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Abstract 

 

A framework previously proposed by the authors to qualitatively assess the 

performance of maintenance policies in electrical production plants is summarized in 

this work; the distinguishing feature of this framework is the characterization of the 

living conditions of a component by means of Influencing Factors (IFs), i.e., 

conditioning aspects of the component life that determine the evolution of the 

degradation mechanisms affecting the component. Modelling of this evolution is 

addressed via an hybrid Monte Carlo simulation and fuzzy logic scheme which 

provides the basis for assessing the performance of a maintenance policy. 

 

Keywords: Degradation modelling, Maintenance, Fuzzy Logic, Monte Carlo 

simulation, Influencing Factors. 

 

 

1 Introduction 
 

The significant economic impact of maintenance on production and service has led to 

a strong interest in developing models to support decision makers in their tasks of 

improving system reliability, preventing the occurrence of accidents and reducing 

maintenance costs. The output provided by these models are the values of key 

parameters on which the reliability and the availability of the system depend, and 

which serve for defining an optimal maintenance strategy in the face of various types 

of maintenance plans and all other constraints (e.g. safety requirements, budgetary 

limitations, etc.). 

The effectiveness of the models for supporting maintenance decisions increases when 

these are able to capture the specificity of the components which derives from the 

particular „life‟ (failures, shocks, preventive maintenance actions, unavailability 

periods, work load profile, etc.) that each of them has experienced [1]. For example, 

in the electrical industry similar components are installed and used in a large variety 
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of living conditions (e.g., two transformers of the same electrical network may be 

installed one on the Alps and one close to the Mediterranean Sea); thus, the more 

specifically characterized are the living conditions in the model, the more informed 

can be the supported maintenance decisions. 

The issue of giving due account to the influence of covariates (e.g., living conditions) 

on the evolution of the degradation process of a component has been addressed in a 

number of works (e.g., [2]-[4]), also from the theoretical point of view (e.g., [5], [6]). 

However, as remarked in [7], there are few works (e.g., [7], [8]) that focus on the 

influence of covariates in the modelling of degradation processes, for Condition 

Based Maintenance (CBM) applications. (CBM is here viewed as a Preventive 

Maintenance (PM) policy according to which an action is performed only when a 

monitored index (e.g., degradation state, failure rate, etc.) reaches a predetermined 

level). Furthermore, the models proposed in these works are all developed within the 

framework of stochastic processes, and thus rely on a number of parameters which 

may be difficult to estimate in real applications due to lack of experimental data. 

Indeed, in practice expert judgement is often the main source of information for these 

models. 

 

In this context, a novel framework that assesses the effectiveness of a CBM policy by 

modelling the evolution of degradation mechanisms taking into account the living 

conditions in which a component works has been proposed and investigated in [9]-

[11]. In these works, the fundamental issue of the characterization of the living 

conditions has been addressed by introducing some Influencing Factors (IFs), i.e. 

conditioning aspects of the component life, representative of a set of homogeneous 

variables (physical, environmental, etc.). In particular, five IFs have been considered 

which, for the sake of clarity, are identified by an index (1, 2,…, 5): 

 IF1: Environment. It includes the environmental variables (temperature, 

humidity, vibration, etc) which are expected to influence the degradation and 

failure behaviour of the component. In general, IF1 is a re-configurable 

parameter because some interventions can be done in order to modify its level; 

for example, the external temperature or humidity can be controlled, if 

possible, by setting up air conditioning systems, the vibration level can be 

reduced by performing maintenance actions on the systems causing the 

vibration, etc. 

 IF2: Operational Mode. The set of variables which influence the stress 

conditions of the component (e.g. duty cycle, frequency of stops/re-starts, etc); 

they can be changed during the life time of the component, depending on the 

demands and opportunities of operation. 

 IF3: Maintenance Policy. It contains all the variables related to the maintenance 

features (maintenance action effectiveness, etc.) which are often dynamically 

re-calibrated during the components mission time.  

 IF4: Age. The Age of a component could be different from the calendar time 

elapsed since it started to work: the effect of some maintenance actions can be 

accounted by reducing the actual age of the component.  

 IF5: Quality (e.g. the quality level of design, manufacturing, technology, etc.). 

In general this parameter is fixed: the quality of a device remains constant 

during its life. 
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This work is a summary of the framework proposed in [9]-[11] and is organized as 

follows: a brief description of the framework is provided in Section 2; Section 3 

describes the case study on which the proposed methodology is applied and finally, 

some conclusions are given in the last Section.  

 

 

2 The Framework 
 

The framework presented in [9]-[11] is partially derived from [12], where a pragmatic 

approach is proposed for accounting for the component specific living conditions 

(e.g., environment, working cycles, etc.) by multiplying the base value of the 

component failure rate by empirical factors. Despite its pragmatism, this approach is 

not directly applicable in a CBM context which requires the knowledge (even 

qualitative) of the component degradation level in order to define the most opportune 

maintenance policy. On the contrary, the approach proposed in [9]-[11] focuses 

specifically on the modelling of the degradation process affecting the component, 

taking into account the actual living conditions in which it works. 

Figure 1 gives a snapshot of the modelling framework, which is based on three 

modules: 

 Central Module (CM); it defines the IFs that actually influence the 

considered degradation mechanism.  

 Backward Module (BM); the physical variables related to each IF are 

identified, and the relationships between them and the IF are 

determined.  

 Forward Module (FM): the link between the IFs and the degradation 

process is defined. The degradation process is described by means of a 

small number of levels, or degradation „macro-states‟, each one 

characterized by a failure rate. The choice of this representation is 

driven by industrial practice: experts usually adopt a discrete and 

qualitative classification of the degradation state based on qualitative 

interpretations of symptoms.  

Eliciting information from experts, resorting to the literature, inferring from databases 

etc. are different ways to address the contents of these modules.  

Both the BM and the FM are developed by resorting to FL theory to cope with the 

scarcity of the data typically available and its qualitative nature. In practice, the IFs 

are expected to be more easily represented by linguistic variables rather than numeric 

variables (e.g., „the environment is mild‟ or „the maintenance is efficient‟). In this 

case, fuzzy logic offers the capability of dealing with imprecise variables and 

linguistic statements provided by experts on the basis of their knowledge and 

engineering sense of practice.  

Furthermore, the typically stochastic behaviour of the living conditions results in 

stochasticity of the covariates IFs, and thus stochastic transitions between the 

degradation levels (and associated values of failure rates). 
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The degradation model can be used to test the effectiveness of a maintenance policy. 

To do this, the degradation stochastic evolution is simulated by the model and the 

failure rates associated to the degradation levels evolving in time are input to a Monte 

Carlo (MC) module which estimates the availability of the system over a specified 

mission time (Figure 2); through a cost model, the total costs associated to the 

maintenance policy can then be assessed [9]-[11]. 

 

 

Figure 1: snapshot of the FL degradation model. 

 

 

 

 

Figure 2: interface between FL degradation models and MC simulation. 

 

3 Case Study 
 

In this Section, the modelling architecture presented above is applied to a case study 

concerning a Water-Feeding Turbo Pump (WFTP) of a steam generator. A team of 

experts has identified the degradation processes affecting the components of the 

WFTP and the associated IFs and symptoms. The present case focuses on the contact 

fatigue degradation mechanism, which affects the seals of the WFTP. No 

consideration is given to other degradation processes and their influences that may 

lead to an acceleration of the degradation process. 
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The degradation of the seals of the WFTP due to contact fatigue is caused by the 

development of cracks that affect the ability of the seals to avoid leaks. The creation 

and propagation of these cracks is a complex physical phenomenon, which has been 

modelled in a number of different ways ([13] and [14]). According to these models, 

the degradation is mainly influenced by the loads applied on the component, its 

constitutive materials and production process, some geometrical factors related to 

both the shape of the cracks and their position with respect to the direction of the 

loads etc. 

The model presented in this work is based on the assumption that the length of the 

most critical crack of the component defines its degradation level. Moreover, it is 

assumed that the length of the crack can only increase in time and maintenance on the 

component has the effect of decreasing the speed of propagation of the crack but 

cannot reduce its length. In the modelling, the following three degradation levels are 

considered (Fig. 3(a)): 
1. „Good‟: the components which are new or almost new. No maintenance actions 

are foreseen for components in this level and the failure rate is λ=1e-5 h
-1

. 

2. „Medium‟: the seals of the WFTP in this state need some actions aimed at 
decreasing the crack growth rapidity. The failure rate of components in this 
degradation level is assumed to be λ=5e-4 h

-1
. 

3. „Bad‟: if the component is in this degradation level, it is convenient to replace 
it. The failure rate of the components in this degradation state is λ=1e-3 h

-1
. 

 

 

Figure 3: fuzzy sets. 

 

3.1 Central module 

 

The development of the model of the degradation process is based on the 

identification of the following IFs: 
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 IF1=„Environment‟; in this work it has been assumed that the influence of the 
environment on the considered degradation mechanism is mainly caused by the 
vibrations in the location in which the component works. In particular, the 
input variables of the Backward Module which defines, at a given time t, the 
relationship between measurable variables and the IF, are the mean values of 
the frequency and of the amplitude of the fundamental wave, in the time 
elapsed since the component has started to work. Fig. 3(b) shows the partition 
of the UoD of the IF environment into the three Fuzzy Sets, „Soft‟, „Medium‟ 
and „Heavy‟, defined by means of triangular membership functions.  

 IF3=„Maintenance‟; the component is periodically inspected by operators to 
control its degradation level. The maintenance policy, a priori established, 
requires that no maintenance action is performed if the degradation level is 
„Good‟ at the occurrence of the inspection whereas a corrective maintenance 
action is performed if the component is found in level „Medium‟, and a 
replacement action is carried out when the component is in the degradation 
level „Bad‟. A variation of the frequency of the inspections causes a 
modification of the degradation process; in particular, the more frequent are 
the inspections the less is the time in which the degradation advances without 
any action for reducing its speed. To describe this IF, the three Fuzzy Sets 
„Frequent‟, „Medium‟, „Rare‟ (Fig. 3(c)) are used on the UoD [0, 2e4]h of the 
variable inspection frequency. 

 IF4=„Age‟; it measures the time since the component has been working. The 
UoD of this IF is the interval [0, TM], with mission time TM=1e5h; on this 
interval, three Fuzzy Sets „Young‟, „Medium‟ and „Old‟ are defined by means 
of triangular membership functions (Fig. 3(d)). In general, the older the 
component, the higher its degradation level. 

 

3.2 Backward Module 

 

The tailoring of the BM to the considered case study consists in identifying the 

physical variables on which the IF1 depends (the IF3 and the IF4 are already directly 

described by the variables control period and time, respectively). The vibration level, 

whose range of variability has been arbitrarily set to [0,1], adequately characterizes 

the defined IF1 and its value is computed starting from the values of two physical 

variables measured by means of sensors (e.g., strain gauges): amplitude and 

frequency of the vibration fundamental wave. In particular, the mean values of these 

variables in the time elapsed since the system has started to work are given in input to 

the BM, which links them to the IF1 by means of a set of fuzzy if-then rules (Fuzzy 

Rule Base, FRB). 

Figure 4 shows the fuzzy sets, defined by means of triangular membership functions, 

partitioning the variables in input to the BM: 

 „Low‟, „Medium‟ and „High‟ are the fuzzy sets defined on the UoD [0,5]mm 

describing the mean value of the amplitude of the fundamental wave; 

 „Low‟, „Medium‟ and „High‟ are the fuzzy sets defined on the UoD [0,200] Hz 

describing the mean value of the frequency of the fundamental wave. 
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Table 1 shows the rules in the FRB that model the influence of the mean values of the 

Amplitude and the Frequency on the IF1. For example, the bottom-right element of 

Table 1 represents the rule: if Amplitude is Low and Frequency is Low then IF1 is 

Soft. 

 

 

Figure 4: fuzzy sets of the variables in input to the Backward Module. 

 

Table 1: Fuzzy rules defining the relationship between the inputs and the outputs of the BM tailored to 

the IF1. 

 

Mean frequency of the fundamental 

wave 

High Medium Low 

Mean amplitude 

of the 

fundamental 

wave 

High Heavy Heavy Medium 

Medium Medium Medium Soft 

Low Medium Soft Soft 

 

 

Generally speaking, the vibration in the location in which the system of interest works 

is caused by other components either because they are degrading (e.g., the increase of 

the eccentricity of the centre of gravity in rotating machines) or because they have 

been designed in such a way that a periodic load is applied on the other coupled 

components (e.g., alternating machines discharging loads on the same basement of 

the system of interest). Since, in general, the behaviour of both the components 

producing the vibration and the other components of the overall system (which 

modify the vibration wave) is stochastic, the vibration profile suffered by the 

components is also stochastic. 

For simplicity, but without loss of generality, in the present case study an arbitrarily 

chosen vibration profile is assumed in input to the BM, in terms of the mean 

amplitude and the mean frequency of the fundamental wave (Figure 5).  

Such profile “lived” by the component influences its degradation behaviour; the 

intensity of such influence is assessed by means of the dedicated fuzzy logic model 

built. Figure 6 shows the activation profile in time of the fuzzy sets Low, Medium 
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and High, representative of the vibration conditions in terms of mean amplitude 

(Figure 6, left) and frequency (Figure 6, right) of the fundamental wave. The 

combination of these activations by the FRB of Table 1 within a Mamdani inference 

system results in the time profile of the degrees of activation of the Soft, Medium and 

Heavy levels of IF1 reported in Figure 7. The Medium level is the most activated for 

large part of the mission time; Soft and Heavy levels are less activated, and in a 

similar way. In the first part of the mission time, the rule „if Amplitude is High and 

Frequency is Low then Environment is Medium‟ has the largest activation degree 

whereas the rules „if Amplitude is High and Frequency is Medium then Environment 

is Heavy‟ and „if Amplitude is Medium and Frequency is Low then Environment is 

Soft‟ are those with largest activation degrees among those with „Heavy‟ and „Soft‟ 

consequents, respectively. With the vibration profile of Figure 5, the two latter rules 

increase their activation degrees up to the central part of the mission time as the 

activation degree of the first rule becomes smaller; this leads to the three levels 

having almost the same degree of activation of about 0.5 at t=5.5*10
4
h: at this time, 

there is complete uncertainty on the influence of the IF1 on the degradation level of 

the component; then, in the central part of the mission time, the activation degree of 

the set „Medium‟ starts again to increase because the activation degree of the rule „if 

Amplitude is Medium and Frequency is Medium then Environment is Medium‟ 

becomes larger whereas the degrees of activation of the rules with consequents 

„Heavy‟ and „Low‟ begin to decrease. 

 

 

Figure 5: vibration profile applied to the component, in terms of mean 

amplitude (to the left) and mean frequency (to the right). 

 

3.3 Forward Module 

 

The objective of the Forward Module is to provide a description, in terms of fuzzy 

rules, of how the IFs impact on the evolution of the degradation process. In other 

words, a FRB is built which links the identified IFs with the component degradation 

state and thus its failure rate.  

In the considered case study, the Forward Module consists in identifying the failure 

rate of the seals of the WFTP. More precisely, a fuzzy model has been built based on 
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rules as, for example: „if Environment is Soft and Maintenance is Frequent and Age 

is Young and Previous Degradation State is Good then Degradation State is Good‟. 

As before, the rules defining the FRB are obtained from expert knowledge. The 

antecedent „Previous Degradation State‟ has been introduced in order to ensure that 

the degradation state does not decrease as the age of the component increases. 

 

 

Figure 6: degrees of activation of the fuzzy sets partitioning the 

variables in input to the Backward Module for the given vibration 

profile. 

 

 

Figure 7: degrees of activation of the fuzzy sets partitioning the IF1, 

for the given vibration profile. 

 

The output fuzzy set „Degradation State‟ is eventually defuzzyfied to limit the 

propagation of the uncertainty. Defuzzyfication is done by simply selecting the 

degradation state with the highest degree of activation. 

Figure 8 shows the application of the proposed model on the component which lives 

in the environment previously introduced and inspected every 7000h, with no failures 

during the mission time. 

The evolution of IF1 (Figure 8(a)) and IF4 (Figure 8(c)) is straightforward until the 

time instant t=6.3 10
4
h, when the component is found to be in the degradation state 
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“Bad” and it is replaced by a new one, whose age is zero and with no accumulated 

vibration. From that time on, the IF1 is computed taking into account the vibration 

suffered by the newly installed component and the IF4 evolves naturally as its age. 

The IF3 (Figure 8(b)) is constant, regardless the replacement of the component, since 

the maintenance policy is the same throughout the mission time. 

Figure 8(e) shows the defuzzyfied degradation state of the component, which directly 

determines the failure rate value (Figure 8(d)). 

 

 

Figure 8: activation degree of the IFs fuzzy sets and of the degradation state, failure rate value and 

defuzzyfied degradation state considering a control period of 7000 h when no failure occurs. 

 

3.4 Maintenance policy assessment 

In the present Section, the results of the Monte Carlo unavailability estimation of the 

component are reported and discussed. The computational model has been developed 

in FORTRAN. Table 2 shows the values of the parameters used in the case study: 

Table 2: Monte Carlo parameters. 

Parameter Value 

Dt 100 h 

Number of MC trials 10000  

CPU time (Intel Pentium, 1.6 GHz) 56 s 
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The instantaneous unavailability of the component with the related 68.3% confidence 

interval (i.e., plus and minus one standard deviation) is shown in Figure 9. 

 

 

Figure 9: instantaneous component unavailability and its standard deviation. 

 

Two large peaks appear in the first part of the component mission time. The first, at 

t=1.26*10
4
h, corresponds to the time instant in which the degradation process has a 

transition from degradation state 1 to 2, with the failure rate of the component 

worsening from 10
-5

h
-1

 to 5*10
-5

h
-1

. After t=1.26*10
4
h two different conflicting 

trends are observed: 

 an increase in the unavailability due to the contribution of those simulated 

components which have had a failure before t=1.26*10
4
h and thus reach the 

degradation state 2 with a delay; 

 a decrease of the unavailability due to the reduced failure rate (10
-5

h
-1

) of those 

simulated components that have undertaken corrective maintenance. 

 

The second effect is prevalent and thus the unavailability decreases. The second peak 

occurs at t=1.40*10
4
h, when the first control occurs after the component has entered 

in degradation state 2 and thus all the simulated components that did not have a 

failure before are now unavailable, due to the downtime associated to the preventive 

maintenance action. 

Notice that in the considered case study it is extremely unlikely to achieve the 

degradation state 3: with a failure rate associated to the degradation state 2 equal to 

5*10
-4

h
-1

 and a time interval of Δt=4.98*10
4
h between the achievement of the 

degradation states 2 and 3, the probability of encountering a system in a degradation 

state 3 is smaller than exp(-λ*Δt) exp(-5*10
-4

*4.98*10
4
)=1.5*10

-11
. This is the reason 

of the non-appearance of a peak of unavailability at t=6.3*10
4
h, at which the 

component would reach the degradation state 3 (Figure 8). 
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3.5 Maintenance policy optimization 

The proposed framework has been used to optimize the maintenance policy described 

in Section 4; in particular, the optimization has been performed with respect to the 

Control Period. 

Figure 10 and Figure 11 show the mean unavailability of the component and related 

68.3% confidence interval and the maintenance costs for varying values of the 

Control Period. 

 

 

Figure 10: estimated mean unavailability varying the Control Period, with related 

68.3% confidence interval. 

 

 

Figure 11: estimated maintenance costs varying the Control Period, with related 

68.3% confidence interval. 

 

The mean unavailability shows an initially decreasing trend, with a first minimum in 

correspondence of a Control Period equal to 5000h and another, deeper one in 

correspondence of a Control Period of 10000h, after which the trend starts increasing. 
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The maintenance cost has a similar trend, but with only the minimum in 

correspondence of a Control Period of 10000h. 

One may then conclude that under the considered maintenance policy, the best 

Control Period is 10000h, with respect to both availability and costs. On the other 

hand, the relative flatness of the minimum is such that there is a wide interval of 

Control Period values in which both the mean unavailability and the maintenance cost 

are small and with little variations, which gives a margin of operational flexibility for 

choosing the Control Period value also accounting for other criteria (e.g., 

opportunistic maintenance). 

 

4 Conclusions 
 

Synthesizing from previous works by the authors, a modelling framework has been 

summarized, which allows assessing the impact of maintenance policies and specific 

conditions of component operation on the performance of the overall system of which 

the component is part. 

Given the typical lack of experimental evidence on the influence of the component 

living conditions on its degradation, expert judgment is used within a fuzzy modelling 

approach. Monte Carlo simulation is then used to assess the goodness of the 

maintenance policy in terms of system availability. 

To illustrate the approach, a previous application to the seals of the WFTP and their 

degradation due to contact fatigue has been re-proposed.  

 

A number of issues remain open and need to be addressed in feature works: 

 The original approach includes maintenance as an IF; this requires to jointly 

model the effects of maintenance on the component degradation together with 

the effects of the other influencing factors. This may complicate the work of 

the experts who are requested to provide if-then linguistic rules linking the IFs 

with the component degradation state. A new approach to the maintenance 

influence modelling seems in order. 

 The case study considered is made up of a single component affected by only 

one degradation process. The potential of the framework needs to be tested on 

multi-component and multi-degradation process systems. 

 The operation of defuzzyfication performed on the output of the Forward 

Module does not propagate the uncertainties affecting the degradation state 

reached by the component. This leads to MC simulations which sample from 

exponential distributions without considering the uncertainty of the 

parameters of those distributions. 

 Fuzzy logic framework has been developed by applying the Mamdami 

inference system. This limits the activation degrees of the degradation states 

to values smaller than 1, i.e., it is not guaranteed that the maximum of the 

activation degree of the degradation state is equal to 1. This problem, which 

leads to a smaller confidence on the degradation state, may be overcome by 

considering more sophisticated inference systems. 
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