Cardoso et al. 2008), Artificial Neural Netwsrk Step 3. above relies on multiple (e.g., many thou-
(ANNS) are trained to providecal approximations sands) evaluations of the T-H code for different
of the failure domain in structural reliability fro combinations of system inputs; this can render the
lems; in (Marrel et al. 2009, Storlie et al. 2008r- associated computing cost prohibitive, when the
ious regression models (including Gaussian metaunning time for each T-H code simulation takes
models) are built to calculate global sensitivity i several hours (which is often the case for T-H pas-
dices for a complex hydrogeological model simulatsive systems).
ing radionuclide transport in groundwater. The computational issue may be tackled by re-
In this work, the possibility of using Artificial placing the long-running, original T-H model code
Neural Networks (ANNs) and quadratic Responsdy a fast-running, surrogate regression model rop
Surfaces (RSs) to reduce the computational burdegrly built to approximate the output from the true
associated to the functional failure analysis nhtu-  system model). In this paper, classical three-&yer
ral convection-based decay heat removal system offaed-forward Artificial Neural Networks (ANNSs)
Gas-cooled Fast Reactor (GFR) (Pagani et al. 200%Bishop 1995) and quadratic Response Surfaces
is investigated. To keep the practical applicapilit  (RSs) (Liel et al. 2009) are considered for thgkta
sight, a small set of input/output data examples is
considered available for constructing the ANN and
guadratic RS models: different sizes of the (smallB3 RESPONSE SURFACES AND ARTIFICIAL
data sets are considered to show the effects of thi NEURAL NETWORKS
relevant practical aspect. The comparison of the po
tentials of the two regression techniques in treeca Let us consider a generic meta-model to be built
at hand is made with respect to the estimatior) of ifor performing the task of nonlinear regressioe,, i.
the Probability Density Function (PDF) of the tem-estimating the nonlinear relationship between a vec
perature of the naturally circulating coolant ire th tor of input variables = {xy, X, ...,%, ..., X, } and a
passive system, ii) the 95th percentile of the ratu vector of output targetg= {y1, V2, ..., ¥, ---, 'yno }, on
ly circulating coolant temperature and iii) the ¢un the basis of dinite (and possiblysmall) set of in-
tional failure probability of the passive system. put/output data examples (i.e., patternB)ain =
The paper organization is as follows. In Section 2{(Xp, Yp), p = 1, 2, ...Niain} (Zio 2006). It can be as-
the concepts of functional failure analysis for T-Hsumed that the target vectpis related to the input
passive systems are synthetically summarized. Sewector x by an unknown nonlinear deterministic
tion 3 briefly presents the problem of empirical re functionuy(x) corrupted by a noise vect@(x), ie.,
gression modeling. In Section 4, the case study of _
(%)= p, (x)+&(x) (1)

terature concerning the passive cooling of a GFR ig/
presented. In Section 5, the results of the apydica In the ) : )
. \ : present case of T-H passive system func
of ANNs and quadratic RSs to the functional failure, ) tajlure probability assessment the vector
analysis of the T-H passive system of Section 4 arg,iains the relevant uncertain system parame-
rs/variables, the nonlinear deterministic functio

reported. Conclusions are provided in the last segg
uy(X) represents the complex, long-running T-H

tion.

mechanistic model code (e.g., RELAP5-3D), the
vector y(x) contains the output variables of interest
for the analysis and the noiséx) represents the er-
rors introduced by the numerical methods employed

, o : : ; for simplicity, in the followi
The basic quantitative steps of the functionalufail ggﬁ:ﬁg?;?’y:()g (S(iz)rslilgl Fe)tlgl.yzgé)g),e ofiowing we

analysis of a T-H passive system are (Bassi & Mar- g gpjective of the regression task is to estimate

gues 2008): : : :
1 Detailed modeling of the passive system respon ()ijel?)e(r%c)jwk})g]/ (r)r:]e:nsseto:‘)fap;erg:re]gzgr)srtlof%r;cg?gb_

by means of a deterministic, best-estimate (tyPigyjy determined on the basis of the available data

cally long-running) T-H code. . Duain; the algorithm used to calibrate the set of pa-
2 Identification of the parameters/variables, model§s;metersy' is obviously dependent on the nature of

and correlations (i.e., the inputs to the T-H code}q regression model adopted, but in general isaim

2 FUNCTIONAL FAILURE ANALYSIS OF T-H
PASSIVE SYSTEMS



at minimizing the mean (absolute or quadratic)rerroabout the geometrical and structural properties of
between the output targets of the original T-H ¢odethese sections can be found in (Pagani et al. 2005)
Yo = #y(X), p=1, 2, ...Nrain, and the output vectors  In the present analysis, the average core power to
of the regression mode}, = f(x,, w), p=1, 2, ..., be removed is assumed to be 18.7 MW, equivalent
Nirain- . to about 3% of full reactor power (600 MW): to
Once built, the regression modék, w) can be guarantee natural circulation cooling at this power
used in place of the T-H code to calculate any quarievel, a pressure of 1650 kPa in the loops is requi
tity of interestQ, such as the 35percentile of a in nominal conditions. Finally, the secondary side
physical variable critical for the system underlgna the heat exchanger (i.e., item 12 in Figure 1)sis a
sis (e.g., the fuel cladding temperature) or thecfu sumed to have a nominal wall temperature of 90 °C

tional failure probability of the passive system. (Pagani et al. 2005).
In this work, the capabilities of quadratic Re-
sponse Surface (RS) and three-layered feed-forwa_——— —
Artificial Neural Network (ANN) regression models 0. tinpe Homt
are compared in the computational tasks involved ii 11, Hot Heat |~ Bchimger Riser
the functional failure analysis of a T-H passive-sy Dxenger Fonon ﬁ s4281
tem. In extreme synthesis, quadratic RSs are pol B her —————"—"“‘_—; wfjgg';g;':m)
nomials containing linear terms, squared terms an 13, Cold HX e
possibly two-factors interactions of the input vari T 5. Lower Heat
ables (Liel et al. 2009); the RS adaptable paramete Dovmcomer E“‘“‘“E““"““/\
w are usually calibrated by straightforward least Chach vabves |
squares methods. ANNs are computing devices ir P t
spired by the function of the nerve cells in thaitor Downcomer 5. Ioner coaxial duct ﬂ
(Bishop 1995). They are composed of many paralle —
computing units (called neurons or nodes) intercon a
nected by weighed connections (called synapses ... 18 sections I
Each of these computing units performs a few sim - Ve
ple operations and communicates the results to i 18, Uppor Downcomer” | e
neighbouring units. From a mathematical viewpoint.
ANNs consist of a set of nonlinear (e.g., sigmgidal Containment
basis functions with adaptable parametershat are L Love Domeomes
adjusted by a process wéining (on many different ' 6. Lower chimney
input/output data examples), i.e., an iterativecpss
of regression error minimization (Rumelhart et al. 8662 5. Top reflector
1986). The particular type of ANN employed in this W i modes) T —— 4 core
paper is the classical three-layered feed-forwar
ANN trained by the error back-propagation algo- > Bottom reflector
rithm. \g/

Figure 1. Schematic representation of one loopef&00-MW

GFR passive decay heat removal system (Pagani 20GH).
4 CASE STUDY P Y ystem (Pag )

4.1 Uncertainties
The case study considered in this work concerns the Only epistemic uncertainties are considered in

natural convection cooling in a Gas-cooled Fasiyig work. Epistemic parameter uncertainties are as

Reactor (GFR) under a post-Loss Of Coolant AcCigqgiated to the reactor power leve)( the pressure
dent (LOCA) condition (Pagani et al. 2005). Thej, the |oops after the LOCA) and the cooler wall
reactor is a 600-MW GFR cooled by helium whosgemperature x); epistemic model uncertainties are
design has been the subject of study in the past se;ggqciated to the correlations used to calculate th
eral years at the Massachussets Institute of Téchnqysselt numbersx{, xs andxs) and friction factors
ogy (MIT) (Pagani et al. 2005). . . (%, Xs andx) in the forced, mixed and free convec-
A GFR decay heat removal configuration iston regimes, respectively. The consideration of
shown schematically in Figure 1; in the case of ghese uncertainties leads to the definition of etare
LOCA, the long-term heat removal is ensured by, of nine uncertain inputs of the modek {x;: j = 1
natural circulation in a given numbBioeps Of iden- 5 ° "9y assumed described by normal distrigtio

tical and parallel loops; only one of thgops 100pS o known means and standard deviations (Table 1,
is reported for clarity of the picture: the flowtpaof Pagani et al. 2005).

the cooling helium gas is indicated by the black ar
rows. The loop has been divided iMtgections= 18
sections for numerical calculation; technical dstai



Table 1. Epistemic uncertainties considered _forﬁG—MW code, based on different (small) numbers of example
GFR passive decay heat removal system of FiguRagani et  data. For each sizey.in Of data set, a Latin Hyper-

al. 2005). : cube Sample (LHS) of the 9 uncertain inputs has
Variable  Mean, g Stanci;;r)do]ge\)/atlon been drawnx, = {Xip, Xopp, -++s Xips «+y Xop}, P = 1,
- £ 2, ....,Nuain. Then, the T-H model code has been run
Parameter i 18.7MW 1 with each of the input vecto =1, 2, ... Nyai
uncertainty X2 165C kpe 7.5% ¢ ; P 0y, p = 1, 2, ...,Nuain,
X3 90°C 50 0 obtain the corresponding bidimensional output
X4 1 5% vectorsyp = py(Xp) = {Y1p Y2ph P =1, 2, ...,Nrain
Xs 1 15% (in the present case study, the numeof outputs
Model Xg 1 7.5% is equal to 2, i.e., the hot- and average-chanmal c
uncertainty X7 1 1% ant outlet temperatures, as explained in Sectigh 4.
Xs 1 10% The training data séDuain = {(Xp, ¥p), P = 1, 2, ...,
X9 1 1.5% Niain} thereby obtained has been used to calibrate
4.2 Failure criteria of the T-H passive system the adjustable parametess of the regression mod-

) _ els, for best fitting the T-H model code data. More
The passive decay heat removal system of Figure dyecifically, the straightforward least squareshoet
is considered failed when the temperature of tlte co ha5 peen used to find the parameters of the qimdrat

lant helium leaving the core (item 4 in Figure ) € Rgs (Liel et al. 2009) and the common error back-
ceeds either 1200 °C in the hot channel or 85°C inropagation algorithm has been appliedrtin the

the average channel: these values are expected AQNs (Rumelhart et al. 1986).
limit the fuel temperature to levels which prevent 1he chojce of the ANN architecture is critical for

excessive release of fission gases and high thermgle regression accuracy. In particular, the nunaber
stresses in the cooler (item 12 in Figure 1) ani#én e yrons in the network determines the number of ad-
stainless steel cross ducts connecting the reaer stable parameters available to optimally fit the
sel and the cooler (items from 6 tohll in Figure 1}omplicated, nonlinear T-H model code response
(Pagani et al. 2005). Denoting b, (x) and  ¢rface by interpolation of the available training
Tavd e(X) the coolant outlet temperatures in the hOgata. The number of neurons in the input layer is
and average channels, respectively, the system fag equal to the number of uncertain input pararseter
ure event can be written as follows: the numben, of outputs is equal to 2, the outputs of
_ [, ot T avg interest; the numban, of nodes in the hidden layer
F —{x 'Tout,core(x) >120C}D{x .Tout,core(x) >85d (2) is 4 forNgain = 20, SOE,1 70 and 100, whereas it is %/ for
According to the notation of the preceding SecNuain = 50, determined by trial-and-error.
tion 3, T (x) = yi(x) and T2% (x) = yo(X) are A validation input/output data s&ya = {(Xp, Yp),

out,core out,core

the two target outputs of the T-H model. p=1, 2, ...Nva} made of patterns different from
those of the training s@y.i, is used to monitor the

accuracy of the ANN model during the training pro-
5 RESULTS cedure: in practice, the Root Mean Square Error
(RMSE) is computed oD, at different phases of
In this Section, the results of the applicationAof  the training procedure. At the beginning, the RMSE
tificial Neural Networks (ANNs) and quadratic Re- computed on the validation sl typically de-
sponse Surfaces (RSs) for the estimation of the-funcreases together with the RMSE computed on the
tional failure probability of the 600-MW GFR training setDyain; then, when the ANN regression
passive decay heat removal system in Figure 1-are imodel starts overfitting the data, the RMSE calcu-
lustrated. Some details about the constructiornef t lated on the validation s&q starts increasing: this
ANN and quadratic RS regression models are givei$ the time to stop the training algorithm. In this
in Section 5.1; their use for estimating the percenwork, the sizeN, of the validation set is set to 20
tiles of the hot-channel and average-channel coolafor all sizesNiain of the data seDy.in considered,
outlet temperatures is shown in Section 5.2; the egvhich means 20 additional runs of the T-H model
timation of the probability of functional failuref o code.
the system is addressed in Section 5.3. As measures of the ANN and RS model accuracy,
. _ _ the commonly adopted coefficient of determination
51 BUIIdIng and testing the ANN and quadratic RS R2 3nd RMSE have been computed for each output
regression models yi, | =1, 2, on a new data SBtest= {(Xp, Yp), P = 1,
RS and ANN models have been built with training2, --.,Nest Of size Niest= 20, purposely generated for
setsDyain = {(Xp» Yo)» P = 1, 2, ...;Ngain} Of in- testingthe regression mod(_als built, and _thu_s different
put/output data examples of different siadg;, = from those used during training and validation.
20, 30, 50, 70, 100; this has allowed extensive tes
ing of the capability of the regression modelsdeo r
produce the outputs of the nonlinear T-H model



Table 2. Coefficient of determinatid®f and RMSE associated to the estimates of the hdtaserage-channel coolant outlet tem-
peraturesT, . and T2  , respectively, computed on the testBgt; of sizeN.s = 20 by the ANN and quadratic RS models built
on data set®y,, of different sizes\,,;, = 20, 30, 50, 70, 100; the number of adjustabtampatersv* included in the two regres-
sion models is also reported for comparison purpose

Artificial Neural Network (ANN)

R’ RMSE [°C]
Nisn  Nva  Nieg  Number of adjustable parametersw* T T2 T T2
20 20 20 50 0.893: 0.895¢ 38.5 18.¢
30 20 20 50 0.914( 0.898: 34.7 18.€
50 20 20 62 0.982: 0.977¢ 15.¢ 8.7
70 20 20 50 0.989: 0.983: 12.4 6.8
10C 20 20 50 0.989 0.986¢ 12.C 6.3
Quadratic Response Surface (R:
R’ RMSE [°C]
Nisn  Nva  Nig  Number of adjustable parametersw* T T2 T T2
20 0 20 55 0.597: 0.791¢ 75.C 26.€
30 0 20 55 0.807¢ 0.934¢ 51.¢ 14.¢
50 0 20 55 0.928( 0.935: 31.7 14.¢
70 0 20 55 0.929: 0.935¢ 31.4 14.:
10C 0 20 55 0.930¢ 0.949¢ 31.2 13.1
Table 2 reports the values of the coefficient of de P(T ot hota )_ 3
termination R’ and of the RMSE associated to the " \'outcore = foutcore) = & @)

estimates of the hot- and average- channel coola q
outlet temperatures,> . and T2 ., respectively,
computed on the test sBfcs; by the ANN and qua- P(Toi\gore sToizgc'gre): a (4)
dratic RS models built on data s€&tg,;, of different ' ’
sizesNyain = 20, 30, 50, 70, 100; the number of ad- Figure 2 shows the Probability Density Function
justable parameterg included in the two regression (PDF) of the hot-channel coolant outlet temperature
models is also reported for comparison purposes. T, Obtained withNy = 250000 simulations of
The ANN outperforms the RS in all the casesthe original T-H model code (solid lines); the PDF
considered. This is due to the higher flexibility i of the average-channel coolant outlet temperature
modeling complex nonlinear input/output relation- T, is not shown for brevity. The same figure al-
ships offered by the ANN with respect to the quaso shows the PDFs constructed wikh= 250000 es-
dratic RS. Actually, if the original T-H model i®nh timations from ANNs (dashed lines) and RSs (dot-
guadratic (which is often the case in practice), alashed lines) built oMNy.in = 100 input/output ex-
second-order polynomial RS cannot beaasistent amples.
estimator, i.e., the quadratic RS estimates magmev  Notice that the “true” (i.e., reference) PDF of
converge to the true values of the original T-H mod T, ... (Figure 2, solid lines) has been obtained with
el outputs, even for a very large number of in-a very large numbeXr (i.e., Ny = 250000) of simu-
put/output data examples, in the limit fdf,i;, — .  lations of the original T-H code, to provide a rebu
On the contrary, ANNs have been demonstrated tteference for the comparisons. Actually, the T-H
be universal approximants ebntinuousnonlinear code here employed runs fast enough to allow repeti
functions (under mild mathematical conditions) (Cy-tive calculations (one code run lasts on average 3
benko 1989), i.e., in principle, an ANN modéth a  seconds on a Pentium 4 CPU 3.00GHz): the compu-
properly selected architectun be a consistent es- tational time required by this reference analysis i
timator of any continuous nonlinear function, e.g.thus 250000-3 s = 750006209 h.
any nonlinear T-H code simulating the system of in-
terest.

5.2 Determination of the 95percentiles of the
coolant outlet temperatures

For illustration purposes, a configuration with
Nioops = 3 loops is considered for the passive system
of Figure 1.

The 100s™ percentiles of the hot- and average-
channel coolant outlet temperaturdg. . and

ot,a

Toueore are defined as the valu@g, .. and Ty,

out,core

respectively, such that



Probabilty density function (PDF) of Te vy Table 3. ANN and quadratic RS point estima®$ ... and

core

002 R S B T2 for the 98" percentilesT™** and T**** of the hot-

out,core out,core out,core

R and average-channel coolant outlet temperatures.

95™ percentile of the coolant otlet temperatures
“True” values: T,*%%® =796.31 °C;T2%%* =570.22 °C

0.018

0.016

44—

I

I
4

I

I
1

: outcore outcore
00!

- CPU time= 209 h

@0'0147777777777"77 ST Original T-H code, N, = 250000
£ 0w ,i _____ ANN, N, _; = 100 _] Artificial Neural Networks (ANNS)
::;' 0.01 J‘. — ,RS’,NtiaiE il,oo, S — Ntrain Nva_] Nteét To:?‘cvg.rzs Toz\l’%oor.egzs
g : } } } } 2C 20 20 813.5( 577.3¢
e I s s R\ VA S A 3C 20 20 810.2: 575.3:
2 0.006 s (A 5C 20 20 794.9¢ 573.6¢
« ! ; ; ; ; 7C 20 20 795.2( 571.8¢
el ! B A AV . 10C_ 20 20 796.7( 570.8¢
0.002f — = —= = 7 = = — 4= g - R R Quadratic Respmnse Surface (RS
g e Nin  Neg  New  Tor Ly
300 600 700 800 900 1000 1100 1200 1300 — ~ -
Hot channel coolant outlet temperature, Tgstcore 20 O 20 84995 59315
_ ' . 3C 0 20 827.0¢ 583.3:
Figure 2. Hot-channel coolant outlet temperaturepigoal 50 0 20 814.4¢ 593.8¢
PDFs constructed witNy = 250000 estimations from the origi- 70 0 20 806.6° 573.9¢
nal T-H code (solid lines) and from ANNs (dasheted) and 10C 0 20 800.8° 570.3;

RSs (dot-dashed lines) built dly,;, = 100 data examples.

The overall good match between the results frons.3 Functional failure probability estimation
the original T-H model code and those from the . . .
ANNs and RSs regression models leads us to assé'?t this Section, ANNs and quadratic RSs are com-

: : d in the task of estimating the functionalufiaal
that the accuracy in the estimates can be congiderg2r€? N :
satisfactory for the needs of percentile estimation probability of the 600-MW GFR passive decay heat

the functional failure analysis of the present T_Hremoval system of Figure 1. The previous system

passive system. Also, it can be seen that the ANﬁorglgbLIJ(reatAiorréW(;trrt]sN lct)?mpes :vgltljsés noa:‘l){ﬁzd.oint estimates

estimates (dashed lines) are much closer to tlee-ref A ports X P

ence results (solid lines) than the RS estimates (d P(F) of the functional failure probabilit}(F) ob-

dashed lines) tained W|thN_T = 50000_0 estimations from the ANNs
Table 3 reports the values of the point estimate nd quadratic RSs built MWhrain = 20, 30 5,(,) ’.70 and

Thotoss o o4 Thot095 £o 4o g percentilesT 0% 00 data examples. Notice that the “true” (i.efere

t,core ut,core out,core H H H
\Tavg 095 | ) i ' nce) value of the functional failure probabilR{F)
and T, of the hot-and average-channel coolanﬁ_e_’ P(F) = 3.34+10%) has been obtained with a very

out,core .
outlet temperatureS, i, and To,,, respectively, large numbemNy (i.e., Nt = 500000) of simulations
of the original T-H code to provide a robust terfn o

obtained withNr = Zogé_c())r%)o estimations from ANNs
?88 g;?: reza;;:milsessbtlillgtgratﬂ; ﬁ?e St?ugo ’(i7ege?r2d comparison: the computational time required by this
ence) values of thé #5percentiles (i.e Thot,b.95 _  reference analysis is thus 5000003 s = 1500080 s
*~ =17 out,core 417 h

796.31 °C andr 2% = 570.22 °C) have been cal-

out,core

culated with a very large numbéd; (i.e., Ny = . . A
. . o ’ Table 4. ANN and quadratic RS point estimaf$ ) for the
250000) of simulations of the original T-H code, tOfnctional failure prc?gjabim)é(,:)_ P! imatels)

provide a robust reference for the comparisons: the Functional failure probability
computational time required by the analysis is B09 (“True” value: P(F) = 3.34-1¢; CPU time = 417 h)
ANNSs turn out to be quiteeliable, providing Artificial Neural Networks (ANNs)
point estimates very close to the real valueslithel Nuan N Nees P(F)
cases considered; on the contrary, quadratic RSs™ 3¢ >0 20 1.01-10°
provide accurate estimates only f¥f,n = 70 and 3C 20 20 1.53-1(*
100. 50 20 20 2.45-1(':
Finally, the computational times associated to the 1700C 38 gg ggéi:‘,
calculation of the point estimate§ "2 and uadatc Resoorss o T
ot 095 ot,095 avg,095 : . N
Toucoressc fOF Toycore @N Toutf’gore are compared for — . 5]
the two regression models: it turns out that he CPU —tain val fes -
time required by the ANNSs is about 1.2 times larger gg 8 gg 2-8(1)'%:_4
than that required by the quadratic RSs, mainly due - 0 20 515.104
to the elaborate training algorithm needed to build ¢ 0 20 2.39.1(%
the structurally complex neural model. 10C 0 20 3.17-1(*

It can be seen that as the size of the training sam
ple Nyain increases, both the ANN and quadratic RS
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failure probabilities are significantly underestiec rate (i.e., closer to the true values) estimates; @n th
by both the ANN and the quadratic RS models (e.gother hand, the computational time required by
the point estimatesP(F) for P(F) lie between ANNs is somewhat longer than that required by
9.81-1C and 2.45-10). However, in these cases of quadratic RSs, due to the elaborate training algo-
small data sets available the analyst would s#ll brithm for building the structurally complex neural
able to correctly estimate the order of magnitude o model.
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