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ABSTRACT 11 

The generation time of an infectious disease is the time between infection of a primary case 12 

and infection of a secondary case by the primary case. Its distribution plays a key role in 13 

understanding the dynamics of infectious diseases in populations, e.g. in estimating the basic 14 

reproduction number. Moreover, the generation time and incubation period distributions 15 

together characterize the effectiveness of control by isolation and quarantine. In modelling 16 

studies, a relation between the two is often not made specific, but a correlation is biologically 17 

plausible. However, it is difficult to establish such correlation, because of the unobservable 18 

nature of infection events. We have quantified a joint distribution of generation time and 19 

incubation period by a novel estimation method for household data with two susceptible 20 

individuals, consisting of time intervals between disease onsets of two measles cases. We 21 

used two such datasets, and a separate incubation period dataset. Results indicate that the 22 

mean incubation period and the generation time of measles are positively correlated, and that 23 

both lie in the range of 11-12 days, suggesting that infectiousness of measles cases increases 24 

significantly around the time of symptom onset. The correlation between times from infection 25 

to secondary transmission and to symptom onset could critically affect the predicted 26 

effectiveness of isolation and quarantine. 27 

 28 

HIGHLIGHTS 29 

� Household measles data, consisting of time intervals between symptom onset of two 30 

cases, are analysed 31 

� Correlation between the times from infection to symptom onset (incubation time) and 32 

to secondary transmission (generation time) are explicitly modelled 33 

� Measles incubation time and generation time appear positively correlated, which 34 

could affect the effectiveness of case isolation and quarantine 35 
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1. Introduction 38 

To capture the transmission dynamics of infectious diseases appropriately, a good 39 

understanding of specific time events and intervals concerning infection processes and onset 40 

phenomena is crucial [1-4]. Of the various time intervals describing the intrinsic transmission 41 

process, the generation time is defined as the time between infection of a primary case and 42 

infection of secondary cases caused by the primary case [5]. Mathematical theory describing 43 

the increase in infected individuals shares its origin with that of mathematical demography 44 

[6], where the distribution of the generation time (which describes the time from birth to the 45 

age at reproduction) has been known to play a key role in describing population dynamics by 46 

successive generations of birth events. Similarly, for infectious diseases, it is essential to 47 

know the generation time distribution to offer a robust estimate of the reproduction number (a 48 

measure for the transmission potential of a disease) from real-time epidemic growth data [3, 7, 49 

8].  50 

A second important interval is the incubation period, defined as the time between 51 

infection and onset of symptoms. Knowing the incubation period distribution is crucial for 52 

control of an infectious disease, e.g. to inform how long people should be quarantined, or 53 

how long contacts should be traced back to find other cases. The generation time and 54 

incubation period distributions together determine the effectiveness of control measures such 55 

as ‘transmission-reducing’ treatment, isolation and quarantine [9, 10], through the level of 56 

infectivity before onset of symptoms. Current calculations, however, do not make specific 57 

assumptions on dependence between generation time and incubation period. Dependency 58 

may be expected from a biological perspective and could affect the effectiveness of isolation. 59 

More quantitative knowledge on the relationship between infectivity and disease is therefore 60 

essential.  61 

Whereas for the incubation period, data are often available from persons with a single 62 
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and known contact to an infected, it is not an easy task to estimate the generation time 63 

distribution in practice, because infection events are seldom directly observable. There have 64 

been attempts, for example, to estimate the generation time distribution from viral shedding 65 

data [11], but it is difficult to link virological findings to the epidemiological phenomenon of 66 

secondary transmission without further information (e.g. frequency, mode and degree of 67 

contacts).  68 

Previously, the distribution of the generation time was implicitly assumed to correspond 69 

exactly to that of the serial interval [12], defined as the time from symptom onset in a given 70 

case to symptom onset in secondary cases [13-15]. The relation between the two intervals is 71 

shown in Figure 1. It shows that the serial interval between two cases � is in fact an 72 

aggregation of three intervals, namely the generation time u and two incubation periods t1 and 73 

t2. Here we will assume that t1 and t2 are equally distributed, although even this is not obvious 74 

if infectiousness and symptoms are correlated. Under this assumption, it is clear that the mean 75 

of the generation time and serial interval distributions should be the same, but implicitly 76 

assuming that the generation time distribution corresponds exactly to the serial interval 77 

distribution is incorrect and may lead to flawed estimation of the reproduction number. A 78 

correction of the variance by use of incubation period data could be considered, but is not 79 

straightforward, because of the likely dependence between the generation time and incubation 80 

period of the primary case. 81 

Estimation of the generation time distribution by use of observed intervals between 82 

disease onset of two cases, is complicated for more reasons. For instance, it may be that 83 

asymptomatic cases are missed so that two cases are not uniquely or only indirectly linked 84 

[16]. Also, the secondary case may develop symptoms before the primary case, resulting in a 85 

negative serial interval but not observable as such. Finally, cases may have been infected both 86 

by an external source (co-primary cases), either at the same time or at different and 87 
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independent times. We will in the rest of the paper use d to denote any interval between 88 

disease onset of two cases, and reserve � for the theoretical (real) serial interval. When 89 

analyzing such data, all possible mechanisms should be accounted for.  90 

To tackle this issue, the present study revisits the time interval between onsets of two 91 

measles cases in households (i.e. distribution of the time interval between onset of the first 92 

case and onset of the second case in families with two susceptible individuals). This type of 93 

data, with the characteristic bimodal distribution, has been studied and reviewed extensively 94 

[14, 17-19]. In the present study, we propose a new method to estimate the generation time 95 

distribution from these data, and we aim at explicitly quantifying the correlation between the 96 

generation time and incubation period. Since household contacts are made in intense 97 

conditions of close proximity [15], we realize that our estimates cannot directly be 98 

extrapolated beyond the household setting. Rather, we aim– for the first time – at specifically 99 

addressing the dependence between generation time and incubation period, and at developing 100 

a methodological basis to estimate the generation time distribution using observable 101 

epidemiological data. In addition, we address identifiability of the model parameters, in 102 

particular the correlation coefficient, by analysis of datasets simulated with parameter 103 

estimates. 104 

 105 

2. Materials and methods 106 

2.1. Data 107 

We analyzed time intervals between onset of first and second cases of measles in 108 

households with two susceptible individuals. Here we use the terms “first” and “second” 109 

cases (i.e. not primary and secondary cases), because it is unknown whether the second case 110 

was infected by the first, the first by the second, or whether they were both infected in the 111 

community. While many analyses of the serial interval of measles were performed with Hope 112 
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Simpson’s [20] or Kenyan datasets [21], the present study used two datasets with larger 113 

sample sizes which were collected in Rhode Island from 1917-23 [22] and 1929-34 [23] and 114 

were previously revisited to estimate latent and infectious periods [24]. Figure 2 shows the 115 

observed distributions extracted from the two abovementioned publications, the original data 116 

of which are available in Appendix A of the Supplementary Materials.  117 

In total, 5,762 and 4,516 intervals between two cases in the households were recorded in 118 

1917-23 and 1929-34, respectively. In the former dataset, there were no documented pairs of 119 

cases with d = 0 (where d is the observed interval in days between onset of the two cases), 120 

but there are many pairs with d = 1. Following Wilson and others [23], we assume that all 121 

pairs with d = 0 were included in this dataset as d = 1. In addition, although both datasets 122 

included pairs with d > 30 days, all observations of d > 30 were grouped together.  123 

In addition to the time intervals between two onsets of measles in a household, we 124 

extracted a separate incubation period dataset from a different historical publication of 125 

measles in 1931 [25, 26] for use in our analyses. In that study, incubation periods were 126 

recorded for 116 cases based on detailed observations of contact which arose from cases that 127 

experienced only a single day of exposure. Figure 3 illustrates the incubation period 128 

distribution, the original data of which are available in Appendix B of the Supplementary 129 

Materials. Sample mean (median) and variance of the incubation period were 12.3 (12.0) 130 

days and 12.1 days2 respectively.  131 

 132 

2.2. Theoretical basis 133 

Here we explain the epidemiological mechanisms underlying the bimodal distribution of 134 

the time intervals in Figure 2. As noted previously [27, 28], two cases in a household with 135 

two susceptible individuals are the result of either (i) community infection in both cases (i.e. 136 

“co-primary” cases) or (ii) community infection of the first case and household infection of 137 



 - 8 - 

the second. Possibility (i) is then reflected in the first peak and possibility (ii) corresponds the 138 

second peak. Although previous reviews have discussed this issue implicitly by defining a 139 

cut-off point of d to distinguish (i) from (ii) [14, 18], we do not take this approach and, rather, 140 

employ a mixture distribution. In addition, we allow for a third possible infection history, 141 

namely that both cases were independently infected in the community. Figure 1(a) illustrates 142 

the three mechanisms leading to f(d), the probability distribution of d: 143 

Mechanism 1. Both cases independently experienced infection in the community, which 144 

accounts for a proportion �1 of the observations (where 0 ≤ �1 ≤ 1). 145 

Mechanism 2. Both cases were infected at an identical point in time in the community, 146 

which accounts for a proportion �2 (where 0 ≤ �2 ≤ 1–�1). 147 

Mechanism 3. One case was infected in the community and the other was infected by the 148 

primary case in the household, which accounts for a proportion 1-��1 -��2.  149 

If we denote the probability of difference d by mechanisms 1, 2 and 3 by q1(d), q2(d) and 150 

q3(d), respectively, we can express the mixture density f(d) as 151 

 
� � � �� � � �� �

� �� �
1 1 1 2 2 2

1 2 3 3

( ) ( )

(1 ) ( )

f d q d q d q d q d

q d q d

� �

� �

� 	 
 	 	 
 	


 
 	 

 (2.1) 152 

That is, we assume that the bimodal distribution in Figure 1 is decomposed into three 153 

underlying epidemiological mechanisms, expressed as a three-component mixture 154 

distribution. The densities q1 and q2 are assumed to reflect the difference in onset between the 155 

two cases in random order, which is why all densities q1, q2, and q3, d can be negative and 156 

positive. In f(d), the difference d ≥ 0.  157 

 158 

2.3. The model 159 

Here we describe how the three mechanisms result in three probability distributions, 160 

specifying our parameters of interest. The first term of the mixture distribution, q1(d), in 161 
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equation (2.1) is 162 

 
� � � �2

1
1 0 ,
( )q d p d

�
� , (2.2) 163 

which is the density of a normal distribution with mean 0 and variance �1
2. This distribution 164 

arises if measles occur in (seasonal) epidemics, and the dataset does not contain pairs of cases 165 

occurring in different epidemics. Then, the time interval d is the time difference between 166 

onset of two independently sampled cases from an epidemic. Assuming that each epidemic 167 

curve is approximately bell-shaped (Farr’s model [29]), d is normally distributed with twice 168 

the variance of the epidemic curve. 169 

The probability of observing a difference d owing to mechanism 2 depends on the 170 

density function g(t) of the incubation period of length t. Because the two cases are infected 171 

at the same time, d is the difference (i.e. cross-correlation) of independently and identically 172 

distributed incubation periods. Thus, the probability density function q2(d) is equal to 173 

 � � � �2 0
( )q d g g d d� � �




� 	�  (2.3) 174 

Because either case can be the first to show symptoms, a negative d should be regarded as 175 

one case being the first (e.g. the oldest), and a positive d as the other being the first. 176 

Mechanism 3 reflects the serial interval within households. From Figure 1 we see that the 177 

serial interval � is given by 178 

 2 1u t t� � 	 
 , (2.4) 179 

which is interpreted as the sum of the generation time u and incubation period of the 180 

secondary case t2 minus the incubation period of the primary case t1. Thus, if u, t1 and t2 were 181 

independent random variables, the serial interval distribution would be the convolution of the 182 

generation time and incubation period distributions followed by the cross-correlation of this 183 

convolution and the incubation period distribution. However, it is biologically natural to 184 

assume that t1 and u are dependent (e.g. cases with short incubation period may cause 185 
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secondary transmission earlier on average than cases with long incubation periods). Therefore, 186 

we assume that u and t1 follow a joint distribution h(t1,u), so that the probability of observing 187 

difference d due to mechanism 3 depends on the incubation period distribution g(t2) and on 188 

this joint distribution h(t1,u). Under this assumption, g(t) is a marginal distribution of h(t,u). 189 

Now, the probability density q3(d) is equal to 190 

 � � � �3 0 0
( ) ,q d h u g d u dud� � �


 


� 
 	� �  (2.5) 191 

  192 

2.4. Statistical analysis 193 

We fitted a lognormal, gamma, and Weibull distribution to the incubation period data, by 194 

means of maximum likelihood estimation. Akaike’s Information Criterion (AIC) was used to 195 

decide which of these distributions to choose for further analysis. The Weibull distribution 196 

was rejected for further use. 197 

For construction of joint (cumulative) distribution functions H(t,u), we combined two 198 

lognormal or gamma marginal distributions by use of a Gaussian copula function. Copula 199 

functions provide a correlation structure to sets of marginal distributions [30]. In our case, we 200 

first denote the marginal distribution functions of T and U by PT(t) and PU(u), respectively. 201 

Because 0 < PT(t),PU(u) < 1, we can write the joint distribution as 202 

 203 

 � � � �� � � �� �� �1 1, ,T UH t u P t P u�

 
� � � �  (2.6) 204 

 205 

Here, � is a normal distribution with standard normal marginals [30]. For the marginal 206 

distributions PT(t) and PU(u), we chose two lognormal distributions or two gamma 207 

distributions (not Weibull, as argued above), as these are the most commonly used for 208 

generation times and incubation times [2, 12, 31]. We will refer to these distributions as the 209 
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bilognormal and bigamma distributions. 210 

 Both distributional assumptions result in distributions with 5 parameters; i.e. two 211 

parameters for the marginal incubation period and generation time distributions in addition to 212 

a correlation parameter �. Since we additionally estimate �1, �1 and �2, there are in total 8 213 

parameters to be estimated.  214 

Because the density of d with the third mechanism (within household transmission) 215 

includes a convolution of g(t) and the bivariate density h(t,u), a likelihood approach was 216 

computationally too challenging, even in a classic Bayesian procedure where the likelihood 217 

need not be maximized but evaluated at many sampled points in parameter space. Therefore, 218 

we employed Sequential Monte Carlo sampling (SMC), in particular the ABC-PRC algorithm 219 

(Approximate Bayesian Computation – Partial Rejection Control), described by Sisson and 220 

others [32]. The ABC-PCR algorithm was programmed in R statistical software. A 221 

step-by-step explanation of the algorithm as we used it is given in Appendix C of the 222 

Supplementary Materials. The idea is as follows: the algorithm starts by sampling 2000 223 

parameter sets from prior distributions. Subsequently, a second population of parameter sets 224 

is obtained by sampling from the first, perturbing, simulating a dataset and comparing the 225 

simulated data to the real data. If both datasets are close enough, ie if the �2 statistic is below 226 

some selection threshold �2, the parameter set is accepted for the second population. Then a 227 

third population is obtained from the second with a more restrictive selection threshold �3, 228 

then a fourth, etc, until the final selection threshold �min is met. From the final population of 229 

parameter sets, the medians and 95% credible intervals are derived. �230 

The fits of the two distributional assumptions, bilognormal and bigamma, were 231 

compared by use of the deviance � � � �� �ˆ2 log logi i i i i if f n f f n
� , in which fi are the 232 

observed frequencies, ˆ
if  the expected frequencies, and ni the total numbers of observations 233 
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which fi is part from (5762 or 4516 onset differences, or 116 incubation periods). For the 234 

expected frequencies of onset differences a simulated distribution was constructed with 235 

100,000 samples with the median parameter estimates. The expected frequencies of the 236 

incubation periods were calculated exactly. 237 

 238 

2.5. Parameter identifiability�239 

To address parameter identifiability of the proposed estimation method while saving 240 

substantial time for the iteration procedure, we have made four different assumptions 241 

regarding the data generating process of the ‘real model’. That is, we simulated datasets that 242 

were similar to the original data under the four assumptions. The simulated datasets were 243 

subsequently analyzed using the two models (bivariate lognormal and bivariate gamma), and 244 

the resulting estimates were compared to the parameter values used for the simulations. The 245 

four assumptions on the real model were: 246 

(1) a bivariate lognormal distribution of incubation and generation times with 247 

positive correlation (20 simulated datasets) 248 

(2) a bivariate gamma distribution of incubation and generation times with positive 249 

correlation (20 simulated datasets) 250 

(3) a bivariate lognormal distribution of incubation and generation times without 251 

correlation (10 simulated datasets) 252 

(4) a bivariate gamma distribution of incubation and generation times without 253 

correlation (10 simulated datasets) 254 

Simulations with (1) and (2) were carried out with consensus parameter values based on the 255 

four sets of original estimates derived from the two empirical datasets. For simulations with 256 

(3) and (4), consensus parameters were obtained after re-analysis of the original datasets, 257 

forcing the correlation coefficient at 0 (no correlation), with both lognormal and gamma 258 
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models. 259 

Identifiability was first assessed for each parameter separately. The mean of the posterior 260 

medians was calculated, and we determined how frequent the median was lower and higher 261 

than the true value. In addition, we determined how frequent the 95% credible interval 262 

contained the true parameter value, and we tested whether this was significantly different 263 

from 95% (Fisher’s exact test). Identifiability for the whole model was quantified by the 264 

number of parameters failing the latter test (number of parameters correctly identified). 265 

 266 

 267 

3. Results 268 

3.1. Incubation period data 269 

The fitted lognormal, gamma, and Weibull distributions are shown in Figure 3. The AICs for 270 

the three models were 605.7, 608.2, and 626.1, respectively. Thus, we decided not to continue 271 

with the Weibull distribution. 272 

 273 

3.2. Bilognormal distribution 274 

Assuming a bilognormal distribution for h(t,u), the SMC algorithm took 22 and 21 iterations 275 

before reaching �min for the two datasets, respectively. The resulting parameters and 95% 276 

percentile intervals are presented in Table 1, where the actual estimates of the distributional 277 

parameters have been translated into means and standard deviations of the intervals of Figure 278 

1. The mean incubation periods of 11.6 and 11.3 days were very similar to the mean 279 

generation times of 12.2 and 11.2 days in the years 1917-1923 and 1929-1934, respectively. 280 

This is also reflected in the mean time from onset to secondary transmission, which is close 281 

to 0. As expected, the mean serial intervals were equal to the mean generation times, but the 282 

standard deviations of the serial intervals are smaller. Both datasets indicate a strong and 283 
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significant correlation between the generation time and the incubation period, with estimated 284 

correlation coefficients of 0.903 and 0.969. Figure 4 shows the densities of the bivariate 285 

distributions of incubation and generation times according to the point estimates. Figure 2 286 

shows the theoretical distributions of the difference between the days of onset, indicating the 287 

contributions of the three mechanisms. It appears that the more irregular 1917-1923 dataset 288 

(deviance = 259) results in a slightly worse fit than the 1929-1934 data (deviance = 157).�289 

 290 

3.3. Bigamma distribution 291 

With the bigamma distribution for h(t,u), the SMC algorithm took 12 and 13 iterations before 292 

reaching �min for the two datasets, respectively. The results are given in Table 2. Compared to 293 

the bilognormal model, the standard deviations of the incubation period and generation time 294 

were smaller. Unlike the bilognormal model, the serial intervals now have larger standard 295 

deviations than the generation times. The correlation coefficient � was smaller as well, and 296 

with the first dataset, � was not even significantly larger than 0, but with the second dataset it 297 

was. With the bigamma distribution, the 1929-1934 data (deviance = 188) fitted better than 298 

the 1917-1923 data (deviance = 247), as was the case with the bilognormal distribution. 299 

Comparing the two distributional assumptions, the bigamma distribution fitted better with the 300 

1917-1923 data, but the bilognormal distribution with the 1929-1934 data. Figure 4 shows 301 

estimated bilognormal and bigamma distributions. The contributions of the three mechanisms 302 

was also different between the two distributions, but Figure 2 indicates that in all cases the 303 

first peak, second peak, and fat tail of the onset difference distribution are clearly explained 304 

by the three mechanisms separately. �305 

 306 

3.4. Parameter identifiability 307 

Table 3 shows a summary of the identifiability analysis, the details of which, including 308 
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parameter values used for simulation, are given in Appendix D of the Supplementary Material. 309 

It turns out that both lognormal and gamma models correctly identify the three components of 310 

the mixture distribution, with the bigamma method giving reliable estimates of the 311 

proportions of the components in most cases. Regarding the overall performance of the two 312 

models, the bivariate gamma model produces more reliable results: with three groups of 313 

simulated datasets, all 95% CIs for the eight parameters contained the true values (Table 3). 314 

The bivariate lognormal model correctly identified maximally 6/8, in only one case.  315 

The correlation coefficient is significantly overestimated by the lognormal model, but 316 

correctly identified by the gamma model, although slightly underestimated. The standard 317 

deviation of the generation time is also significantly overestimated by the lognormal model, 318 

and slightly underestimated by the gamma model. All other parameters are correctly 319 

identified or only slightly biased. In summary: only the gamma model produces reliable 320 

estimates, especially on the correlation between the incubation and generation times. 321 

 322 

4. Discussion 323 

The present study revisited the distribution of the time interval between the onsets of 324 

two cases of measles in households with two susceptible individuals. We decomposed the 325 

observed bimodal distribution into a mixture of three distributions, each explicitly linked to a 326 

relevant underlying epidemiological mechanism. We focused in particular on the third 327 

mechanism which reflects the time interval required for household transmission between first 328 

and second cases. Clearly illustrating the relationship between the incubation period, 329 

generation time and serial interval (Figure 1), we developed a method to estimate the 330 

generation time distribution, addressing dependence between the generation time and 331 

incubation period. To the best of our knowledge, the present study is the first to clearly 332 

decompose the observed data into underlying epidemiological mechanisms with realistic 333 
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definitions of the intrinsic parameters (without arbitrary cut-off values), reasonably deriving 334 

parameter estimates for the generation time distribution.  335 

We have used two datasets for two periods of observation, and a third dataset with 336 

incubation period observations. This third dataset is required to obtain estimates for the 337 

marginal incubation period distribution, especially for the mean because the onset difference 338 

datasets only contain differences between two incubation periods, and those have a mean of 0 339 

by definition. Because the first peak, reflecting the mechanism of dependent community 340 

transmission, should contain information on the variance of the incubation period, we tried to 341 

carry out the analysis without the incubation period data. That was unsuccessful, because the 342 

three mechanisms did explain the onset difference distribution incorrectly: the first peak was 343 

explained by mechanism 1 (independent infection outside household) with small �1, whereas 344 

the incubation period distribution was estimated to have a short mean and very large variance, 345 

thus explaining the fat tail. Fixing the mean incubation period at 12.3 days (the sample mean) 346 

so that only the variance needed to be estimated from the onset difference data, did not solve 347 

this problem.  348 

Ideally, the separate incubation period dataset would have been sampled from the same 349 

population as the household data (or even better: from the same households), because 350 

incubation periods could differ between situations. By taking a dataset from the same period 351 

and a similar population (UK) we have tried to minimize this issue. The results show that, 352 

because of the small number of cases in the dataset (116 cases), the parameter estimates for 353 

the incubation period distributions are still sensitive to the household data: in fact, the 354 

incubation period data could be considered as prior information for the household analysis. 355 

The contributions of the three mechanisms to the mixture distribution will not be the 356 

same in separate datasets. For instance, a large epidemic with more community transmission 357 

will result in more households with mechanism 1 (independent infection in the community), 358 
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whereas a higher infectiousness and contact rate within the household is related to more 359 

observations of mechanism 3 (within-household transmission). The fact that so many factors 360 

play a role, makes it difficult to use other type of data in the same epidemic to infer on these 361 

mixture probabilities. Fortunately, the three components of the mixture distribution could be 362 

well identified by our method, and the proportions of the three mixture components 363 

reasonably well estimated, at least by the bigamma method.  364 

In fact, the identifiability analysis clearly showed that the bigamma model in general 365 

provided much more reliable results than the bilognormal model. With the original data as 366 

well as the simulated data, the bigamma distribution resulted in a smaller correlation 367 

coefficient combined with smaller standard deviations of the incubation and generation times. 368 

This can be understood when realizing what characteristic of the data is indicative of 369 

correlation: the variance of the onset differences resulting from household transmission 370 

(mechanism 3), ie the width of the second peak. These onset differences are the sum of one 371 

independent incubation time T2 and the difference of a dependent generation time U and 372 

incubation time T1. Denoting the single variances by s2
T and s2

U, the variance of d3 is 373 

therefore var(d3) = 2s2
T + s2

U – 2�sTsU. This means that a particular var(d3) in the data can be 374 

a result of either a high correlation coefficient � in combination with high s2
T (as suggested 375 

by the bilognormal model), or of a lower � and smaller s2
T and s2

U (suggested by the 376 

bigamma model). The identifiability analysis has shown that the bilognormal model 377 

incorrectly favours the first hypothesis, and that the gamma model can correctly distinguish 378 

between the two. �379 

Summarizing the results that were obtained for the joint distribution function of the 380 

generation time and incubation period, three findings are notable: (1) the mean incubation 381 

period and mean generation time were very close, ranging from 11-12 days; (2) there was a 382 

positive correlation between the generation time and incubation period, although this was not 383 



 - 18 - 

significant with the bigamma distribution for the 1917-23 data; and (3) compared with 384 

estimates derived from datasets from 1917-23, estimates given by the dataset from 1929-34 385 

suggest shorter generation times and a stronger correlation between the generation time and 386 

incubation period. Findings (1) and (2) reflect transmission under intense contact conditions 387 

of close and prolonged physical proximity in the households [15]. Given this close contact 388 

and our estimates indicating that most secondary transmission of measles must have occurred 389 

before or just after the onset of illness, the infectiousness seems to increase fast just before 390 

symptom onset. With similar reasoning, finding (3) could indicate higher transmissibility of 391 

measles for the observations from 1929-34 compared to those from 1917-23, either due to 392 

more intense contacts or to higher or differently timed virus shedding levels, e.g. because of a 393 

different genotype [33].  394 

In recent studies the serial interval � was decomposed as the sum of time from the onset 395 

of a primary case to secondary transmission, w, and incubation period of secondary cases, t2 396 

[34-36]. That is, from Figure 1,  397 

 2w t� � 	  (4.1) 398 

has been assumed and further explored. Considering the distributions for each, the 399 

relationship is also expressed as 400 

 ( ) ( ) ( )
x

f w g d
�

� � � � �



� 
�  (4.2) 401 

where x is the potentially contagious period before onset of illness in the primary case. The 402 

function of public health interest has been focused on w(�-�), as the distribution can suggest 403 

the latest time at which symptomatic cases need to be placed in isolation [37]. Our approach 404 

does provide a distribution for w, with �w = �U - �T and �w as estimated, but it is more 405 

informative as it also provides a distribution of the generation time, related to the important 406 

growth rate of an epidemic, and it shows the correlation between disease onset and 407 
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infectivity.  408 

Our datasets are limited to cases with two susceptibles in one household and both cases 409 

infected. This is not at all a random sample of person-to-person transmission events during a 410 

measles outbreak, and does not indicate either how likely transmission is under similar 411 

circumstances. However, this does not affect the validity of our two main conclusions that we 412 

can draw for measles, first that a positive correlation between incubation period and start of 413 

infectiousness is very likely, and second that the infectiousness rises considerably around 414 

symptom onset. For control of measles, the correlation between disease and infectivity imply 415 

that isolation of cases and quarantine of traced contacts will be even more successful than 416 

already predicted [9, 10]. 417 

As for future implications, we hope our method will be useful for estimating the 418 

generation time of various diseases from well-recorded epidemiological data. Although the 419 

generation time estimated from household transmission data is likely to be shorter than that 420 

estimated from community transmission data [8, 15], further estimates in the community (or 421 

in a specific group of contacts) could be derived from serial intervals based on contact tracing. 422 

We believe further clarification of different generation times (e.g. between transmissions in 423 

the community and households) would enhance our understanding of the transmissibility of a 424 

disease in a heterogeneously mixing population which may be very useful in discussing and 425 

appropriately quantifying the transmission dynamics of directly transmitted diseases (e.g. 426 

influenza). Another line of future research is concerned with variations of generation time 427 

with time, which could also be addressed, analyzing time-varying serial intervals [38]. Given 428 

the various future possibilities, we believe our estimation procedure satisfies a need to 429 

translate observed datasets into one of the most important key intrinsic parameters of 430 

transmission dynamics. 431 

 432 
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Appendix A. Supplementary data 433 

Supplementary data associated with this article can be found in the online version at doi: . 434 
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Table 1.  440 

Parameter estimates with the bilognormal distribution 441 

Parameter 1917-1923  1929-1934 

Mean incubation period 11.6 (10.7 ; 12.4)  11.3 (10.6 ; 12.0) 

SD incubation period 2.75  (2.44 ; 3.13)  2.37  (2.14 ; 2.61) 

Mean generation time 12.2  (11.9 ; 12.5)  11.2  (11.1 ; 11.4) 

SD generation time 3.62  (2.98 ; 4.41)  3.13  (2.55 ; 3.68) 

Mean time onset-secondary 

transmission 

0.6  (-0.2 ; 1.5)  0.0  (-0.7 ; 0.6) 

SD time onset-secondary 

transmission 

1.69  (1.09 ; 2.29)  1.08 (0.57 ; 1.61) 

Mean serial interval 12.2  (11.9 ; 12.5)  11.2  (11.1 ; 11.4) 

SD serial interval 3.26  (3.05 ; 3.48)  2.62  (2.44 ; 2.79) 

Correlation coefficient [�]� 0.903  (0.732 ; 0.981)  0.969  (0.871 ; 0.997) 

Pr(mechanism 1) [�1]� 0.138  (0.0945 ; 0.205)  0.145  (0.0974 ; 0.213) 

Pr(mechanism 2) [�2]� 0.238  (0.200 ; 0.273)  0.189  (0.159 ; 0.220) 

SD mechanism 1 [�1]� 20.3  (17.1 ; 24.4)  16.6  (14.4 ; 19.4) 

Deviance 259   157  

NOTE: Given are the posterior medians and 95% credible intervals. SD is the standard 442 

deviation. Mechanism 1 refers to two independent infections outside the household; 443 

mechanism 2 refers to two synchronous infections outside the household. 444 

445 
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Table 2.  446 

Parameter estimates with the bigamma distribution 447 

Parameter 1917-1923  1929-1934 

Mean incubation period 11.5  (10.5 ; 12.5)  11.4  (10.6 ; 12.2) 

SD incubation period 2.24  (1.87 ; 2.66)  2.08  (1.69 ; 2.42) 

Mean generation time 11.9  (11.5 ; 12.1)  11.1  (10.9 ; 11.3) 

SD generation time 1.22  (0.69 ; 2.64)  1.79  (0.79 ; 3.08) 

Mean time onset-secondary 

transmission 
0.4 (-0.7 ; 1.5)  -0.3 (-1.1 ; 0.4) 

SD time onset-secondary 

transmission 
2.13 (1.41 ; 2.66)  1.29 (0.62 ; 1.91) 

Mean serial interval 11.9  (11.5 ; 12.1)  11.1  (10.9 ; 11.3) 

SD serial interval 3.08  (2.83 ; 3.36)  2.47  (2.28 ; 2.66) 

Correlation coefficient [�]� 0.413  (-0.511 ; 0.928)  0.837  (0.219 ; 0.982) 

Pr(mechanism 1) [�1]� 0.195  (0.132 ; 0.279)  0.188  (0.126 ; 0.253) 

Pr(mechanism 2) [�2]� 0.194  (0.153 ; 0.232)  0.162  (0.130 ; 0.195) 

SD mechanism 1 [�1]� 18.0  (15.4 ; 22.1)  15.5  (13.7 ; 18.0) 

Deviance 247   188  

NOTE: Given are the posterior medians and 95% credible intervals. SD is the standard 448 

deviation. Mechanism 1 refers to two independent infections outside the household; 449 

mechanism 2 refers to two synchronous infections outside the household. 450 

451 
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Table 3. 452 

Summary of identifiability analysis. 453 

  Simulation model 
Estimation 

model 
 Simulated � = 0.863 Simulated � = 0�

 Log-normal  Gamma  Log-normal  Gamma  
Lognormal proportion of 

correctly identified 
parametersa�

6/8 4/8 2/8 3/8 

 mean estimated � 0.966 0.951 0.801 0.785 
 proportion of 95% 

CI containing real �� 0/20 1/20 0/10 0/10 

 �     
Gamma  proportion of 

correctly identified 
parametersa�

6/8 8/8 8/8 8/8 

 mean estimated �� 0.842 0.813 -0.182 -0.253 
 proportion of 95% 

CI containing real �� 20/20 20/20 10/10 10/10 
a proportion of model parameters of which the true value falls within the 95% CI (sufficiently 454 

frequent, Fisher’s exact test). Full results in Supplementary Materials. 455 

 456 

457 
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Figure captions 458 

Fig. 1. Theoretical basis of the observed time intervals between onset of first and second 459 

measles case in households with two susceptible individuals. (a) Three underlying 460 

mechanisms: 1. both cases are infected independently in the community; 2. both cases are 461 

infected at the same time in the community; 3. secondary transmission in the household, ie 462 

the serial interval distribution. (b) The relationship between generation time u, incubation 463 

times t1 and t2, serial interval �, and time from onset to transmission w. 464 

 465 

Fig. 2. Datasets with onset intervals from 1917-1923 [22] and 1929-1934 [23], together with 466 

fitted distributions, separating the contributions of the three mechanisms. Arrows indicate the 467 

extreme values where the predicted numbers of cases with mechanism 3 are still above 0. (a) 468 

Data from 1917-1923, bilognormal model; (b) Data from 1917-1923, bigamma model; (c) 469 

Data from 1929-1934, bilognormal model; (d) Data from 1929-1934, bigamma model. 470 

 471 

Fig. 3. Incubation period dataset, extracted from [25], and three fitted distributions. 472 

 473 

Fig. 4. Joint distribution densities according to median posteriors, for the two datasets and two 474 

model. (a)-(d) as in Fig. 2. 475 

476 
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4. Figure 4



HIGHLIGHTS 

� Household measles data of time intervals between symptom onset of two cases 

were analysed 

� Correlation between incubation time and generation time were explicitly 

modelled 

� Measles incubation time and generation time appear positively correlated  

� The positive correlation could affect the effectiveness of case isolation and 

quarantine 

 




