
HAL Id: hal-00721025
https://hal.science/hal-00721025

Submitted on 26 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harmony search to solve the container storage problem
with different container types

Imen Ayachi, Ryan Kammarti, Pierre Borne, Mekki Ksouri

To cite this version:
Imen Ayachi, Ryan Kammarti, Pierre Borne, Mekki Ksouri. Harmony search to solve the container
storage problem with different container types. International Journal of Computer Applications, 2012,
48 (22), pp.26-32. �hal-00721025�

https://hal.science/hal-00721025
https://hal.archives-ouvertes.fr

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

26

Harmony search to solve the container storage problem

with different container types

I. Ayachi
LACS, ENIT, Tunis-
Belvédère Tunisie

R. Kammarti
LACS, ENIT, Tunis-

Belvédère Tunisie

M.Ksouri
LACS, ENIT, Tunis-Belvédère

Tunisie,

P. Borne

LAGIS, ECL, Villeneuve

d’Ascq, France

ABSTRACT

This paper presents an adaptation of the harmony search

algorithm to solve the storage allocation problem for inbound

and outbound containers. This problem is studied considering

multiple container type (regular, open side, open top, tank,

empty and refrigerated) which lets the situation more

complicated, as various storage constraints appeared. The

objective is to find an optimal container arrangement which

respects their departure dates, and minimize the re-handle

operations of containers.

The performance of the proposed approach is verified

comparing to the results generated by genetic algorithm and

LIFO algorithm.

General Terms

Container storage problem, metaheuristics.

Keywords

Harmony search, Genetic algorithm, transport scheduling,

metaheuristic, optimization, container storage

1. INTRODUCTION
The container storage space allocation is a critical decision in

container terminals. It influences the productivity of the

unloading process, either for inbound or outbound containers.

It’s a complex operation since it is highly inter-related with

the routing of yard crane and truck [17].

This paper focuses on optimizing the way of allocating

inbound and outbound containers in storage locations, known

as the storage space allocation problem (SSAP). This problem

is classified as a three dimensions bin-packing problem where

containers are the items and storage spaces in the port

represent the used bins. It falls into the category of NP hard

problems. Generally, this problem is studied considering a

single container type. However, this does not stand the

problem under its real-life statement as there are multiple

container types that should be considered, (refrigerated, open

side, empty, dry, open top and tank). This lets the problem

more complicated, as various constraints appeared, related to

the container type’s requirements (e.g. refrigerated containers

must be allocated to the blocks equipped by the power point,

on an open top container, we cannot place a container at the

top, tank container must be placed on each other, etc.)

Making a storage space allocation decision for different types

of containers is too complicated especially for large scale

instances and it is hard, even impossible, to solve it optimally.

Therefore, most of the proposed solution approaches are

based on metaheuristics.

A metaheuristic is a computational method seeking for a good

solution in a reasonable computation time without being able

to guaranty optimality. Some of these approaches are based on

the gradient method, which presents some limits such as the

fact that they are often trapped in a local optimal especially

for complex optimization problems having several local

optimums.

Due to this restriction, other metaheuristics are developed

based on simulation, to solve complex problems. They imitate

natural phenomena such as the genetic algorithm inspired by

biological evolutionary process [8], ant colony [5], the

harmony search [7], firefly algorithm [21], cuckoo search

[20].

There is a large number of metaheuristics and it is difficult to

find the appropriate one for a specific problem, especially in

the absence of benchmarks. One way to face this dilemma is

to use multiple approaches, compare them and select the one

generating the best result.

In this paper a Harmony Search (HS) algorithm is proposed to

solve the problem of storage space allocation of containers

with different types. To evaluate the performance of this

method, we compare his results with those generated by the

genetic algorithm described in [1] and the Last In First Out

algorithm.

Harmony search algorithm was proposed by [7]. It was

successfully applied to solve various engineering optimization

problems such as vehicle routing [6], reliability [23],

structural optimization [15] and function optimisation [18]

The rest of this paper is organized as follows: In section 2, a

literature review for the container storage problem is

presented. The mathematical formulation of the problem is

given, in section 3. Next in section

 4, the Harmony Search algorithm is described. Section 5 is

devoted to the description of the Harmony search adaptation

to the SSAP. Then, some experiments and results are

presented and discussed, in section 6. Section 7 included a

comparative study of the proposed approach with the genetic

algorithm and the Last in First out (LIFO). Finally, section 8

covers our conclusion.

2. LITERATURE REVIEW
The container storage space allocation is the most difficult

task in container terminals since inbound and outbound

containers are stacked together in the same storage area. After

arrival at the terminal, each container picked up by

transportation equipment and affected to one of the storage

blocks. When the designated ship arrived, containers are

unloaded from yard block, transported to the berth and loaded

onto the vessel. The chain of operations for import containers

are performed in the reverse order [10].

The container storage space allocation problem (SSAP)

consists on affecting each container to the most suitable place

in the storage area. The containers are often arranged with the

objective of reducing the number of handling operations

required later on to load/unload containers.

http://en.wikipedia.org/wiki/Firefly_algorithm
http://en.wikipedia.org/wiki/Cuckoo_search

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

27

In the literature, various papers were proposed, treating

different variants of the problem. Some of them will be

presented in this section.

Kim and Park [11] proposed a heuristic decision rule and a

sub-gradient optimization technique to solve the storage space

allocation for outbound containers. Their objective was to find

an arrangement of the containers that exploits efficiently the

storage space and loading operations.

Preston and Kozan [19] proposed a genetic algorithm to solve

the container location model at seaport terminals. Their

objective was to reduce the transfer and the handling time of

containers. This approach took the Brisbane port as a case

study and generated good results in comparison to the process

already used in this port.

Kim [12] presented a technique to estimate the rehandlings

number for the next pick-up and the total number of rehandles

to pick up all inbound containers in a bay.

Kim and Kim [13] proposed a cost model to estimate various

cost components related to the import container handling and

to determine subsequently the storage space and the number

of transfer cranes required.

Also, in [14], a prediction model of unloading containers

times and equipment utilization is presented.

Chen and col. [4] combined diverse meta-heuristics (tabu

search, simulated annealing and genetic algorithms) to solve

the port yard storage optimization problem. It aims to

minimize the space allocated to the cargo within a time

interval.

Lee and col. [16] developed a heuristic algorithm to solve the

yard truck scheduling and the storage allocation problems.

Their objective is to minimize the weighted sum of total delay

of requests and the cost of total travel time of yard trucks.

Zhang and col. [22] solved the (SSAP) using a rolling-horizon

approach. Both outbound and inbound containers are

considered .Their aim was to minimize the total transportation

distance of containers between blocks and vessel berthing

locations.

In [2], a harmony search algorithm is proposed to solve the

SSAP where a single container type was considered. Its aim

was to reduce the re-handle operations of containers. The

results were compared to a genetic algorithm previously

applied to the same problem in [9] and recorded good results.

Bazzazi and al. [3] extended the SSAP proposed in the

literature [22], where different containers types and sizes are

considered simultaneously. The authors proposed a genetic

algorithm to solve this problem and they supposed that the

allowable blocks to which a container type can be allocated

are known in advance.

Ayachi and col. [1] developed a genetic algorithm to solve the

problem of allocating containers of multiple types, in storage

spaces in the port. The results generated by the proposed

approach were compared to a Last in First out (LIFO)

algorithm.

In this paper, a harmony search is applied to solve the SSAP

considering multiple containers types (refrigerated, open side,

empty, dry, open top and tank).

3. PROBLEM FORMULATION
In this section, we detail our evolutionary approach by

presenting the adopted mathematical formulation based on the

following assumptions.

3.1 Assumptions
In this work we suppose that:

 Initially containers are unloaded from the vessel and

transmitted to storage area waiting for allocation in the

allowable places of the storage block.

 To unload a container, all containers above must be re-

handled.

 Each container has departure time.

 The initial state of storage blocks, available places, is

known and to be considered in the load planning.

 The containers are of different types (dry, open top, open

side, tank, empty and refrigerated).

 Containers have the same size

The storage area in the port is composed of several blocks

which can be equipped by a power point to store reefer

containers or regular blocks for the other container types.

Figure 1 shows an example of a storage area.

Fig 1. Storage area

3.2 Input parameters
Let’s consider the following variables:

 i : Container index, i = 1, …, Nc

 b : storage block index; b = 1, …, NBlock

 NBlock = Nstock_reg + Nstock_refrig : le nombre de blocks

disponibles

 Nstock_reg : the number of storage blocks for containers

don’t requiring a power point

 Nstock_refrig : the number of storage blocks for refrigerated

containers.

 Nc : the number of containers to stored.

 di : departure date of container i

 NcFloor (j,b) : the number containers in the floor j of the

block b

 n1 : Maximum containers number on the axis X

 n2 : Maximum containers number on the axis Y

 n3 : Maximum containers number on the axis Z

 NT : the number of container types

 Nc(T) : the number of containers of type T,

where :

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

28















containerreefer a sit' if 6
container tank a sit' if 5

container sideopen an sit' if 4
container open topan sit' if 3

containerempty an sit' if 2
containerdry a sit' if 1

T

 Ncmax: Maximum containers number, with Ncmax =

(Nstock_reg + Nstock_refrig) n1.n2.n3

3.3 Decision Variable
For this problem, Ci,t(x, y, z, b) designates the decision

variable.

otherwise0

(1) bblock at the z ,y x,

 position in the icontainer a is thereif 1

b)z,y,(x,C ti,










x [1,.., n1], y [1,.., n2], z [1,.., n3]

3.4 Mathematical formulation
The main objective of the studied problem is to optimize a

fitness function that aims to reduce the number of container

rehandlings and then minimize the ship stoppage time.

This function can be described as follows:

  
  

T blockN

1t

Nc(T)

1i
ti,

N

1b
ib,i (2) b)z,y,(x,C)(dmMin

Where:

 Mi,b (di) : the minimum number of container rehandles to

unload the container i which is in the storage block b. Mi,b

is equal to the number of container above the container i,

in the same stack and having a departure time greater than

di

Fig 2. The extraction of container B

3.5 Constraints
The model is subject to the following constraints:

][1..N b 1],-[1..n j

(3) b)1),((jNc b)(j,Nc

block3

floorfloor





[1..NT] t [1..Nc], i

(4) 0
Nc

1j

b)1,zy,(x,
NT

1r
C rj, - b) z, y, (x,C ti,









The constraint equations (3) and (4) ensure that a floor lower

level contains more containers than the one directly above.

4,3 t [1..Nc], i

(5) 1

1j

b)1,zy,(x,
NT

1r
C rj, - b) z, y, (x,C ti,









Nc

The constraint 5 enssures that an open top container or an

open side container can not have another container above.

[1..Nc] i

(6) 1
Nc

1j

NT

1r

b)z,y,m,(x

z-3n

1m
C rj, - b) z, y, (x,Ci,4












The constraint 6 indicates that there aren’t any containers at

the open side of container type 4 (open side container

)7(
Otherwise,0

reefer isblock theSi ,1
b)z,y,(x,

i,
C

6 





 The constraint 7 suggests that a reefer container must be

allocated to the blocks equipped by the power point.

 6 4, 3, 2, 1,r [1..Nc], i

(8) 1 b)1,zy,(x,
Nc

1j
C - b) z, y, (x,C

rj ,i,5






The constraint 8 indicates that tank containers must be placed

on each other

4. HARMONY SEARCH
The harmony search algorithm is developed to imitate the

musician behavior.

HS is based on the analogy with the music improvisations

process seeking for the best harmony. The harmony in music

is analogous to the optimization solution vector, and the ideal

harmony is analogous to optimal solution. The musical

harmony is improved practice after practice using the set of

the pitches played by each instrument. Also, the fitness

function is improved iteration by iteration using the values

assigned for decision variables. Figure 3 shows this analogy.

HS does not require initial values for the decision variables.

Additionally, it uses a stochastic random search based on the

harmony memory considering rate and the pitch adjusting rate

so that derivative information is unnecessary.

Compared to earlier meta-heuristic optimization algorithms,

the HS algorithm imposes fewer mathematical requirements.

So, it can be easily adopted for various types of engineering

optimization problems [15]

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

29

Fig 3. Analogy between musical improvisations and

optimization process [6]

The Harmony search algorithm has been successfully applied

to vehicle routing problem [6], hydrologic parameter

calibration [15] and to the Storage space allocation problem

[2]

The HS algorithm includes five steps: parameters

initialization, the harmony memory (HM) initialization, the

new harmony improvisation, the harmony memory update and

the check of termination criterion.

4.1 Parameters initialization
In this step, the optimization problem is specified:

Minimize (or Maximize) f (x); xi Xi, i = 1,2,..., N

Where:

 f(x) is an objective function

 x is the solution vector composed of decision variables

xi

 Xi is the set of possible values for each decision variable

 Xi = {xi (1), xi (2),..., xi (K)} for discrete variables

 N is the number of decision variables

 K is the number of possible value for each discrete

variable

The algorithm parameters are also specified during this step

such as:

 The harmony memory size (HMS) is the number of

solution in the memory

 The harmony memory considering rate (HMCR);

0≤ HMCR ≤1; his typical values range from 0.7 to 0.99

 The pitch adjustment rate (PAR) : 0≤ PAR ≤1; its

selected values range is from 0.1 to 0.5

 Improvisations number.

4.2 Harmony memory initialization
During this step, a harmony memory of size HMS, shown in

equation (9), is randomly generated. Each decision variable

(xi) randomly selects a value from its list (Xi). Then, their

fitness values are calculated.































)f(x x x... xx

)f(x x x... xx

)f(x x x... xx

)f(x x x... xx

HMSHMS

N

HMS

1-N

HMS

2

HMS

1

1-HMS1-HMS

N

1-HMS

1-N

1-HMS

2

1-HMS

1

22

N

2

1-N

2

2

2

1

11

N

1

1-N

1

2

1

1

 (9)

4.3 New harmony improvisation
The harmony memory is initially crammed; a new harmony

vector x’ = (x’1, x’2,.., x’N) is generated and compared to

existing solutions. It’s kept if it’s better than the worst

harmony.

x' is improvised using the following two rates:

 Harmony memory consideration rate

 Pitch adjustment rate.

The value for each decision variable is randomly chosen

using a harmony memory consideration rate (HMCR).

The value of is selected from the pitches previously stored

in HM for this decision variable with a probability HMCR.

While it is chosen from the set of all possible values for the

corresponding decision variable, with a probability (1-

HMCR).

 











HMCR)-(1 w.px

HMCR w.px ,...,x,xx
x

'

2
i

1
i

'
'

ii

HMS
ii

i
X

 (10)

While improvising the new harmony, each value chosen from

HM is examined to determine whether it should be pitch-

adjusted. This procedure uses the PAR parameter that sets the

rate of adjustment for the pitch chosen from the HM as

follows.













PAR)-(1HMCR w.px

 PARHMCR w.pbw*rand(()'
i

x
x

'

i

'

i (11)

The value of (1-PAR) sets the rate of doing nothing.

bw: arbitrary distance bandwidth and rand () is a random

number between 0 and 1.

4.4 Harmony memory update
The new solution is stored in the harmony memory if it’s

better than the worst of the existing solutions and it respects

all problem constraints.

Steps (4.3) and (4.4) are repeated while the termination

criterion (maximum number of improvisations) is not reached.

5. EVOLUTION PROCEDURE
In this section, the harmony search algorithm proposed is

detailed. An initial harmony memory of size HMS is created.

The decision variables Ci,t(x, y, z, b), represent the possible

locations for the containers according to the allocated storage

area.

Ci,t(x, y, z, b) used four dimensions structure representation.

These dimensions indicate respectively the container

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

30

coordinates in the plan (X, Y, Z) and the number of the

allocated block.

The figure 4 shows an example of solution representation

Fig 4. Example of solution

The initial harmony memory is randomly generated and every

stored solution must respect all problem constraints (equations

(3) to (8)).

After that, a new solution is improvised based on the process

outlined in section 4.3. This step will be repeated until the

termination criterion is satisfied.

Fig 5. Solution creation algorithm

6. EXPERIMENTAL RESULTS
In this section, experimental results are provided to study the

performance of the proposed approach. This algorithm stops

when the solution doesn’t improve after Niter iterations.

It is assumed that:

 n1, n2 and n3 will be defined by the user,

 The containers type NT, the number of each container type

Nc(T) and the storage blocks number (Nstock_refrig, Nstock_reg)

are defined by the user.

 HMCR= 0.95 and PAR = 0.1.

Departure dates of container are also indicated by the user.

6.1 The number of containers type influence

This part studied the influence of the containers type number

since it is an important factor in this problem. The algorithm

is executed for different values of NT and each time the best

fitness values of the first (Fi) and the last iterations (Ff) are

given. Also, the execution time (TExe) is indicated. The

population size was set to 50, the stopping criteria (Niter) to

20, n1 = n2 = n3= 3, Nstock_reg = 4 and Nstock_refrig = 4.

The simulation results are illustrated in table 1.

According to these results, it is clear that higher is the number

of container type important is the execution time and worse is

the fitness value. It’s evident since the complexity of the

problem is directly related to container type number and their

storage constraints.

Table 1. Container type influence

NT Nc(T) Fi Ff TExe (s)

1 Nc(1)=10, Nc(2)=10 2,69 0 3

2
Nc(1)=10, Nc(2)=10

Nc(3)=8
4,77 0 4,49

3
Nc(1)=10, Nc(2)=10

Nc(3)=8, Nc(4)=8
28,81 0 7,34

4

Nc(1)=10, Nc(2)=10

Nc(3)=8, Nc(4)=8

Nc(5)=15

32,84 0 14,21

5

Nc(1)=10 , Nc(2)=10

Nc(3)=8, Nc(4)=8

Nc(5)=15, Nc(6)=10

62,71 0 22 ,54

6.2 The harmony memory size influence

In order to examine the importance of the harmony memory

size, we fixed the following parameters:

 Nc(T) = 5 (dry, empty, open top, tank, reefer) with

Nc(1)= 20, Nc(2)= 20 Nc(3)=15, Nc(5)= 10,

Nc(6)=20.

 Niter = 50

 n1 = n2 = n3= 3

 Nstock_reg = 3 , Nstock_refrig = 3

Table 2. Population size influence

HMS Fi Ff T Exe (s)

10 31,61 7,81 7,96

20 34,54 6,52 8,64

40 29,34 6,31 10,21

60 27,11 4,78 11,03

80 22,84 4,45 15,02

100 28,19 3,24 18,02

The population size (HMS) is varied. His influence on the

fitness value is presented in the table 2.

Begin creat_solution

Repeat

 For j=0 to NBlock -1

 For x=0 to n1-1

 For y=0 to n2-1

 For z=0 to n3-1

 Randomly selected a container type (t)

 Randomly selected a container i of this

 type from ones not already stored

 If the constraint of this type is satisfied

 Then

 Ci,t (x, y, z, b) = 1

 Update the container stored list

 End

 End

 End

 End

 End

Until all containers are stored

End

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

31

The results indicate that higher is the harmony memory size,

better is the value of the fitness function.

7. COMPARATIVE STUDY

In order to evaluate the results generated by the harmony

search approach, a comparative study with a LIFO (Last In

First Out) algorithm and the genetic algorithm (GA) is

presented.

The LIFO algorithm consists on storing in first time the last

placed container in a stack. This principle is applied in most

port container terminals, where a manual planning based on

experience and rules to assign each container to a certain

storage block.

The Genetic algorithm was proposed to solve the same

problem (SSAP for multiple container type) by Ayachi et al.,

[1]

This GA can be described as follows: Initially, a first

generation is randomly generated. Then, a two-point

crossover operator is performed to two parent selected using

the roulette-wheel method. The mutation operator consists of

permuting two randomly selected containers having the same

type.

Five studied cases are defined by varying the containers

numbers and types, to verify the performance of the three

approaches. Table 3 described these instances.

Table 3. Different studied cases description

Instance N° NT Nc(T)

1 2 Nc(1)=50, Nc(3)=15

2 3 Nc(1)=25, Nc(2)=25,

Nc(3)=10

3 4 Nc(3)=8, Nc(4)=5,

Nc(5)=7,Nc(6)=15

4 5 Nc(2)=14, Nc(3)=8 Nc(4)=5,

Nc(5)=7, Nc(6)=15

5 6 Nc(1)=25, Nc(2)=14,

Nc(3)=9, Nc(4)=8, Nc(5)=7,

Nc(6)=12

For each case, the problem is solved 15 times and the mean of

fitness values (F) and execution times are calculated.

In this part, it’s supposed that the population size is set to 30,

Niter to 20, n1, n2 and n3= 3, Nstock_reg to 3 and Nstock_refrig to 2.

The results showed in table 4 indicate that the fitness value

generated by the HS algorithm is largely better for all studied

cases for an execution time tolerant and lower than the

execution time for GA.

Table 4. Comparison between LIFO, GA and HS’s fitness

values and execution time

Instance

N°

LIFO

Algorithm

Genetic

 algorithm

Harmony

search

F TExe

(s)

F TExe

(s)

F TExe

(s)

1 3,65 0,5 0 20 0 4,44

2 5,59 2 0 22 0 4,99

3 4,72 4 0 37 0 8,78

4 10,14 4,5 1,29 65 0 10,54

5 19,37 6 3,16 80 1,15 17,97

This can be explained by the fact that the genetic algorithms

evaluate simultaneously several solutions. The GA used

selection, crossover and mutation operators to generate a

better solution. Sometimes, this process is not effective

enough to get optimum solution as they might not effectively

preserve important patterns in chromosomes. [15]

The curve shown in the following figure confirms results

described in the table 4.

Fig 6. Comparison between LIFO, GA and HS’s fitness

values

Harmony search algorithm seems well suited to complex

problem. It generates good results within a tolerable time even

with the diversity types of containers and the appearance of

many storage constraints.

8. CONCLUSION
In this study, a harmony search algorithm is applied to solve

the storage space allocation problem for import containers.

In real world case, there are various types of container such as

refrigerated, open side, empty, dry, open top, tank... Each

container type has storage constraints that must be respected

in the allocation process of the storage areas, which let the

problem more difficult. That is refrigerated containers must be

allocated to the blocks equipped by the power point, tank

containers need to be placed on each others, etc.
Despite this difficult, the proposed approach generated good

results in a reasonable execution time. Experimental study

confirms these and shows the effectiveness of the application

of harmony search in the resolution of this problem.

An important extension of this research would be to formulate

the problem as a dynamic storage space allocation in order to

solve and to make decision in real time.

9. REFERENCES
[1] Ayachi, I., Kammarti, R., Ksouri, M., Borne, P., 2010, A

Genetic algorithm to solve the container storage space

allocation problem, IEEE Trans. International conference

on Computational Intelligence and Vehicular System,

Seoul, South Korea

[2] Ayachi I., Kammarti R., Ksouri, M., Borne, P., 2010,

Harmony search algorithm for the container storage

problem, 8th International Conference of Modeling and

Simulation - MOSIM’10, Tunisia.

[3] Bazzazi, M., Safaei, N., Javadian, N., 2009, A genetic

algorithm to solve the storage space allocation problem

in a container terminal, Computers & Industrial

Engineering 36 (2009), p. 1711–1725.

[4] Chen, P., Fu, Z., Lim, A., Rodrigues, B., 2004, Port yard

storage optimization, IEEE Transactions on Automation

Science and Engineering. Vol. 1, p. 26 – 37.

http://www.ourglocal.com/?c=28%2C1%2Ckr%2CSeoul
http://www.ourglocal.com/?c=15%2Ckr

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

32

[5] Dorigo, M., Maniezzo, V., Colorni, A., 1996, The ant

system: optimization by a colony of cooperating agents,

IEEE Trans. Systems Man Cybernet Part B, Vol. 26,

No.1, p. 2942.

[6] Geem, Z-W., Lee, K-S., Park, Y., 2005, Application of

Harmony Search to Vehicle Routing, Journal of Applied

Sciences, p. 1552-1557.

[7] Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001, A new

heuristic optimization algorithm: harmony search,

Simulation 76, p. 60-68.

[8] Holland, J-H., 1975, Adaptation in Natural and artificial

Systems, University of Michigan Press, Ann Arbor, MI.

[9] Kammarti, R., Ayachi, I., Ksouri, M., Borne, P., 2009,

Evolutionary Approach for the Containers Bin-Packing

Problem, Studies in Informatics and Control, Vol. 18,

Issue 4.

[10] Kap Hwan Kim and Hans-Otto Günther, Container

Terminals and Cargo Systems, Design, Operations

Management and Logistics Control Issues, Springer-

Verlag Berlin Heidelberg , 2007, pp . 3-14.

[11] Kim, K-H., Park, K-T., 2003, A note on a dynamic

space-allocation method for outbound containers,

European Journal of Operational Research, p. 92–101

[12] Kim, K-H., 1997, Evaluation of the number of rehandles

in container yards, Computers & Industrial Engineering,

Vol. 32, Issue 4.

[13] Kim, K-H., Kim, H-B., 1998, The optimal determination

of the space requirement and the number of transfer

cranes for import containers, Computers ind. Engng Vol.

35, p. 427-430

[14] Kumar, S., Vlacic, L., 2008, Performance Analysis of

Container Unloading Operations at the Port of Suva

Using a Simplified Analytical Model (SAM), Journal of

Advanced Computational Intelligence and Intelligent

Informatics, Vol.12 No.4

[15] Lee, K-S., Geem, Z-W, 2004, A new structural

optimization method based on the harmony search

algorithm, Computers and Structures, 82: p. 781-798.

[16] Lee, D-H., Cao, J-X, Shi, Q. ,Chen, J-H., 2009, A

heuristic algorithm for yard truck scheduling and storage

allocation problems, Transportation Research Part E 45,

p. 810–820

[17] Murty K.G., Liu J., Wan Y.W, Zhang C., Tsang M.C.L.,

Linn R.,2005, A decision support system for operations

in a container terminal, Journal Decision Support

Systems, Volume 39 Issue 3.

[18] Pan, Q.K., Suganthan P.N., Tasgetiren M.F., Liang

J.J.,2010, A self-adaptive global best harmony search

algorithm for continuous optimisation problems, Applied

Mathematics and Computation, 216, 830-848.

[19] Preston, P., Kozan, E., 2001, An approach to determine

storage locations of containers at seaport terminals,

Computers & Operations Research, p. 983-995

[20] Yang, X-S., Deb, S. , 2009, Cuckoo search via Levy

flights, World Congress on Nature & Biologically

Inspired Computing (NaBIC 2009)., IEEE Publication,

USA. p. 210–214.

[21] Yang, X.-S., 2008, Nature-Inspired Metaheuristic

Algorithms. Luniver Press.

[22] Zhang, C., Liu, J., Wan, Y-W., Murty, K-G., Linn, R-J.,

2003, Storage space allocation in container terminals,

Transportation Research Part B, 37, p. 883–903.

[23] Zou, D.X., Gao, L.G., Wu J.H.,Li, S., Li, Y.,2010, A

novel global Harmony Search Algorithm for reliability

problems, Computers & Industrial Engineering, 58, 307–

316.

http://www.sciencedirect.com/science/journal/03608352
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235695%231997%23999679995%238959%23FLP%23&_cdi=5695&_pubType=J&view=c&_auth=y&_acct=C000053505&_version=1&_urlVersion=0&_userid=3448981&md5=e303a2b595f5481a7648e2fa49b349b4

