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ABSTRACT 

The present work investigates the possibility of building a condition monitoring model by 

splitting the usually very large number of signals measured by the sensors into subgroups and 

building a specialized model for each subgroup. Different criteria are considered for selecting the 

signal groups, such as the location of the measurements (i.e., signals measured in the same area of 

the plant belong to the same group) and their correlation (i.e., correlated signals are grouped 

together). 

A real case study concerning 48 signals selected between those used to monitor the reactor 

coolant pump of a Pressurized Water Reactor (PWR) is considered in order to verify the 

monitoring performance of different grouping criteria. Performance metrics measuring accuracy, 

robustness and spill-over effect have been considered in the evaluation. 

Key Words: Condition Monitoring, Empirical Modeling, Power Plants, Safety Critical 

Nuclear Instrumentation, Autoassociative models. 

1 INTRODUCTION 

For monitoring the condition of a component, a (typically empirical) model of its behavior 

in normal conditions is built; during operation, the behavior of the component actually observed 

is compared with that reconstructed by the model: a deviation between the observed and 

reconstructed behaviors reveals the presence of an abnormal condition [1]. 

In practical industrial implementations, the performance of a single model monitoring all the 

signals measured by the sensors, usually a very large number, may not be satisfactory [2]. At 

least two reasons call for a reduction in the number of input signals to an empirical model [3]. 

First of all, irrelevant, non informative signals for the reconstruction of a given signal result in a 



Baraldi et al. 
 

 Page 2 of 13 

 

model which is not robust [3]–[6]. Second, when the model handles many signals, a large 

number of observation data is required to properly span the high-dimensional signal space for 

accurate multivariable interpolation [3]. 

The present work investigates the possibility of splitting the signals into subgroups and then 

building a specialized model for each subgroup. This involves two main ingredients: a base 

empirical model for reconstructing the signal values, and a procedure for grouping the signals. 

The empirical modeling technique adopted in the present work is the Auto-Associative Kernel 

Regression (AAKR) [7]. As for the grouping, different criteria can be considered to subdivide the 

set of signals into subgroups, e.g. the location of the measurement (i.e., signals measured in the 

same area of the plant are put in the same group), the correlation (i.e., the groups are formed by 

correlated signals), the time-dependency (i.e., signals showing different behaviors in time are 

grouped together), the physical homogeneity (i.e., groups are made only by temperature signals, 

only by pressure signals, etc.) and the functional homogeneity (i.e., groups are made of signals 

measured in different subsystems having the same function). 

A preliminary analysis has identified: 

1. the location of the measurements (i.e., signals measured in the same area of the plant 

belong to the same group) – “location” 

2. signal correlation (i.e., correlated signals are grouped together) – “correlation” 

as the two best performing criteria for grouping the signals [8]. 

In this paper, these two grouping criteria are tested on a real case study concerning 48 

signals selected between those used to monitor the reactor coolant pump of a Pressurized Water 

Reactor (PWR). The monitoring performances obtained by the two different grouping criteria are 

compared against the performances obtained by developing a single model for monitoring all the 

signals. The comparison is made with respect to performance metrics that measure i) the 

accuracy, i.e. the ability of the overall model to correctly and accurately reconstruct the signal 

values when the plant is in normal operation; ii) the robustness, i.e. the overall model ability to 

reconstruct the signal values in case of abnormal operation and consequent anomalous behavior 

of some monitored signals [9], iii) the spill-over effect, i.e. the overall model ability to correctly 

reconstruct a signal in case of a process deviation that leads to anomalous behavior of other plant 

signals [9]. 

2 CONDITION MONITORING 

Figure 1 shows a typical scheme of condition monitoring of a component. Sensor 

measurements
obsx


 are sent to an auto-associative empirical model of the component behavior in 

normal condition (nc). Thus, the model provides in output the values expected in case of normal 

condition, ncx

ˆ , of the input signals. A deviation between the measured 

obsx


 nd reconstructed 

ncx

ˆ  values in one or more signals reveals the presence of faults, in equipments or instruments 

[1]. 

In other words, in case of normal condition, the measured value 
ncobsobs xx 


 should be very 

similar to the model reconstructions ncx

ˆ , whereas in case of abnormal condition (ac) the model 
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still reconstructs 
ncx

ˆ , which differs from the measured values

acobsobs xx 


. Notice that one 

usually does not know whether the component is working in normal or abnormal conditions, i.e. 

if ncobsobs xx 


 or acobsobs xx 


, whereas, by observing the residuals 
nc

obs xxr

ˆ , it is possible 

to detect the component condition. In this respect, several methods of analysis of the residuals r


 

for fault detection exist, e.g. the Sequential Probability Ratio Test (SPRT) [10]. 

 

 

2.1 Auto-Associative Kernel Regression (AAKR) method 

The model considered in this work for reconstructing the component behavior in normal 

condition is based on the AAKR method [7]. AAKR is an empirical modeling technique that uses 

historical observations of the signals taken during normal plant operation. The basic idea of the 

method is to reconstruct the signal values in case of normal condition, 
ncx

ˆ , given a current signal 

measurement vector, ))(),...,1(( qxxx obsobsobs 


, as a weighted sum of the observations. 

3 CONDITION MONITORING PERFORMANCE METRICS 

In order to evaluate the performance of a condition monitoring model, the following criteria 

should be considered: 

1. The accuracy, i.e. the ability of the model to correctly and accurately reconstruct the 

signal values when the plant is in normal operation. An accurate condition monitoring 

model allows to reduce the number of false alarms, i.e. detections of faulty behaviors 

when no faulty conditions are actually occurring. 

2. The robustness, i.e. the model ability to reconstruct the values of the signals of interest in 

abnormal operation when some monitored signals behave anomalously. In abnormal 

plant conditions, a robust model reconstructs the value of a plant signal as if the plant 

were in normal operation: then, the differences between the measured and the 

reconstructed signal values can easily identify the abnormal condition. 

3. The spillover effect; it measures the effect that the anomalous behavior of a monitored 

signal in abnormal operation has on the reconstruction of the other signals. 

Figure 1. Condition monitoring scheme 
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3.1 Accuracy 

Under normal plant behavior, the accuracy metric is typically defined as the mean square 

error between the model reconstruction and the signal measured values. Let nctestX   be a matrix 

of signal measurements different from those in ncobsX  , with ),( jkX nctest  indicating the true 

value of the j-th signal, j=1,…,q, of the k-th test pattern, k=1,…, testN  and ),(ˆ jkX test

nc
 its 

reconstruction provided by the condition monitoring model; then, the mean square error with 

respect to signal j is [9]: 

 
test

N

k

nctest

nc

nctest

nc

N

jkXjkX

jMSE

test




 

 1

2)),(),((

)(



 (1) 

A global accuracy measure that takes into account all the monitored signals and test patterns 

is defined by: 

 
q

jMSE

q

N

jkXjkX

MSE

q

j

q

j

N

k
test

nctest

nc

nctest

nc

test


 








11 1

2

)(
)),(),((



 (2) 

Notice that, although the metric is named accuracy, it is actually a measure of error and, 

thus, a low value is desired. 

3.2 Robustness 

The purpose of condition monitoring is to identify abnormal conditions; performance 

metrics must then be introduced to quantify the ability of the model in reconstructing the signal 

values corresponding to normal plant operation for computing the residuals from the actual 

values, and enable fault detection. In this respect, real observed data measured by the sensors 

while abnormal plant conditions occur are usually not available; then simulation is used, where 

deviations are added on the signals measured during normal plant operation. Let 
)(iactestX 
 be a 

matrix of test patterns whose values of the i-th signal have been disturbed with deviations, with 

),()( jkX iactest
 indicating the value of the j-th signal of the k-th test pattern, k=1,…,

testN , and 

),(ˆ )( jkX iactest

nc

  its reconstruction provided by the condition monitoring model which is expected 

to be the signal value in normal condition ),( jkX nctest
. 

Two performance metrics measuring the model robustness are here considered: 

1) the auto-sensitivity of the model to a disturbance applied on signal i [9]: 

 











testN

k
nctestiactest

nctest

nc

iactest

nc

test

auto

iac
ikXikX

ikXikX

N
iS

1
)(

)(

)(
),(),(

),(ˆ),(ˆ1
)(  (3) 

This metric measures the ability of the model to provide the same reconstructions in the two 

cases of disturbed or undisturbed signal i. In this respect, notice that a model characterized by a 
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very low accuracy (high MSE) and very high robustness (small )()( iSauto

iac
) is not satisfactory for 

condition monitoring since it still provides signal reconstruction very different from signal values 

in normal plant operation. 

2) the accuracy in the reconstruction of the disturbed signal i: 

 


 

testN

k

nctestiactest

nctest

auto

iac ikXikX
N

iA
1

2)(

)( )),(),(ˆ(
1

)(  (4) 

This metric measures the mismatch between signal reconstructions and signal values in 

normal plant operation. However, since it does not consider neither the difference between the 

reconstructions in the cases of disturbed and undisturbed signals, nor the magnitude of the signal 

deviation ( ),(),()( ikXikX nctestiactest   ), it cannot be directly interpreted as a measure of model 

robustness. 

Again, these two metrics actually measure errors and, thus, low values are desired. 

The global robustness measures auto

acS  and auto

acA  have been obtained by applying a 

disturbance to all the signals, computing the robustness )()( iSauto

iac
 and )()( iAauto

iac
 and taking, 

respectively, the mean values: 

 
q

iS

S

q

i

auto

iac
auto

ac


 1

)( )(

 (5) 

 
q

iA

A

q

i

auto

iac

auto

ac


 1

)( )(

 (6) 

3.3 Spill-over effect 

In case of anomalous behavior of some monitored signals because of some plant faults, the 

spill-over effect can lead to incorrect model reconstructions of other plant signals. In order to 

quantify this effect, two metrics which consider the model reconstruction )(ˆ iactest

ncX   of the 

artificially disturbed dataset 
)(iactestX 
 are considered: 

1) the cross-sensitivity of signal j to a disturbance on signal i [9]: 

 











testN

k
nctestiactest

nctest

nc

iactest

nc

test

cross

iac
ikXikX

jkXjkX

N
jS

1
)(

)(

)(
),(),(

),(ˆ),(ˆ1
)(  (7) 

2) the accuracy in the reconstruction of an undisturbed signal j when the i-th signal is 

disturbed: 
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 


 

testN

k

nctestiactest

nctest

auto

iac jkXjkX
N

jA
1

2)(
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Also these metrics actually measure errors and, thus, low values are desired. 

Global performance measures of the spill-over effect are: 

i) The mean spill-over effect of a disturbance applied on signal i over all the other 

undisturbed signals: 

 
1

),(),(

),(ˆ),(ˆ1

;1 1
)(

)(

)(









 
 





q

ikXikX

jkXjkX

N
S

q

ijj

N

k
nctestiactest

nctest

nc

iactest

nc
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 (9) 
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 (10) 

ii) The mean values of 
cross

iacS )(  and 
cross

iacA )(  considering disturbances applied on all the signals: 

 
q

S

S

q

i

cross

iac
cross


 1

)(

 (11) 

 
q

A

A

q

i

cross

iac
cross


 1

)(

 (12) 

3.4 Cross-validation procedure for the estimation of the performance metrics 

In order to accurately estimate the values of the performance metrics on test sets of signals 

values not previously used in the model development, a cross-validation procedure can be 

adopted [11-13]. In particular, in the application that follows the so called “K-fold” cross-

validation error estimate is used to compare the performances [14]. The original dataset is 

randomly partitioned into K = 10 blocks of equal size. One of these blocks is used as validation 

data subset for the evaluation of the performance metrics of interest, and the remaining 9 blocks 

are combined together to constitute the training data subset. The cross-validation process is then 

repeated 10 times (the 10-folds), each time using a different block as validation set. 

4 APPLICATION 

A real case study concerning 48 signals used to monitor the Reactor Coolant Pump (RCP) of 

a French Pressurized Water Reactor (PWR) is considered. The signals values have been 

measured every hour for a period of 11 consecutive months and concern four RCPs, each one on 

a line of a primary circuit. 
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All observed measures containing at least a signal value outside the interval µ ± 3σ, with µ 

indicating the signal mean and σ the signal standard deviation, have been eliminated from the 

dataset as outliers. This has been done because empirical models have been proven to achieve 

superior performances if patterns characterized by abnormal values (outliers) are eliminated from 

the training dataset. 

4.1 Groupings 

The 48 signals have been re-organized in groups on the basis of the two following criteria: 

1. location of the measurement (i.e., signals measured in the same area of the plant belong 

to the same group): this group has led to the identification of 5 groups; 

2. correlation (i.e., groups containing correlated signals together). Signals with an absolute 

value of the correlation coefficient larger than 0.8 are put in the same group: in other 

words, each signal in a group has at least a correlation larger than 0.8 with one of the 

other signals in the group (notice that this means that in a group there can be pairs of 

signals with correlation lower than 0.8); applying this procedure, 5 groups have been 

identified, whereas the remaining signals, characterized by a correlation coefficient 

lower than 0.8 with all other signals, have been put together in a sixth group of 

uncorrelated signals. 

For each group of signals, an AAKR model has been developed. 

The performances obtained by the models based on the two different grouping criteria have 

been compared among them and against the performance obtained by a single model built on all 

48 signals. 

The optimal value of the bandwidth h in the AAKR has been identified following a trial and 

error procedure. In particular, at each cross validation, the training set has been divided into two 

subsets, one used to train the AAKR model, the other to identify the optimal value of h on a 

dataset different from that used for the performance evaluation. 

4.2 Condition monitoring performance 

4.2.1 Accuracy 

The global accuracies achieved by the different grouping criteria in terms of MSE (Eq. 1) are 

reported in Table I. 

 

Table I. Mean and standard deviation of the overall grouping criteria performance in a 10-

folds cross-validation (first row) and ranking of the grouping criteria (second row) 

 All Location Correlation 

MSE 0.0659±0.0033 0.0227±0.0018 0.0169±0.008 
Ranking 3

rd
  2

nd
  1

st
  

 

First of all, notice that a single-group model formed by all signals is remarkably less 

accurate than the models based on groups formed by the two considered grouping criteria, as 

expected. The overall best grouping criteria is correlation, although the 10 signals of the 
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correlation group formed by the uncorrelated signals are individually better reconstructed by the 

location grouping criterion (Table II). 

 

Table II. Ranking in the reconstruction of the individual signals. The number of times in 

which the grouping criterion results the best (1
st
), the second best (2

nd
), the worst (3

rd
) in 

the reconstruction of a signal is reported 

 All Location Correlation 

1st  0 10 38 
2nd  5 33 10 
3rd  43 5 0 

 

The results confirm that accurate groups are formed by highly correlated signals. 

4.2.2 Robustness 

In order to measure the model robustness according to the two metrics auto

acS  and auto

acA  

introduced in Section 3.2, plant transients characterized by abnormal plant behavior have been 

simulated by adding a random noise to the signal measurements. In particular, it has been 

assumed that during a plant transient only one signal is altered with respect to its value in normal 

operation, and the related deviation has been taken proportional to a Gaussian noise with mean 

zero and standard deviation: 

 )(1.0)( iinoise    (13) 

with σ(i) indicating the standard deviation of the signal under normal plant behavior. 

Table III reports the two metrics auto

acS  and auto

acA  measuring the model robustness. 

 

Table III. Mean and standard deviation of the robustness performance metrics auto

acS  and 

auto

acA  in a 10-folds cross-validation (first row) and ranking of the grouping criteria (second 

row) 

 All Location Correlation 

auto

acS  0.1001 ± 0.0014 0.3493 ± 0.0026 0.3787 ± 0.0029 

Ranking 1
st
  2

nd
  3

rd
  

auto

acA  0.0663 ± 0.0032 0.0251 ± 0.0017 0.0195 ± 0.0008 

Ranking 3
rd

  2
nd

  1
st
  

 

The single group containing all 48 signals permits to achieve the best performance according 

to the auto

acS  metric, since it gives very similar reconstructions of signals independently of the 

application of noise to the signals. Furthermore, the single group containing all the signals gives 
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the best performance in the reconstruction of 43 of the 48 signals according to auto

acS  (Table IV). 

This is due to the fact that AAKR reconstruction is based on the distance of the test patterns from 

the training ones, computed in a high-dimensional space. Thus, the variation of one signal value 

leads to a small variation of the multidimensional distances, and consequently to very similar 

reconstructions in the cases of disturbed and undisturbed signals. 

 

Table IV. Ranking in the )()( iSauto

iac
. The number of times in which the grouping criterion 

results the best (1
st
), the second best (2

nd
), the worst (3

rd
) in the )()( iSauto

iac
 is reported 

 All Location Correlation 

1st  43 1 4 
2nd  5 23 20 
3rd  0 24 24 

 

However, since the high value of MSE indicates that the single group is not accurate in the 

signal reconstruction, the low value of auto

acS  is more related to the non satisfactory reconstruction 

of the signals than to its ability in monitoring the plant in case of anomalies. 

In Tables 4 and 5, the ranking of )()( iSauto

iac
 and )()( iAauto

iac
 for each grouping criterion is 

reported. Notice that the values of auto

acA  are very similar to the values of MSE reported in Table 

1. This can be interpreted by observing that the difference between the reconstructions in the 

cases of disturbed and undisturbed signals ),(ˆ )( ikX iactest

nc

  and ),(ˆ ikX nctest  tends to be small 

leading to similar values in Eq. 5 and 8 defining the two metrics. 

Although the correlation grouping seems globally more robust than the location grouping, 

there are 14 signals for which )()( iAauto

iac
 is more satisfactory for the location grouping (Table V). It 

is interesting to observe that 8 of these 14 signals belong to groups of the correlation grouping 

formed by only 4 signals. These results show that two important factors to obtain robust 

reconstructions are the correlation of the signals in the group and the group size: the best 

performance are obtained by large groups of highly correlated signals. 

 

Table V. Ranking in the )()( iAauto

iac
 of the individual signals. The number of times in which 

the grouping criterion results the best (1
st
), the second best (2

nd
), the worst (3

rd
) in the 

)()( iAauto

iac
 is reported 

 All Location Correlation 

1st  0 14 34 
2nd  10 29 9 
3rd  38 5 5 
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4.2.3 Spill-over effect 

The two performance metrics 
cross

acS  and 
cross

acA  have been evaluated in order to verify the 

spill-over effect for the different grouping criteria. Table VI reports the performance metrics with 

respect to a noise applied to each signal, and considering its effect on all the other signals. 

 

Table VI. Mean and standard deviation of the spill-over performance metrics 
cross

acS , 
cross

acA  

in a 10-folds cross-validation (first row) and ranking of the grouping criteria (second row) 

 All Location Correlation 

cross

acS  0.0208 ± 0.0005 0.0154 ± 0.0003 0.0183 ± 0.0003 

Ranking 3
rd

  1
st
  2

nd
  

cross

acA  0.0659 ± 0.0033 0.0227 ± 0.0018 0.0170 ± 0.0008 

Ranking 3
rd

  2
nd

  1
st
  

 

In Tables VII and VIII the ranking of )()( jS
cross

iac  and )()( jA
cross

iac  for each grouping criterion is 

reported. 

 

Table VII. Ranking in the )()( jS
cross

iac  of the individual signals. The number of times in which 

the grouping criterion results the best (1
st
), the second best (2

nd
), the worst (3

rd
) in the 

)()( jS
cross

iac  is reported 

 All Location Correlation 

1st  16 21 11 
2nd  8 23 17 
3rd  24 4 20 

 

Table VIII. Ranking in the )()( jA
cross

iac  of the individual signals. The number of times in which 

the grouping criterion results the best (1
st
), the second best (2

nd
), the worst (3

rd
) in the 

)()( jA
cross

iac  is reported 

 All Location Correlation 

1st  0 10 38 
2nd  0 38 10 
3rd  48 0 0 

 

Considering the 
cross

acS  metric, the group formed by all 48 signals is the worst performing 

since it contains in the same group the disturbed signal and the remaining signals on which the 

effects of the disturbance are evaluated. On the other side, if a grouping criterion is applied, the 
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signals belong to different groups and thus a deviation applied to a signal influences only the 

reconstruction of the signals in the same group and not of those in other groups. For example, a 

noise applied to a generic signal influences the reconstruction of all the 47 signals considered for 

the evaluation of the two metrics when the group formed by all 48 signals is considered, whereas 

it influences the reconstruction of only the signals in the same group in the cases of the 

correlation and location groups. 

It can be also noticed that the biggest group, after that with all signals, comes out from 

correlation grouping, and its performance in terms of 
cross

acS  results to be the worst. In fact, since 

the value of )()( jS
cross

iac  is equal to 0 for all those signals which do not belong to the group where 

the i-th abnormal signal is, the smaller is a group, the smaller is the value of 
cross

acS . Furthermore, 

the presence of a big group formed by many signals (22) in the correlation grouping renders its 
cross

acS  performance lower than that of the location grouping, which is formed by smaller groups. 

With respect to the 
cross

acA , notice that it follows the behavior of the accuracy metric MSE. In 

the case of big groups, since the AAKR reconstruction is based on the distance between the test 

pattern and the training ones, the variation of one signal value in a high dimensional space leads 

to a small variation of the multidimensional distances, and consequently to very similar 

reconstructions in the cases of disturbed and undisturbed signals: 

 jkjkXjkX test

nc

iactest

nc ,),,(ˆ),(ˆ )(   (14) 

leading to: 

 

)(

)),(),(()),(),((

)( )(

1

2)(

1

2

jA
N

jkXjkX

N

jkXjkX

jMSE cross

iactest

N

k

nctestiactest

nc

test

N

k

nctestnctest

nc

testtest





















(15) 

Considering groups formed by few signals, the reconstruction of signals not belonging to the 

group of the disturbed signal i is exactly equal to the reconstruction of the signals when no 

anomaly is applied: 

 ),(ˆ),(ˆ )( jkXjkX test

nc

iactest

nc   (16) 

and thus: 

 )()()( jMSEjAcross

iac   (17) 

while there are differences in the reconstruction only for those signals belonging to the 

group of the abnormal signal i: 

 ),(ˆ),(ˆ )( jkXjkX test

nc

iactest

nc   (18) 
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and thus 

 )()()( jMSEjAcross

iac   (19) 

Nevertheless, since 
cross

acA  is the mean value of )()( jAcross

iac
, the contribution of the few signals 

belonging to the group of signal i is hidden by the contribution of the many signals not belonging 

to the same group of signal i, and thus: 

 MSEA
cross

ac   (20) 

The expected conclusion from the analysis of cross-sensitivity is that there is a clear 

advantage in using small groups, since the presence of an anomaly affecting a signal of a group 

tends to influence only the reconstruction of the few signals in the same group. 

5 CONCLUSIONS  

Two different signal grouping criteria for the condition monitoring of a Reactor Coolant 

Pump have been considered in this work. The comparison of the performances of the models 

built on the groups thereby identified has been made with respect to performance metrics 

measuring the accuracy, i.e. the ability of the model to correctly and accurately reconstruct the 

signal values when the plant is under normal operation, and the robustness, i.e. the model ability 

to reconstruct the signal values in case of abnormal operation and consequent anomalous 

behavior of some monitored signals. 

The most accurate reconstructions have been obtained by grouping the signals according to 

their correlation, i.e. by considering groups formed by highly correlated signals. The main 

drawback of this grouping criterion is the presence of a group of signals with low correlation 

among each other, which results in low accuracy on these signals. 

With respect to the robustness of the condition monitoring model, the results have shown 

that the larger is the number of signals in a group, the more similar are the model reconstructions 

in case of disturbed and undisturbed signals. However, it has been shown that groups formed by 

many signals, as the group formed by all 48 signals, tend to be less accurate in the reconstruction 

of the undisturbed signals. 

Finally, the evaluation of the spill-over effect leads to the conclusion that there is an 

advantage in using small groups, since the presence of an anomaly affecting a signal of a group 

tends to influence only the reconstruction of the few signals in the same group. 

The results obtained in this work have shown that although the correlation grouping criterion 

permits to globally achieve the most satisfactory results in terms of accuracy, robustness and 

spill-over effect, there are few plant signals better reconstructed by other grouping criteria. This 

stimulates the research on other grouping techniques. 
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