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ABSTRACT 

The performance of diagnostic systems based on empirical models may vary in different 

zones of the training space. It is, thus, important to a-priori verify whether the model is working in 

a zone where the performance is expected to be satisfactory. In this respect, the objective of this 

work is to estimate the degree of confidence in the identification of nuclear transients by a 

diagnostic system based on a bagged ensemble of Supervised Fuzzy C-Means (FCM) classifiers. 

The method has been applied for classifying simulated transients in the feedwater system of a 

nuclear Boiling Water Reactor (BWR). The obtained results indicate that the bagging ensemble 

permits to achieve satisfactory performance, with a reliable estimation of the degree of confidence 

in the classification.  

Key Words: Confidence Estimation; Bagging Ensemble; Fuzzy C-Means Classifiers; 

Transient Identification; Nuclear Power Plant. 

1  INTRODUCTION: 

Large-scale systems such as Nuclear Power Plants (NPPs) are required to provide safe and 

reliable operation for long periods of time; nevertheless, system components are subject to 

manufacturing defects, interactions with the environment, wear and tear, and other causes of 

performance degradation [1]. For these safety-critical systems, fault detection and identification 

are of paramount importance due to their disastrous consequences. In this respect, a large number 

of diagnostic methods have been proposed in the past decade for application to NPP sensors and 

components, based on the advances of soft computing techniques such as artificial neural 

networks [2, 3, 4], fuzzy logic [5, 6] and neuro-fuzzy based techniques [7, 8, 1]. Furthermore, in 

recent years, there has been an increasing interest in ensemble-based classifiers for fault 
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diagnosis due to their superior performance. Indeed, ensemble-based classifiers have been shown 

to successfully generate strong classifiers from weak classifiers [9]. 

Diagnostic systems based on empirical models have performance which may vary in 

different zones of the training space, according to the density and information content of the 

example patterns available to train the model. Then for their application in practice, it is 

important to a-priori verify whether the model is working in a zone where its performance is 

expected to be satisfactory [10].  

The objective of the present work is to provide a method for estimating the confidence in the 

classification of any pattern. The diagnostic system considered is an ensemble of classifiers for 

nuclear transient identification, which has been proposed by the authors in a previous work [11]. 

Bagging [12] is used to construct an ensemble of supervised Fuzzy C-Means (FCM) classifiers 

[5]. The final classification decision is obtained by majority-voting of the outcomes of the 

individual classifiers [13].  

The confidence in the final classification is obtained by exploiting the nature of the 

ensemble itself, to compute the Bayesian posterior probability of the class by a softmax approach 

[14]. The ensemble-based classification approach with confidence estimation has been applied 

for the identification of simulated transients in the feedwater system of a Boiling Water Reactor 

(BWR) [15]. The remainder of the paper is organized as follows. Section (2) presents a brief 

overview of the ensemble-based classification approach. In Section (3), the technique for 

confidence estimation is illustrated. Section (4) describes the results obtained by applying the 

classification approach with confidence estimation to the transients in the feedwater system of a 

BWR. Finally, conclusions are drawn in Section (5). 

2 ENSEMBLE-BASED CLASSIFICATION FOR TRANSIENT 

IDENTIFICATION 

Ensemble-based classification techniques base the class assignment on the combination of 

the outputs of a set of individual classifier models. The individual classifiers perform well in 

different regions of the feature space and thus make errors on different patterns; these are 

balanced out in the combination so that the performance is superior than that of a single 

classifier. In this work, different datasets are used to train the individual classifiers; such datasets 

are obtained through the resampling technique of bagging. Bagging, short for bootstrap 

aggregating, is one of the earliest ensemble-based algorithms [12]. Training data subsets are 

drawn randomly, usually with replacement, from the entire training dataset. The output classes of 

the individual classifiers are combined by majority voting: the class chosen by most classifiers is 

the ensemble assignment. To ensure that there are adequate training samples in each subset, 

relatively large portions of the samples (75% to 100%) are drawn into each subset. This causes 

individual training subsets to overlap significantly, with many of the same instances appearing in 

most subsets, and some instances appearing multiple times in a given subset. In order to ensure 

diversity under this scenario, a relatively unstable model is used so that sufficiently different 

decision boundaries can be obtained for small perturbations in different training datasets. The 

main structure of the ensemble scheme is shown in Fig. 1. In the next Section 2.1, the supervised, 

evolutionary-optimized FCM algorithm [5] used to build the base classifiers of the ensemble is 
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briefly described. The procedure of ensemble construction and its algorithm is presented in 

Section 2.2. 
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Bagging: Ensemble of FCM Classifiers
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Figure 1. The main structure of the FCM ensemble scheme 

2.1 The Supervised, evolutionary-optimized FCM Classifier 

The supervised, evolutionary-optimized FCM classifier is here briefly introduced with 

reference to a problem of pattern classification in which a set of N available patterns 
kx , whose 

corresponding class t

k  is a priori known, is assumed available. The subscript t indicates that t

k  

represents the true, a priori known physical class of 
kx . The total number of classes of the N 

patterns 
kx  is c  and thus t

k  assumes a value in  1, ,c . The information regarding the known, 

physical class t

k of the k th  pattern is used to supervise an evolutionary algorithm for finding c 

optimal Mahalanobis metrics which define c  geometric clusters as close as possible to the a 

priori known physical classes [16]. The Mahalanobis metrics are defined by the matrices 

, 1, ,iM i c  whose elements are identified by the supervised evolutionary algorithm so as to 

minimize the distances    
T

i i

ik k i i k is x M x     between the patterns j

kx  belonging to class i  and 

the class prototype, i.e. the cluster center i
 .  

Once the classifier is constructed, a new test pattern x  is classified, in fuzzy terms, by 

computing its value of membership to the c  clusters, based on the Mahalanobis distances. Given 

the order correspondence between classes and clusters, the fuzzy membership information is 

finally used for the crisp assignment of the pattern x  to the class with the largest value of 

membership. 

2.2 The Construction of the Bagging Ensemble 

Ensemble models are built on two key components: the strategy for building classifiers that are 

as diverse as possible; the strategy for combining the outputs of the individual classifiers that 
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make up the ensemble in such a way that the correct decisions are amplified, and the incorrect 

ones are cancelled out.  

In this work, diversity is obtained by bagging and derives from using bootstrapped replicas of 

the training data: different training data subsets are randomly drawn, with replacement, from the 

entire training data; at each bagging iteration, a new training subset is created based on the 

original dataset. Each training data subset is used to train a different FCM classifier. As for the 

combination of the outcomes of the individual base classifiers of the ensemble, this is, achieved 

by majority voting. 

To evaluate the ensemble error, cross-validation is performed according to the K-fold cross-

validation scheme proposed in [17]. The original dataset is randomly partitioned into K blocks of 

equal size. One of these blocks is used as test data subset and the remaining K-1 blocks are 

combined together to constitute the training data subset. The cross-validation process is then 

repeated K times (the K-folds) using a different block as test set each time and consequently the 

bagging algorithm is repeated K times, each time with a different training set. The K-fold cross-

validation error estimate is then the average of the K individual error estimates. The general 

structure of the bagging algorithm within the cross-validation scheme is shown in Fig. 2.  

Basic parameters used to build the ensemble of classifiers are: T  “Number of base classifiers 

in the ensemble” = 10 in the application; F  “fraction of the total number N of training patterns 

which constitute each bootstrapped replica” = 0.75 in the application; 
max  “Number of iterations 

of the supervised algorithm used to train the single base classifiers of the ensemble” = 500 in the 

application.  
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Figure 2. The general structure of the ensemble scheme, with cross-validation; E-fold = Ensemble-fold 
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3 ESTIMATION OF THE CLASSIFICATION CONFIDENCE 

The test performance of a classifier, i.e. the ratio between the number of test patterns 

correctly classified and the total number of test patterns, is usually computed on a set of test 

patterns different from those used to train the model. Thus, if we consider a new pattern x , the 

test performance can be interpreted as the probability that x  is correctly classified, and it 

represents a measure of the expected confidence in its classification. However, since the 

performance may vary in different zones of the input space, this confidence measure is not 

satisfactory given that it does not take into account the location of the test pattern. 

In the present work, as measure of the confidence in the assignment of the test pattern x  to 

class t

i , we consider the posterior probability  t

iP x , i.e. the probability that the class t

i  is 

the correct class given that the test pattern is x . Using Bayes rule: 

  
   

   
1

t t

i it

i c
t t

j j

j

P x P
P x

P x P

 


 





 (1) 

where  t

iP x dx  is the probability that a generic pattern of class t

i  be in dx  around x  and 

 t

iP   is the a priori probability that a pattern is of class t

i , i.e. the probability that a pattern 

belongs to class t

i  prior to observing any information about the pattern. Since the 

probabilities  , 1, ,t

iP x i c  , are not known in practical classification problems, it is necessary 

to estimate  t

iP   from the available experimental information [18]. Several approaches have 

been proposed to this purpose, both based on the estimation of  t

iP x   (sampling paradigm) or 

on the direct estimation of  t

iP x  (diagnostic paradigm). Since the former approaches are 

usually difficult to apply to large dimension problems, a direct estimator of  t

iP x  for 

ensemble classification systems, based on the softmax function which ensures all  t

iP x  are 

between 0 and 1 and have summation equal to 1 [19], is here applied: 

  
 

 

1

exp

exp

i

j

A x

t

i c
A x

j

P x






 (2) 

where  iA x  is the sum of the classifier weights that select class t

i , given by: 

   , ,

1 0

tT
i

i i i

w if the th classifier assigns pattern x to class
A x with

otherwise


 



 
 



 
  


  (3) 

being T  the number of classifiers of the ensemble and w  the weight assigned to the th   

classifier in the combination of the individual classifier outputs according to the weighted 
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majority voting scheme. This estimator has been shown to be unbiased, i.e. on the average, a 

fraction p  of all patterns classified with confidence  t

iP x p   is correctly classified [19]. 

In the present work, equation 3 is applied to a bagging ensemble algorithm. Since the 

individual base classifier outcomes are aggregated according to the majority voting rule, the 

same weight is assigned to all the classifiers. Thus, in equation 3, ,i  is given by: 

 ,

1

0

t

th i
i

if the classifier assigns pattern x to class
v

otherwise


 
 


 (4) 

Notice that the confidence in the classification to a given class t

i  of a test pattern increases if the 

classifiers that do not identify t

i  assign different classes among themselves, instead. For 

example, let us consider the two following cases in the classification of a pattern x  by an 

ensemble of ten classifiers: 

a) Six classifiers assign x  to class 1, four classifiers to class 2 

b) Six classifiers assign x  to class 1, one classifier to class 2, one classifier to class 3, one 

classifier to class 4, one classifier to class 5 

In case a), the confidence associated to class 1 is 0.875 and to class 2 is 0.125; in case b), the 

confidence associated to class 1 is 0.974 and to the other four classes is 0.006.  

4 APPLICATION TO NUCLEAR TRANSIENT IDENTIFICATION 

In this Section, the ensemble-based fuzzy FCM is applied to the classification of transients 

in the feedwater system of a BWR. Fig. 3 shows a sketch of the system. Seven fault classes F1-

F7 are considered. A number of transients corresponding to these faults have been simulated by 

the HAMBO simulator of the Forsmark 3 BWR plant in Sweden [15]. The proposed faults are as 

follows:  

1. F1-F4 regard line 1 of the feedwater system.  

2. F5-F7 regard both lines. 
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Figure 3. A sketch of the feedwater system of the BWR [11] 

Twenty measured signal features have been used for the fault classification: Temperature of 

the high-pressure drain, Temperature after EA1 (high pressure preheater A1), Temperature of 

drain 4 before VB3, Temperature of condensate after EB2 train B, Temperature of condensate 

after EB2 train A, Temperature of condensate after EB3 train B, Water level tank TD1, Water 

level in EA2 train A (preheater A2), Water level in EB2 train B (preheater B2), Temperature of 

the feedwater before EA2 train A, Temperature of the feedwater after EA2 train A, Temperature 

of the feedwater before EB2 train B, Temperature feedwater after EB2 train B, Position level of 

the control valve for EA1, Position level of the control valve for EB1, Position level of the 

control valve before EA2, Position of the emergency drain valve EB2, Position of the valve for 

level I EB4, Position of the steam stop control valve.  

Five transients were simulated for each of the eight faults, considering different degrees of 

leakage and valve closures and with step and ramp changes. All transients start after 60 seconds 

of steady state operation. For each fault, three transients corresponding to step changes have been 

considered since they lead to an early variation of the measured variables. The data relative to the 

selected twenty signals were recorded with a sampling frequency of 1 Hz. With the goal of early 

fault diagnosis, only the data of the first 220 seconds after the beginning of the transients have 

been considered. The obtained dataset contains 4641 patterns of 7 different classes with 20 

features. Ten data subsets each one made of 4177 patterns have been bagged from this dataset 

and used to train 10 FCM classifiers, as explained in Section 2. The performance of classification 

obtained by the bagging ensemble in a 10-fold cross-validation scheme turns out to be 

0.973 0.013 . 

In order to investigate the confidence of the algorithm in the classification of the test 

patterns, the results achieved testing a single fold during the cross-validation process are 

analyzed. In the considered case, 455 patterns out of the total 464 test patterns have been 

correctly classified by the algorithm. Equation 2 provides the degrees of confidence in the 
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assignment of each test pattern to each of the seven classes. Notice, however, that the most 

interesting information regards the confidence in the assignment of the test pattern to the class 

with the highest number of votes, i.e. the class actually assigned by the ensemble system 

according to the majority voting rule adopted. In this respect, Fig. 4 reports the distribution of the 

confidence values (equation 2) assigned to the class to which each of the 464 test patterns has 

been assigned. 

 

Figure 4. Distribution of the confidence assigned to the class with the highest number of votes. All the 

patterns in the last bin [0.9-1] are actually assigned with a confidence greater than 0.97. 

 

Notice that 96.55% of all the test patterns are assigned to a class with a confidence greater 

than 0.97, indicating a very high degree of confidence in the classification of a great fraction of 

the test patterns. Table I shows that these high degrees of confidence are justified since the 

performance in the classification of these 448 patterns is very high (0.987). 

 

Confidence range (0.4, 0.5] (0.5, 0.6] (0.6,0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1] 

Number of patterns 3 0 7 0 6 448 

Performance 0.667  1.000  0.667 0.987 

 

Furthermore, notice that the three patterns assigned to a class with a confidence lower than 

0.5 are all characterized by a tie between two classes in the votes assigned by the ten classifiers 

of the ensemble (Table II). Although the majority voting rule assigns the three patterns to a class 

randomly chosen between the two classes with the highest number of votes, each of these 

patterns is actually assigned to two classes with the same confidence of 0.492. It is interesting to 

observe that there are globally six classes with associated confidence close to 0.5 (class 2 and 7 

for patterns 25 and 159, class 6 and 7 for pattern 144) and that out of these six assignments, three 

Table I: Number of patterns classified with a confidence value in the range indicated in the 

first row, and performance in the classification of the corresponding patterns. 
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are correct (patterns 25 and 159 are of class 2 and pattern 144 is of class 7). Thus, a 50% of all 

class assignments with confidence close to 0.5 are correct.  

 

Pattern 
Number of votes (confidence in the assignment) Assigned 

Class 

True 

Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

25 
0  

(0.003) 

5 

(0.492) 

0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

5 

(0.492) 
2 2 

144 
0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

5 

(0.492) 

5 

(0.492) 
6 7 

159 
0  

(0.003) 

5 

(0.492) 

0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

0 

(0.003) 

5 

(0.492) 
2 2 

 

Finally, Table III reports the number of votes obtained by the classes for those patterns 

classified with a confidence between 0.8 and 0.9. In this case there are two errors. 

 

Table III. Number of votes assigned by the 10 classifiers of the ensemble to the patterns 

associated to a confidence between 0.8 and 0.9. The patterns misclassified by the ensemble 

are reported in red. 

Pattern 
Number of votes (confidence in the assignment) Assigned 

class 

True 

Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

42 
0  

(0.002) 

4 

(0.118) 

0 

(0.002) 

0 

(0.002) 

0 

(0.002) 

0 

(0.002) 

6 

(0.871) 
7 2 

231 
0  

(0.002) 

0  

(0.002) 

0 

(0.002) 

0 

(0.002) 

0 

(0.002) 

4 

(0.118) 

6 

(0.871) 
7 7 

274 
0  

(0.002) 

0  

(0.002) 

0 

(0.002) 

0 

(0.002) 

0 

(0.002) 

6 

(0.871) 

4 

(0.118) 
6 6 

326 
0  

(0.002) 

0  

(0.002) 

0 

(0.002) 

0 

(0.002) 

0 

(0.002) 

6 

(0.871) 

4 

(0.118) 
6 6 

443 
0 

(0.002) 

0  

(0.002) 

0 

(0.002) 

0 

(0.002) 

0 

(0.002) 

6 

(0.871) 

4 

(0.118) 
6 7 

271 
0 

(0.006) 

1 

(0.016) 

5 

(0.879) 

0 

(0.006) 

0 

(0.006) 

2 

(0.044) 

2 

(0.044) 
3 3 

 

5 CONCLUSIONS  

This work proposes a method for the estimation of the confidence in the identification of 

nuclear transients by a bagged ensemble of FCM classifiers. The confidence in the final 

classification is obtained by estimating the Bayesian posterior probability of the class by a 

softmax approach applied to the outcomes of the ensemble classifiers. 

Table II. Number of votes assigned by the 10 classifiers of the ensemble to the three 

patterns classified with a confidence of 0.49. The patterns misclassified by the ensemble are 

reported in red. 
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The application of the proposed method to the classification of nuclear transients in the 

feedwater system of a BWR nuclear power plant proves effective in achieving a reliable 

estimation of the confidence in the classification. In particular, very few patterns classified with 

high confidence values are misclassified, whereas, as expected, low classification performances 

are obtained when considering the few patterns classified with low confidence values. 
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