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Abstract (Conference) 

With the hundreds of signal measurements made in a nuclear power plant, the cost of sensor maintenance has become 

significant and the effects of sensor failures substantial, with lost power production and lost revenues for the operating 

utility. In this respect, continuous and effective monitoring of sensor performance reduces unnecessary maintenance by 

allowing the timely detection and identification of faulty sensors and the reconstruction of the incorrect signals before 

using them in the operation, control and protection of the plant [1]. 

In this paper, a signal reconstruction procedure based on the use of an ensemble of reconstruction models is adopted. 

The procedure is founded on the random subdivision of the set of sensor signals into small overlapping groups by the 

Random Feature Selection Ensemble (RFSE) technique [2], a Principal Components Analysis (PCA)-based 

reconstruction model [3] is developed for each group of signals and the outcomes of the individual models are 

aggregated to generate the reconstructed signal [4][5][6]. 

The issue of how to compute the ensemble-aggregated output is the focus of this work. The Simple Mean (SM), 

Globally weighted average (GWA) [4], Median (MD) and Trimmed Mean (TM) [5] aggregation methods are compared 

to a local fusion (LF) method [7] in which the aggregation is guided by the local performance of each model, i.e., its 

reconstruction accuracy on signal patterns of training similar to those to be reconstructed. 

The comparison is made with respect to a real case study regarding the reconstruction of 215 signals measured at a 

Finnish nuclear Pressurized Water Reactor (PWR) located in Loviisa. 
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Abstract 

Sensors are placed at various locations in a production plant to monitor the state of the processes and components. For 

the plant state monitoring to be effective, the sensors themselves must be monitored for detecting anomalies in their 

functioning and for reconstructing the correct values of the signals measured. In this work, the task of sensor monitoring 

and signal reconstruction is tackled with an ensemble of Principal Component Analysis (PCA) models handling 

individual overlapping groups of sensor signals, randomly generated according to the Random Feature Selection 

Ensemble (RFSE) technique. The outcomes of these models are combined using a Local Fusion (LF) technique based 

on the evaluation of the models performance on set of training patterns similar to the test pattern under reconstruction. 

The performances obtained using the LF method are compared to those obtained using classical aggregation methods 

such as Simple Mean (SM) Globally weighted average (GWA), Median (MD) and Trimmed Mean (TM), on a real case 

study concerning 215 signals monitored at a Finnish Pressurized Water Reactor (PWR) nuclear power plant. 

1 Introduction 

For an effective contribution to the safe and productive operation of a nuclear power plant, sensors malfunctions must 

be promptly detected, since the effects of sensor failures can be substantial, with lost power production and lost 

revenues for the operating utility. With the hundreds of signals measurements made in a nuclear power plant, the cost of 

sensor maintenance has become significant. In this respect, continuous and effective monitoring of sensor performance 

reduces unnecessary sensor maintenance by allowing the timely detection and identification of faulty sensors and the 

reconstruction of the incorrect signals before using them in the operation, control and protection of the plant [1][2]. 

This work investigates the problem of reconstructing signals in real applications in which the number of measured 

signals is very large and cannot be handled effectively by a single auto-associative reconstruction model [3][4][5]. The 

problem is tackled by resorting to an ensemble-based signal reconstruction procedure [6][7]. Within an ensemble 

approach, signals are subdivided into small overlapping groups generated by the Random Feature Selection Ensemble 

(RFSE) technique [8][9]; for each group of signals a reconstruction models is built using the PCA method [10][11]; the 

outcomes of the different models are finally combined (Figure 1).  

 
Figure 1: multi-group ensemble approach to signal reconstruction 

The issue of how to aggregate the multiple signal reconstruction models outputs is the focus of this paper. Many 

techniques can be adopted, the most common being the Simple Mean (SM), the Globally weighted average (GWA), the 

Median (MD) and the Trimmed Mean (TM). In [13] and [14] a different solution called Local Fusion (LF) is 

investigated. This method assigns to each model of the ensemble a weight and a bias related to the error committed in 

the reconstruction of training patterns similar to the test pattern under reconstruction thus providing an evaluation of the 

models performance dynamically varying with the position of the test pattern in the signals space. Due to the promising 

results obtained in the simulated case study presented in [13], in this work the local fusion approach is applied to real 
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NPP data and the results obtained are compared to those resulting from the other techniques presented (SM, GWA, MD 

and TM).  

In the LF approach, models performances are evaluated by considering a subset of training patterns selected on the base 

of their distance from the test pattern under reconstruction. Notice, however, that if the test pattern contains a faulty 

measurement, then the selected neighbouring patterns might not be the most similar to the true test pattern. In order to 

investigate this effect, two methods for the neighbourhood selection based on the Euclidean and geometric distances are 

compared. 

The comparison is performed in the context of an application to the validation and reconstruction of the signals 

measured at a Finnish PWR nuclear power plant to which different faults are added to test the robustness of the 

different methods presented. 

The paper is organized as follows. In Section 2, the randomized approach for generating diverse groups of signals is 

briefly summarized and in Section 3 the different methods applied for the aggregation of the models outcomes are 

described. In Section 4, the performance of the aggregation methods is analyzed with reference to a case study 

concerning the reconstruction of a data set of 215 signals measured at a Finnish nuclear Pressurized Water Reactor 

(PWR) located in Loviisa. Conclusions on the advantages and limitations of the proposed methods are drawn in the last 

Section. 

2 The Random Feature Selection Ensemble approach 

Figure 1 reports a sketch of the flow of modeling for signal reconstruction.  

Usually, a typically large number n  of signals if  is available for building the signal validation and reconstruction 

model; thus, a single model cannot perform the reconstruction task with the desired accuracy and reliability and the 

signal set is partitioned into H  subsets hF . Within the RFSE approach, the fast construction of diverse groups of 

signals is done by randomly sampling, with replacement, from the n  available signals, the m  signals which compose 

each subset hF  [8][9]. For each signals group a different PCA model is built [10][11]. The same signal if  must be 

included in an adequate number iH  of subsets hF , so that the ensemble reconstruction if̂  can be based on the 

aggregation of several diverse models outcomes 
h

if̂ , iH,...,1h = . The diversity of the outcomes if̂  is guaranteed by 

the high signal diversity between the groups obtained through the RFSE technique. 

3 Aggregation strategies 

The reconstruction if̂  of signal if  is obtained by aggregating the iH  models outcomes 
h

if̂ . In general, the 

aggregation requires to associate a weight 
h
iw  and a bias correction 

h
ib  to the reconstruction h

if̂
 
of each model h . 

The idea is to correct the values of 
h

if̂  by subtracting the estimated bias 
h
ib

 
and to combine 

h
if̂  with the other models 

estimates by means of a weighted average: 
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Different techniques for the aggregation of the outcomes of multiple models have been applied in this work for 

comparison of their perform. 

a. Simple Mean (SM) 

All weights are assigned with the same value and the bias corrections are set to zero, i.e. wwh
i =

 
and 0bh

i = , 

∀ n1,..,i =  and iH1,...,h = . 

b. Globally Weighted Average (GWA) 

All bias corrections are set to zero, whereas the weights are inversely proportional to the performance of each model 

computed on the entire training dataset, i.e. 0bh
i = , ∀ n1,..,i =  and ∀  iH1,...,h =  and  
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In [15] two alternative aggregation methods are devised based on the randomness of the models outcomes, which, if 

unbiased, are expected to distribute around the correct signal value.  

c. Median (MD) 

All bias corrections and weights are set equal to zero except for the weight Ch
iw  corresponding to the reconstruction 

Ch
if̂  which lies in the centre of the distribution of the outcomes 

h
if̂  of the iH  models including signal if . 

d. Trimmed Mean (TM) 

All bias corrections are set equal to zero, whereas the weights are all assigned with the same value except for the 

weights TMh
iw  corresponding to the tails of the distribution of the outcomes 

h
if̂  which are set to zero. In particular, 

being TMϑ  the fraction of the model outcomes that are discarded, only the most central i
TMTM

i H)(H ϑ−= 1  

reconstructions of if  are associated to a constant weight. 

e. Local fusion (LF) 

In [13] it has been shown that the ensemble performance can be increased if both the bias corrections 
h
ib  and the 

weights 
h
iw  are computed locally, i.e., they vary as a function of the position in the signal space of the pattern under 

reconstruction. In this way the two parameters 
h
ib  and 

h
iw  can account for the variation of models performances in the 

different regions of the signal space.  

Thus, according to [13] and [14], the local bias correction 
h
ib  and the local weight 

h
iw  to be assigned to model h

 
in the 

reconstruction of signal if  are set equal to:  
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where 
h
Q,i TRN

me  represents the local mean error, 
h
Q,i TRN

mae  the local mean absolute error and TRNQ  is a set of 

neighbours of the pattern under reconstruction drawn from training dataset. According to the k -nn-based neighborhood 

approach here adopted [14], TRNQ  is formed by the k  training patterns nearest to the test pattern. The choice of the 

nearest neighbours relies also on the way the distance of a training pattern ( )TRN
n

TRN
i

TRNTRN f,...,f,...,ff 1=  from the 

test pattern ( )TST
n

TST
i

TSTTST f,...,f,...,ff 1=  is computed. Since the test pattern can contain the measurement of a faulty 

sensor, the choice of a distance metric which is robust in case of sensor fault is important. For this reason in this work 

the typical Euclidean definition of the distance (ED, eq.(5)) and the geometric distance (GD, eq.(6)) are considered for 

the identification of the nearest neighbours of the test pattern: 

( )∑= −= m

i

TSTTRN
i i

ffED
1

2
 (5)

m

m

i

TSTTRN
i i

ffGD ∏= −=
1

 (6)

4 Application 

The ensemble approach here described has been applied to a real case study concerning the validation and 

reconstruction of 215 signals measured at the Pressurized Water Reactor (PWR) nuclear power plant located in Loviisa, 

Finland. A total number N =12713 of patterns ( ) ( ) ( )tf,...,tf,...,tf ni1 , N,...,t 1=  made of =n 215 signals is 

available. Data signals have been sampled every hour from February 28, 2006 to November 1, 2007.  

A training set TRNX  constituted by 7000=TRNN  patterns is used for training the models; a validation set VALX  of 

2000=VALN  is used to determine the optimal number k  of nearest neighbors to be used for the outcomes aggregation 

within the LF method. The optimal number m  of signals to be included in each subset hF  has been taken from [11].  

Table 1 presents the values assigned to the ensemble model parameters. The minimum redundancy is set for each signal 

to the value 7=iH  in order to reduce the computational time, although a higher value may increase the ensemble 

performance.  
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The set TSTX  of the remaining 3713=TSTN  patterns is used to test the performance of the ensemble for different 

aggregation strategies. 

4.1 Performance resulting from the different aggregation methods 

In this Section several reconstructions of the faults-free test set and of faulty dataset derived from it are performed, with 

the objective of investigating the aggregation strategies.  

Six reconstruction of the test set TSTX  are obtained using different aggregation methods: SM, GWA, MD, TM and LF 

based on distances computed using the Euclidean (eq. (5), LF-ED) or geometric (eq. (6), LF-GD) definition. In these 

faults-free cases the performances of the ensemble aggregates are evaluated considering the average over all signals of 

the mean absolute value of the reconstruction error (
M
imae , M = SM, GWA, MD, TM, LF-ED, LF-GD). 

In order to detect and reconstruct faults, it is important to produce a robust model, i.e. a model which can accurately 

reproduce the true signal value even in the presence of a fault. In this context, 100 datasets 
CBi,TSTX  and 50 datasets 

NSi,TSTX  are built from TSTX , by adding respectively a positive and negative constant bias (CB) or a noise (NS) fault 

to a single signal 
Fi

f , 501,...,iF = , F = CB, NS, randomly selected among the 215 available signals. All faults start 

from the 50th pattern of the test dataset and have respectively a magnitude or a standard deviation equal to the standard 

deviation of signal 
Fif .  

In the faults-free cases the performances of the ensemble aggregates are evaluated considering the average over all 

signal of the mean absolute value of the reconstruction error (
M
imae , M = SM, GWA, MD, TM, LF-ED, LF-GD), 

whereas in case of sensor fault the average value 
M
iF

mae  of the mean absolute errors 
M
iF

mae , obtained in the 

reconstruction of the faulty signal 
Fi

f , is computed. The results are shown in Table 2. 

Table 1 

Ensemble parameters and settings 

=m 38 ≥iH  7 

=H 40 =k  30 

=TMϑ  0.25 

≥TM
iH 5 
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Considering the results obtained both in case of fault-free signals (
Mmae ), and in case of NS faults, the LF-ED method 

seems the best performing one. The LF-GD method does not increase the accuracy and the robustness of the 

reconstruction. 

The local fusion strategy adopted in this example, assigns greater weights to the most accurate models without 

accounting for their robustness. The consequences of that are clearly visible in the case of constant bias fault where the 

LF strategy achieve poorer results than the SM. This could be avoid by computing the weights on the reconstruction of 

training data with added noise, as demonstrated in the previous Section. 

Nevertheless, when the fault is corrected by iterating the reconstruction a number 5=iterN of times, upon detection and 

identification of the faulty sensor, the LF-ED aggregation method conveys the best results, also in case of CB fault, as 

shown in Table 3. 

 

Figure 2 compares the local fusion strategy using the Euclidean Distance with the other aggregation strategies by 

representing the percentage of success, i.e. the ratio between the number 'MMn >  of signals for which LF-ED 

outperforms strategy M’ (= SM, GWA, MD, TM, LF-GD) over the total number TSTn  of considered signals 

( =TSTn 100 in case of positive and negative CB faults and =TSTn  50 in case of NS faults). Also, the average error 

reduction obtained by using the best performing method, i.e. the quantity 

∑> ++
++++>

> −=
'MM

F

FF

n

)i,i(

M
)i,i(

'M
)i,i('MM

'MM )maemae(
n

R
1

 where +i  or +Fi  are such that 
'M

)i,i(
M

)i,i( FF
maemae ++++ > , is 

shown.  

Table 3 

Mean absolute error (mae) obtained by using different combination strategies, after 5 

iterations of the reconstruction 

Aggregation Strategy M
iCB

mae  (10-2) 
M
iNS

mae  (10-2) 

1. SM   4.015 3.114 

2. GWA 3.766(+6.2%)a 2.508(+19.5%)a 

3. MD 3.956(+1.5%)a 2.763(+11.3%)a 

4. TM 3.782(+5.8%)a 2.889(+7.2%)a 

5. LF-ED 3.700(+7.8%)a 2.146(+31.1%)a 

6. LF-GD 3.756(+6.4%)a 2.427(+22.1%)a 
aThe reported percentages refer to the improvement of the performance with respect to the SM. 

Table 2 

Mean absolute error (mae) obtained by using different combination strategies 

Aggregation Strategy Mmae  (10-2) 
M
iCB

mae  (10-2) 
M
iNS

mae  (10-2) 

1. SM   1.780  4.383 2.100     

2. GWA 1.538(+13.6%)a  4.431(-1.1% 1.874 (+12.0%)a 

3. MD 1.623(+8.8%)a 4.465(-1.9%)a 2.005 (+4.5%)a 

4. TM 1.662(+6.6%)a  4.400(-0.4%)a 2.007 (+4.4%)a 

5. LF-ED 1.400(+21.4%)a 4.419(-1.3%)a 1.689 (+19.5%)a 

6. LF-GD 1.515(+14.9%)a 4.423(-0.9%)a 1.832 (+12.8%)a 
aThe reported percentages refer to the improvement of the performance with respect to the SM. 
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Figure 2: percentage of success of the LF-ED method (upper) and error reduction in using the best performing method 

(bottom) in the comparison of the LF-ED method with the other considered methods after 5 iteration of the reconstruction. 

 

One can notice that the LF-ED method has a percentage of success almost always greater than 50%, i.e. it reconstructs 

more than half of the signals better than the compared method. Moreover, the mean error reduction 
'MEDLFR >−
 this 

method conveys when it performs better than the method under comparison (M’) is usually greater than the error 

augmentation 
EDLF'MR −>

 produced when it performs worse.  

To give a concrete example of how a faulty signal can be reconstructed by the proposed aggregation strategy, Figure 3 

compares the reconstructions of the 41-th signal obtained by using the LF-ED and the SM aggregation strategies in the 

case of CB fault.  
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Figure 3: reconstruction 
T
41f̂  of true value 

T
41f  of the 164-th measured signal 41f̂  using the SM and the LF-ED aggregation 

strategies. 

 

***********Riporto questo paragrafo, anche se alla fine lo elimineremo, per farti vedere, se ti 

interessano, i risultati corretti della group selection*********** 

4.2 New procedure for the LF of models outcomes 

In this Section the idea of totally excluding the most inaccurate models from the aggregation is integrated into the LF 

approach. The new procedure, hereafter called local fusion with group selection (LG-GS), consists in: 

1. Determine the values the local bias corrections 
h
ib  and weights 

h
iw as explained in Section 3, point c. 

2. Set to zero the weights of a number i
GS Hϑ  of models assigned at step 1 with the lowest weights. The quantity 

i
GSGS

i H)(H ⋅−= ϑ1  represents the number of selected groups; the fraction of excluded groups
GSϑ  is here 

set equal to 0.25. 

3. Aggregate the outputs by using eq. (1).  

In Table 4 the results obtained with this new approach are reported and the LF-GS method is compared with the 

standard LF (since only the Euclidean definition of distance is considered the indication ED is here omitted). 

 

Table 4 

Results of the Local Fusion with Groups Selection  

 
Fault-free signals  

( TSTX ) 

Signals with CB fault 

(
CBi,TSTX ) 

Signals with NS fault  

(
NSi,TSTX ) 

GSLF
)i,i( F

mae −
 (10-2) 1.375 (+1.8%)a 4.441(-0.50%)a 1.675 (+0.81%)a 

TST
LFGSLF nn >−

 0.51 0.45 0.56 

LFGSLFR >−
(10-2) 8.88 10-4 8.22 10-4 5.45 10-4 

GSLFLFR −>
(10-2) 4.17 10-4 1.07 10-3 3.84 10-4 

aThe reported percentages refer to the improvement of the performance with respect to the LF. 
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******************************************************************** 

 

5 Conclusions 

In this work the problem of reconstructing the correct value of faulty signals is tackled with an ensemble of PCA 

models. Signals are subdivided into diverse, overlapping groups using the RFSE procedure. A PCA reconstruction 

model is developed for each signals group and the multiple outcomes thus obtained are aggregated to provide the 

ensemble reconstruction using five different aggregation methods: SM, GWA, LF, MD and TM. 

The LF is performed with two different settings, LF-ED and LF-GD, related to the way distances between the training 

and test patterns are computed. The second one does not introduce any significant change in the ensemble performance 

and it generally performs worst than the LF-ED method.  

The aggregation methods have been evaluated in the reconstruction of fault-free and faulty signals. The comparison of 

the performance of different aggregation methods that in the signal validation task, and even more in the signal 

reconstruction one, the local fusion approach performs better than the other techniques considered. 

Finally, the local performance identification and parameters computation have to be performed online; this could be a 

costly procedure. A procedure for the offline assignment of the local fusion parameters values is proposed in [14] and 

will be investigated in future research. 
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