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Abstract: On-line sensor monitoring systems aim at detecting anomalies in sensors and reconstructing 

their correct signals during operation. Auto-associative regression models are usually adopted to 

perform the signal reconstruction task. In full scale implementations however, the number of sensors 

to be monitored is very large and cannot be handled effectively by a single reconstruction model. This 

paper tackles this issue by resorting to an ensemble of reconstruction models in which each model 

handles a small group of signals. In this view, firstly a procedure for generating the signal groups must 

be set. Then, a corresponding number of signal reconstruction models must be built on the bases of the 

groups and, finally, the outcomes of the reconstruction models must be aggregated. In this paper, three 

different signal grouping approaches are devised for comparison: pure-random, random-filter and 

random-wrapper. Signals are then reconstructed by Evolving Clustering Method (ECM) models. The 

median of the outcomes distribution is here retained as the ensemble aggregate. The ensemble 

approach is applied to a real case study concerning the validation and reconstruction of 792 signals 

measured at the Swedish boiling water reactor located in Oskarshamn. 
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1.  INTRODUCTION 
 

Plant monitoring relies on the signals collected by a large number of sensors placed at various 

locations in the plant. Sensors contribute to the safe and efficient operation of modern plants by 

conveying information on the plant state to the automated controls and the operators. In this view, the 

measured signals are transmitted to these systems to evaluate the plant health state and eventually take 

corrective or emergency actions for safely steering critical situations and preventing accidents. To 

avoid misleading information which may lead to unsafe and/or inefficient actions, it is important to 

detect sensor malfunctions and possibly reconstruct the incorrect signals. This requires monitoring the 

sensor performance and being able to promptly detect eventual sensor failures. This leads to increasing 

confidence in the recorded values of the monitored parameters, with important consequences on 

system operation, production and accident management and bears also the potential benefit of 

reducing unnecessary sensor maintenance [1, 2]. 

 

In many practical applications, auto-associative models have been used for signal validation [3, 4]. 

Nevertheless, a limitation of such models is that they can only handle a limited number of signals, 

whereas in practice thousands of signals must be validated. 

 

The problem is here tackled by resorting to an ensemble-based signal reconstruction procedure. 

Ensembles of models are indeed an effective approach to tackle complex, large-scaled problems for 

they allow substituting the use of a single, optimal model (hard to develop as the problem becomes 

complex) with the use of multiple, non-optimal models, provided their outcomes are properly 

aggregated. Furthermore, adopting ensembles of diverse models enhances the robustness of the 

ensemble-aggregated output [5-8]. 

 

The ensemble approach hereby developed is founded on the subdivision of the set of sensor signals 

into small, diverse, yet overlapping groups, the development of a reconstruction model for each group 

of signals and the aggregation of the outcomes of the individual models to obtain the reconstructed 

signal values.  



The generation of the groups of signals is the main focus of this work. In this respect, the selection of 

the signals to insert in each group should be driven by both the individual properties of the groups 

(such as the mutual information content of the signals in the groups and the group size) and the global 

properties related to the ensemble of models (such as the signal diversity between the groups, the 

signal redundancy and the ensemble size) [5, 9-15]. 

 

To enhance the global ensemble properties, groups have been randomly generated resorting to the 

Random Feature Selection Ensemble (RFSE) technique [12, 16]. Nevertheless, this pure-random 

technique completely discards the individual properties of the groups. For this reason, two more 

refined, yet random-based grouping approaches have been developed. These approaches have been 

devised in order to account also for the individual properties of the groups and are hereby called 

random-filter and random-wrapper.  

 

Both techniques are based on the random sampling of a signal. In the random-filter approach, the 

group in which inserting the randomly sampled signal is empirically selected as the one that provides 

the highest correlation between the sampled signal and the others already included in the group. On 

the contrary, the random-wrapper approach directly accounts for the performance of the model 

effectively used for reconstructing the signals, and thus the randomly sampled signal is inserted in the 

group whose corresponding model provides the best signal reconstruction performance. 

 

Evolving Clustering Method (ECM)-based models [17] have been adopted to reconstruct the signals. 

ECM models are robust and demand a short training process, making them suitable for the multiple-

model ensemble approach. 

   

The median of the outcomes distribution is retained as the ensemble output. This allows avoiding the 

inclusion in the ensemble aggregate of largely incorrect models’ signal reconstructions (conjectured to 

lie on the tails of the outcomes distribution) possibly due to the complete or partial group 

randomization [13-15]. 

 

Section 2 illustrates in details the multi-group ensemble approach hereby developed. In Section 3 the 

method is applied to a real case study concerning the reconstruction of 792 signals measured at a 

Swedish nuclear boiling water reactor. Conclusions are drawn in the last Section. 

   

 

2.  THE MULTI-GROUP ENSEMBLE APPROACH 
 

Figure 1 illustrates the multi-group ensemble approach. As previously stressed, the approach proceeds 

in three steps: (1) the generation of the groups of signals, (2) the development of the models for 

reconstructing the signals and (3) the aggregation of the outcomes of the individual models based on 

the groups.  

 

Figure 1: The multi-group ensemble approach to signal reconstruction 

 
 

Concerning the first problem, the selection of the signals to insert in each group should be driven by 

both the individual properties of the groups and the global properties related to the ensemble of 

models. Concerning the group individual properties, signals should be inserted in a group in such a 

way that: 



 the mutual information content of the signals in the group is high for it leads to better 

reconstruction performances of the associated individual model [5, 10, 11]; 

 the groups size is small since models based on a reasonably small number of signals are easier 

to develop [5, 9-11]. 

  

Coming to the global ensemble properties, the groups must:  

 be diverse in terms of signal composition for that leads to having diverse models and thus an 

increased ensemble robustness [5-8]; 

 ensure a good signal redundancy, i.e. an adequate number of diverse groups containing a same 

signal [5, 9]; 

 be limited in number since that helps reducing the computational cost.  

 

Operatively, the average size of the groups m  in the ensemble and the redundancy of the signals R  

in the groups have been decided a priori based on empirical considerations related to the case study 

under analysis. Given these two parameters and the total number of signals n  to validate and 

reconstruct, one can immediately calculate the number of groups to generate using the identity [12]1: 

 

     m K nR     (1) 

 

To ensure adequate diversity and signal redundancy, groups must partially overlap (in order to have 

each signal included in more than one group), while still being sufficiently diverse among one another. 

  

To this aim, groups are randomly generated resorting to the Random Feature Selection Ensemble 

(RFSE) technique [12, 16]. The RFSE technique consists in randomly sampling a signal 1,2,...,i n  

and inserting it in a randomly sampled group 1,2,...,k K , provided that the sampled signal has 

redundancy iR  smaller than R  and that the sampled group has size km  smaller than MAXm . 

Randomizing the features of the groups (upon which the signal reconstruction models are built) with 

the RFSE technique allows obtaining highly diverse signal groups and, correspondingly, diverse signal 

outcomes from the individual models within a fast group generation process. 

 

Nevertheless, this pure-random technique seeks no optimization of the composition of the individual 

groups, i.e. no relevance is given, for example, to the correlation between the signals in the groups or 

to their capability of efficiently reconstructing one another. 

 

The random-filter and random-wrapper approaches here presented tackle this problem. Both 

techniques are based on the random sampling of a signal 1,2,...,i n . In filter approaches, the 

algorithm for evaluating the goodness of the groups functions as a filter, i.e. the decision of including 

or discarding the sampled signal in a group is based on characteristics judged to be (indirectly) 

favorable for signal validation and reconstruction, independently of the specific model which is then 

used to reconstruct the signals. The correlation between the signals in the group is typically used as an 

indirect measure for comparing the goodness of the groups. In this view, in the random-filter 

approach, the group in which inserting the randomly sampled signal is empirically selected as the one 

that provides the highest correlation between the sampled signal and the others already included in the 

group. This criterion is intuitively motivated by the fact that the signals in the groups are used to build 

models for their reconstruction and by the conjecture that strongly positively or negatively correlated 

signals are capable of regressing one another. In fact, the information content of strongly negatively 

correlated signals is also very high and comparable to the one derived from strongly positively 

                                                 
1
 Notice that by setting the average group size m  and a maximum allowed group size MAXm  groups 

are going to range from an unknown minimum number of signals to MAXm  having on average m  

signals, each one appearing in R  different groups, i.e. with the same redundancy. 



correlated signals. The measure herein used to quantify these characteristics is the Pearson’s 

correlation coefficient [5, 10, 11]. 

 

On the contrary, in wrapper approaches the algorithm to evaluate the goodness of the groups behaves 

as a "wrapper" around the specific model used for the validation and reconstruction of the signals; 

during the grouping process, the performance of the validation and reconstruction model itself is 

directly used as evaluation function to compare the different candidate groups [11, 18]. Therefore, in 

the random-wrapper approach the randomly sampled signal is inserted in the group whose 

corresponding model provides the best reconstruction performance for that signal, i.e. the smallest 

reconstruction error computed on a set of test samples
2
.  

 

This way of proceeding allow controlling of the ensemble parameters (group size, signal redundancy 

and ensemble size) and maintaining high diversity between the groups in the ensemble while 

accounting also for the mutual information between the signals inserted in the groups. The three 

grouping approaches hereby developed are sketched in Figure 2. 

 

Figure 2: Sketch of the pure-random, random-filter and random-wrapper approaches to signal 

grouping 

 
 

With respect to the type of model to adopt for reconstructing the signals, a number of aspects must be 

taken into account. Indeed, models must be accurate and provide a correct reconstruction of the 

signals. Nonetheless, the models’ robustness is a fundamental aspect to take into consideration: in fact, 

                                                 
2
 The reconstruction error for signal i by group k is simply obtained by averaging over the Ntst test 

samples the differences between the  real signal values ( )if t , 1,2,..., tstt N  and the corresponding 

predictions of group k, ˆ ( )k
if t , 1,2,..., tstt N .In the application that follows, signals are previously 

normalized in the range [0.2, 1], for convenience. 



in case sensors failures lead to producing corrupted measurements of the physical quantity of interest 

and thus conveying wrong information to the plant monitoring systems, the model must be capable of 

reconstructing the correct signal values by exploiting the information carried by the other signals. 

Finally, since the multi-group ensemble approach provides for the development of a considerable 

number of models, the adoption of simpler, yet fast models is preferable to using complex models 

which require time-consuming training processes. This is especially valid if signal grouping is based 

on the random-wrapper approach which provides for the development of an extremely large number of 

models during the group generation phase. 

 

The ECM model here adopted fulfills these requirements. In fact, the ECM is a fast, one-pass 

algorithm for dynamic clustering of an input stream of data. It is a distance-based clustering method 

where the cluster centres are represented by evolved nodes in an on-line mode. The clustering process 

starts with an empty set of clusters. The data stream, i.e. the training samples, is used to generate a 

number of multi-dimensional clusters identified by their position in the sample space and thier width. 

Given a maximum allowed cluster width, during the training process, the position and width of the 

clusters are continuously updated and a near-optimal cluster distribution is eventually obtained. Based 

on these clusters, the model is expected to generalize by associating to an unseen sample the (multi-

dimensional) value of the centre of the closest cluster [17]. 

 

Regarding the aggregation of the outcomes of the individual models, when adopting the pure, filter or 

wrapper methods for signal grouping, one must account that the (partly) randomized composition of 

the signal groups is such that some models might provide largely incorrect signal reconstructions 

which negatively affect the ensemble aggregate. Thus, discarding the outcomes of some models can 

enhance the accuracy and robustness of the aggregated output.  

 

To reduce the risk of including largely incorrect outcomes in the ensemble aggregate, the median of 

the outcomes distribution is here considered. This choice is motivated by the randomness of the 

models outcomes, which, if unbiased, are expected to distribute around the correct (unknown) signal 

value. In this view, the outcome lying in the centre of the distribution is conjectured to be close to the 

correct signal value, whereas those lying on the tails of the distribution are considered fairly incorrect 

[13-15]. 

 

The median approach considers for the generic pattern t the single outcome ˆ ( )Ck
if t  lying in the centre 

of the distribution of the outcomes for that sample, i.e.: 

 

     ˆ ˆ( ) ( ) 1,2,...,CkE
i if t f t i n           (2) 

 

where Ck  denotes the index of the model whose outcome is central with respect to the reconstructed 

values of the iK  models including signal i. 

 

Finally, to evaluate the performance of the ensembles based on the different aggregation techniques, 

first the absolute ensemble signal reconstruction error is computed using the tstN  test samples: 

 

     
1

1 ˆ( ) ( )
tstN

E E
i i i

tst t

f t f t
N




     (3) 

 

Then, the ensemble reconstruction error is retained as the average of the absolute signal reconstruction 

errors of Eq. (3): 
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3.  APPLICATION 
 

The proposed grouping approaches are applied for comparison on a data set of n=792 signals 

measured at a nuclear Boiling Water Reactor (BWR) located in Oskarshamn, Sweden.  

 

A total number N=8476 of 792-dimensional patterns is available. Data signals have been sampled over 

a 3-year period (2004-2006) from a corresponding number of sensors. Half of the available patterns 

(randomly sampled) have been used to perform the random-filter and random-wrapper groupings, i.e. 

to compute the signals correlations and the signal reconstruction errors of the models. The remaining 

samples have been randomly divided in a training set (75% of the patterns) to train the ECM models 

and a test set to compute the ensemble performances (Eq. 3, 4). Based on practical considerations, the 

required average group size m  has been set equal to 50 allowing a maximum group size 52MAXm  . 

Signal redundancy R  has been set equal to 7 for all signals. Once m  and R  are set, the number of 

groups K  to generate is obtained from Eq. (1), being therefore equal to 111. 

 

As previously mentioned, the goodness of a signal grouping approach can be measured in terms of the 

diverse signal composition of the groups. An empirical measure is here proposed to verify the 

diversity between the groups in the ensemble. Let us consider a generic ensemble of K  groups with 

different sizes km , 1,2,...,k K . The pair-wise diversity between two generic groups 1k  and 2k  of 

sizes 
1km and 

2km , respectively, can be computed as: 

 

     1 2

1 2

,

,

1

1 exp(12 6)

k k

k k
com

div



 

   (5) 

 

where  1 2 1 2

1 2

, ,
max ,

k k k k
com com k kn m m   is the normalized fraction of signals in common between the two 

groups ( 1 2,k k
comn ). 

 

This measure is such that high pair-wise diversity values are assigned to those pairs of groups whose 

fraction of common signals is relatively low (i.e. if 1 2, 0k k
com  , 1 2,

1
k k

div  ), whereas it penalizes 

group pairs with too many signals in common (i.e. if 1 2, 0.5k k
com  , 1 2,

0.5
k k

div  ). 

 

To compute the diversity at the level of the ensemble of groups, first the diversity for each signal 

1,2,...,i n  is calculated. Considering the generic signal i  included in iK  groups, the signal diversity 

id  is taken as the average of its iK  groups’ pair-wise diversities 1 2,k k
div , 1 2, 1,2,..., ik k K , 1 2k k , 

viz.: 

 

     1 2

1 2

2 1

,

1 1

1 1

1
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d div
K K 



 
 
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The ensemble diversity   is, then, simply computed as the average of the signals diversities: 

 

     
1
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n

i

i

d
n
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Table 1 compares the pure-random, random-filter and random-wrapper approaches in terms of the 

required computational time, ensemble diversity (Eq. 7) and the ensemble reconstruction error (Eq. 4).  

 

The pure-random, based on random sampling of both signals and groups, ensures the highest signal 

diversity in the groups with the smallest computational effort. On the other hand, the filter and 

wrapper approaches generally obtain smaller ensemble diversities and require larger computational 

times (especially the random-wrapper). In this respect, notice that signal grouping is performed off-

line and therefore the related computational cost will not affect the effectiveness of the on-line signal 

reconstruction. 

 

The diversity-reduction effect is especially marked in the random-filter approach and can be explained 

by the presence of subsets of highly correlated signals which tend to generate similar groups; instead, 

the random-wrapper approach maintains high signal diversities thanks to the fact that highly 

correlated signals do not necessarily ensure the best model performances and therefore similar subsets 

of signals are not likely to be inserted in many groups. 

 

The random-filter approach combined with the median achieves no improvement with respect to the 

pure-random approach. In fact, the loss of signal diversity between the groups most likely leads to 

having very similar (i.e. biased) model predictions for a signal, which therefore are not distributed 

around the correct signal value, as previously conjectured. This also reveals that in the random-filter 

approach the advantage of an increased signal mutual information in the groups and the disadvantage 

of a decreased group diversity have compensated each other; on the contrary, in the random-wrapper 

approach the higher signal reconstruction capability of the individual models coupled with a high 

diversity between the groups allows achieving the best ensemble reconstruction performances. 

 

Table 1: Computational cost, ensemble diversities and reconstruction errors obtained by the 

pure-random, random-filter and random-wrapper approaches 

 

 

 

 

 

 

Nevertheless, a robust ensemble of models must be capable of reconstructing the signals when in 

presence of sensor failures, such as drifts. Within the proposed ensemble approach, a faulty sensor 

sends a faulty signal in input to the reconstruction models which include that signal; in this situation, 

the ensemble of models should still be capable of providing a good estimate of the true value of the 

signal by exploiting the information coming from the non-faulty signals in the groups of the ensemble. 

 

The robustness of the three grouping approaches has been specifically tested for comparison on the 

reconstruction of faulty signals in case of multiple sensor failures. Ten signals have been chosen as 

objects of the analysis. Approximately, the first third of the signal test samples has been left 

undisturbed as in the normal operation, while, in order to simulate a sensor failure, a linear drift has 

been introduced in the remaining test values. 

 

Figure 3 shows the ensemble signal reconstruction errors (Eq. 3) for the ten drifted signals obtained 

with the pure-random, random-filter and random-wrapper grouping approaches, respectively. The 

random-wrapper approach provides the best performances for all signals and ensures the smallest 

spill-over effect
3
 ( 0.1656tot

pure randomS    vs. 0.1734tot
random filterS    vs. 0.1546tot

random wrapperS   ). 

                                                 
3
 Spill-over is the detrimental effect on the reconstruction of undisturbed signals when some signals 

are disturbed. It is computed in terms of signal sensitivity as done in [19]. For each signal not affected 

by disturbs we compute the average deterioration in its reconstruction when other signals are affected 

by disturbs. Given two generic signals 1i  and 2i , the sensitivity of 1i  undisturbed with respect to 2i  

 pure-random random-filter random-wrapper 

Computational time < 1 minute Approx. 5 minutes Approx. 100 minutes  

  0.9939 0.8259 0.9687 

E  0.00603 0.00605 0.00530 



 

Finally, Figure 4 shows the reconstruction of drifted signal 792 obtained by the random-wrapper 

ensemble. The reconstruction (top graph in the Figure) is very close (sometimes superposed) to the 

real signal value and does not see the drift. This can be also seen by the residual (bottom graph in the 

Figure) which is computed as the difference between the measured and reconstructed signal values. 

Notice that residuals are the parameters upon which sensor monitoring systems usually perform the 

sensors diagnosis: when residuals exceed some thresholds, the system reports the presence of a sensor 

failure. For this reason, early sensor fault detection requires right and prompt information from the 

residuals which is here effectively conveyed by the developed ensemble signal reconstruction 

procedure. 

 

Figure 3: Ensemble signal reconstruction errors for ten drifted signals obtained with the pure-

random, random-filter and random-wrapper grouping approaches, respectively 
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Figure 4: Reconstruction of signal 792 (light line) when drifted (dark line) by the random-

wrapper ensemble (dark dots) and corresponding residuals (bottom graph) 
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4.  CONCLUSIONS 
 

This work has tackled the problem of large-scale signal validation and has shown a practical 

application regarding signals measured at nuclear power plants. 

 

The strategy hereby followed is based on the use of an ensemble of reconstruction models. In this 

respect, firstly signals must be grouped into many small, overlapping groups. Then a corresponding 

number of reconstruction models must be developed and, finally, the outcomes of the models must be 

opportunely aggregated. 

 

The paper has focussed on methods for generating the groups of signals and three approaches have 

been proposed: the pure-random approach in which signal are randomly sampled and inserted in 

randomly sampled groups; the random-filter and random-wrapper approaches according to which the 

group in which inserting the signal is selected based on the characteristics of the other signals already 

present in the groups, such as the mutual correlation and the mutual reconstruction capabilities, 

respectively. Evolving Clustering Method has been used as signal reconstruction model and the 

median of the model outcomes distribution as ensemble aggregate. 

 

The application has concerned the validation of 792 signals measured at the Oskarshamn boiling water 

reactor. The random-wrapper approach has demonstrated its superiority in reconstructing correctly the 

signals, especially when the corresponding sensors are affected by failures which convey corrupted 

measurements. 
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